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Hyperspectral Images

• A hyperspectral image is a data cube that captures spatial information 
across hundreds of contiguous spectral bands
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Credit: European Space Agency, 
hyperspectral image “data cube.”



Hyperspectral Images

• A hyperspectral image is a data cube that captures spatial information 
across hundreds of contiguous spectral bands
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Credit: European Space Agency, 
hyperspectral image “data cube.”

Enables detailed analysis of material 
properties based on their spectral 

signatures.



RGB vs. Hyperspectral Images
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RGB vs. Hyperspectral Images
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5712 x 4284

5712	×	4284	×	3 ≈ 293	MB 4192	×	6708	×	270 ≈ 30	GB

RGB

4192 x 6708

270 Channels

Disk: 9 MB JPEG Disk: 28 GB

Hyperspectral images require orders of 
magnitude more storage space and 

bandwidth than those for RGB images. 

Require efficient schemes for hyperspectral data 
compression in order to make hyperspectral images 

a practical choice for real world applications



Previous Work Highlights

• Transform-based methods
• 3D Discrete Cosine Transform, Wavelength Transform, Tucker decomposition, 

compressed sensing approaches

• Learning-based approaches
• Evolutionary approaches, Autoencoders

• Dimensionality reduction
• Principle Component Analysis, band selection

• Hyperspectral images as videos
• Region-aware schemes
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There is no clear winner, or generally agreed upon, 
scheme for compressing hyperspectral data.  

There is no JPEG standard for hyperspectral images!



Thesis Focus

• Study and develop new methods for hyperspectral image 
compression
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Agriculture Ocean 
Systems

Ecological 
Monitoring

Mineral 
Mapping Food Safety

Surveillance 
& Military Archaeology

Emerging applications of hyperspectral images



Benchmarks

• Indian Pines: Commonly used for agricultural and vegetation analysis.
• Jasper Ridge: Features a mix of vegetation and urban features.
• Pavia University: High-resolution urban dataset.
• Cuprite: Primarily geological and mineralogical.
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Widely used benchmarks for evaluating hyperspectral compression 

Offer an opportunity to capture method’s performance in different application scenarios: 
urban, agricultural, minerology, etc.  



Metrics

• Peak Signal-to-Noise Ratio (↑)
• Quantifies the reconstruction quality by comparing the similarity between the 

original and compressed images using an interpretable logarithmic scale.

• Structural Similarity Index Metric (↑)
• Evaluates perceived image quality by modeling structural information, 

luminance, and contrast, aligning more closely with human visual perception.

• Bits per pixel per band
• Captures the level of compression achieved by a model. (↓)
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• Idea: Represent hyperspectral images as implicit neural 
representations [Dupont et al., 2021]

Given a hyperspectral image 𝐼 ∈ ℝ!×#×$, train a neural 
network Φ%, such that Φ%: 𝑥, 𝑦 ↦ 𝐼(𝑥, 𝑦)

Implicit Neural Representations (INRs)

Networks that map a (pixel) location to (pixel) spectra

20



Reconstruction loss between predicted 
pixel &𝐼(𝑥, 𝑦) spectra and ground truth 

pixel spectra 𝐼(𝑥, 𝑦)

Model training
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Location (𝑥, 𝑦)
MLP with Sinosoidal 
Activation Functions Predicted pixel spectra &𝐼(𝑥, 𝑦)

Ground truth pixel spectra 𝐼(𝑥, 𝑦)



HSI Compression using INRs

Given a hyperspectral image 𝐼 ∈ ℝ!×#×$, train a neural network 
Φ%: 𝑥, 𝑦 ↦ 𝐼(𝑥, 𝑦)

Compression

Store network parameters 𝜃 ∈ ℝ- as the representation for 𝐼

Decompression
Evaluate Φ%(𝑥, 𝑦) at pixel locations to reconstruct the image

𝜃 is a compressed encoding of image 𝐼 since  
𝐷	 ≪ (𝐻)(𝑊)(𝐶)

𝜃 is a compressed encoding of image 𝐼 
since  𝐷	 ≪ (𝐻)(𝑊)(𝐶)Quantize 𝜃 to achieve further savings
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A multilayer perceptron 
network 𝑓ϴ with sinusoidal 

activation functions 
“learns” to map pixel 

locations to pixel 
intensities for a given 
hyperspectral image I.

The parameters of the 
network, along with its 
structure, represent a 

compressed encoding of the 
original hyperspectral image.

To reconstruct the 
hyperspectral image, 

the transmitted MLP is 
evaluated at all pixel 

positions.



HSI Compression using INRs

100 x 100 x 300 x 4 
 = 12 MB

10 hidden layers with width 30 
 = (4 + 4 + 4) 
    + (4 + 4) 
    + (3 x 30) + (9 x 31 x 30) + (300 x 30) x 4 
 = 0.07 MB

A thought experiment

A 100x100, 300 channel HSI image

INR representation



HSI Compression using INRs

Is it possible to achieve high compression rates while 
maintaining acceptable quality when using implicit 
neural representations?
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Question 1: 



PSNR at different compression rates
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Indian Pines Jasper Ridge

Pavia University Cuprite

bpppb = 8 for 
uncompressed 

images

Smaller bpppb 
reflects higher 

compression rates

For INR, network 
structures 

determines bpppb



Qualitative results

Indian Pines Jasper Ridge Pavia University Cuprite
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Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed



HSI Compression using INRs

Is it possible to achieve high compression rates while 
maintaining acceptable quality when using implicit 
neural representations?
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Question 1: 

YES



Model training (PSNR vs. Epochs)

Indian Pines Pavia UniversityJasper Ridge Cuprite
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Compression is a slow process since it require multiple 
training epochs.

Architecture search further slows down the process.



Reducing compression times
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Do not visit every pixel location during training.  Rather 
employ sampling.Proposal: 

An image is divided into tiles and 
each fraction of pixels are 
sampled within each tile



Reducing compression times
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Do not visit every pixel location during training.  Rather 
employ sampling.

Is it possible to achieve high compression rates while 
maintaining acceptable quality when using sampling?

Proposal: 

Question 2: 
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Baseline Methods
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Comparison baseline 
methods used for evaluating 
the proposed compression 
approach.
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SSIM Metric*

Cuprite

Pavia University
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Only these baselines provide SSIM 
scores on the selected benchmarks

*
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Only these baselines provide SSIM 
scores on the selected benchmarks

*



PSNR at different compression rates
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Reducing compression times
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Do not visit every pixel location during training.  Rather 
employ sampling.

Is it possible to achieve high compression rates while 
maintaining acceptable quality when using sampling?

Proposal: 

Question 2: 

YES



Even faster compression

Given a hyperspectral image 𝐼 ∈ ℝ!×#×$, train a neural network 
Φ%: 𝑥, 𝑦 ↦ 𝐼(𝑥, 𝑦)

Compression

Network training is slow, resulting in large compression times

Problem

Why

Does not take advantage of spatial and spectral structural similarities 
between images

Network is trained from scratch for each 
new hyperspectral image
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Speeding Up Compression

Idea (Meta Learning) [Finn et al. 2017, Dupont et al. 2022]

A base network encodes the “common” structure of hyperspectral images
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Modulations that are applied to the base network record image-specific 
details

Further savings are achieved by storing a latent code to generate the 
modulations (i.e., modulations are never explicitly stored)



Meta Network
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Speeding Up Compression

Idea (Meta Learning) [Finn et al. 2017, Dupont et al. 2022]

A base network encodes the “common” structure of hyperspectral images

Modulations that are applied to the base network record image-specific 
details

Siren Network (an MLP with sinusoidal activations)

ℎ! = 𝑠𝑖𝑛(𝑊!ℎ!"# + 𝑏!)
ℎ$%# = 𝑊$%#ℎ$ + 𝑏$%#

ℎ& ∈ ℝ'

𝑊$%# ∈ ℝ(×*, ℎ$%#, 𝑏$%# ∈ ℝ
(

𝑊# ∈ ℝ*×', 𝑊! ∈ ℝ*×*, 𝑏! ∈ ℝ*𝑖 ∈ [1, 𝐾],
Input :

Hidden layers:

Output:
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Speeding Up Compression

Idea (Meta Learning)
A base network encodes the “common” structure of hyperspectral images

Modulations that are applied to the base network record image-specific 
details

Siren Network (an MLP with sinusoidal activations)

ℎ! = 𝑠𝑖𝑛(𝑊!ℎ!"# + 𝑏!)
ℎ$%# = 𝑊$%#ℎ$ + 𝑏$%#)

ℎ& ∈ ℝ'

𝑊$%# ∈ ℝ(×*, ℎ$%#, 𝑏$%# ∈ ℝ
(

𝑊# ∈ ℝ*×', 𝑊! ∈ ℝ*×*, 𝑏! ∈ ℝ*𝑖 ∈ [1, 𝐾],
Input :

Hidden layers:

Output:

Modulations 𝜷𝒊 (constructed using latent vector 𝝋)
ℎ! = 𝑠𝑖𝑛( 𝑊!ℎ!"# + 𝑏! + 𝛽!)Modulated hidden layers:

𝛽 = 𝑊+𝜑 + 𝑏+ 𝑊+ ∈ ℝ * $ ×*!"#$%#, 𝜑 ∈ ℝ*!"#$%#, 𝑏+ ∈ ℝ(*)($)
58



Speeding Up Compression

Idea (Meta Learning)
A base network encodes the “common” structure of hyperspectral images

Modulations that are applied to the base network record image-specific 
details

Use
Given a pre-trained network, a new image is “compressed” by updating modulations only

Faster and Cheaper

Plus, we can achieve higher compression by storing only modulations for each image

Cost of the shared network parameters storage 
is amortized over multiple images 59



Speeding Up Compression

Idea (Meta Learning)
A base network encodes the “common” structure of hyperspectral images

Modulations that are applied to the base network record image-specific 
details

Use
Given a pre-trained network, a new image is “compressed” by updating modulations only

Faster and Cheaper

Plus, we can achieve higher compression by storing only modulations for each image

Cost of the shared network parameters storage 
is amortized over multiple images 60

100 x 100 x 300 x 4 
 = 12 MB

10 hidden layers with width 30
Latent vector size 32 
 = 32 x 4
 = 0.000128 MB

A thought experiment

A 100x100, 300 channel HSI image

Only storing modulations



Reducing compression times
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Exploit spatial and spectral similarities between 
hyperspectral images using meta learning to achieve 
faster compression

Is it possible to achieve faster compression at 
acceptable PSNR using meta learning?

Proposal: 

Question 3: 



Model Agnostic Meta-Learning

Inner loop
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𝛽(#) = 𝛽 − 𝛼%&&'(∇)ℒ 𝐼 # , 𝜙 *|)

Update image-specific modulations

Network parameters 𝜃 are frozen
Here 𝛽(.) denotes modulations parameters for image 𝐼(.)

𝜃 = 𝜃 − 𝛼,-#'( ?
#∈[0,2]

∇*ℒ 𝐼 # , 𝜙 *|)(")

Update network parameters 𝜃

𝛽(.) is frozen

Outer loop

Initially 𝛽 are set to 0



Latent Vector 𝜑	to Construct Modulations 𝛽

Inner loop
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𝜑(#) = 𝜑 − 𝛼%&&'(∇4ℒ 𝐼 # ,	𝜙 *$|4

Update image-specific modulations

Set 𝜃% = {𝜃,𝑊+, 𝑏+}
Here 𝜑(.) denotes latent vector for constructing modulations for image 𝐼(.)

𝜃5 = 𝜃5 − 𝛼,-#'( ?
#∈[0,2]

∇*$ℒ 𝐼 # , 𝜙 *$|4(")

Update network parameters 𝜃 and the linear layer for mapping latent vectors 
to modulations

Outer loop

Initially	𝜑 are set to 0



Evaluation

• A single network is trained on four benchmarks
• Indian Pines
• Pavia University
• Jasper Ridge
• Cuprite

• Modulations capture the structure unique to each benchmark
• Compression time is amortized over four benchmarks
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PSNR at different compression rates
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Reducing compression times
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Exploit spatial and spectral similarities between 
hyperspectral images using meta learning to achieve 
faster compression

Is it possible to achieve faster compression at 
acceptable PSNR using meta learning?

Proposal: 

Question 3: 

YES



Proof of Concept
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4192 x 6708
270 Channels

Can we use implicit neural represent to compress “large” hyperspectral image? 

28 GB



Proof of Concept

Train 7 meta networks, 
on per row

Modulations capture 
structure within tiles in 
each rows
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Can we use implicit neural represent to compress “large” hyperspectral image? 



Proof of Concept

Train 7 meta networks, 
on per row

Modulations capture 
structure within tiles in 
each rows
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Can we use implicit neural represent to compress “large” hyperspectral image? 

*This table fixes an error in the thesis



Proof of Concept

77

Can we use implicit neural represent to compress “large” hyperspectral image? 

4192 x 6708
270 Channels
28 GB 141 KB

Compressed Size

YES



Task-Aware Compression
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Indian Pine
PSNR: 33.47

PSNR left side: 33.82
PSNR right side: 33.15

Jasper Ridge
PSNR: 28.15

PSNR left side: 29.82
PSNR right side: 26.94

Pavia University
PSNR: 30.54

PSNR left side: 29.40
PSNR right side: 32.11

Cuprite
PSNR: 23.66

PSNR left side: 23.66
PSNR right side: 23.67

Is it possible to compress regions of an image differentially?



Region-Specific Compression on Pavia Dataset
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Region-Specific Compression
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Pavia University

Top and bottom 
slices sampled at 
different rates

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

100% 100% 100% 100% 100%

100% 100% 100% 100% 100%



Region-Specific Compression

• Regions of Interest (ROI)
• K-Means

• Clusters regions based upon spectral similarity
• UNet

• Uses deep learning to perform object-level segmentation

81



K-Means for ROI: An illustration
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Indian Pines

Jasper Ridge

ROI

ROI



Results K-means
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UNet for ROI: An illustration
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Indian Pines

Jasper Ridge

ROI are shown in Yellow



Results U-net
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Task-Aware Compression
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Is it possible to compress regions of an image differentially?

YES



Thesis Questions

• Is it possible to achieve high compression rates while maintaining 
acceptable quality when using implicit neural representations?
• Is it possible to achieve high compression rates while maintaining 

acceptable quality when using sampling?
• Is it possible to achieve faster compression at acceptable PSNR using 

meta learning?
• Can we use implicit neural represent to compress “large” 

hyperspectral image? 
• Is it possible to compress regions of an image differentially?
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Questions

• Is it possible to achieve high compression rates while maintaining 
acceptable quality when using implicit neural representations?
• Is it possible to achieve high compression rates while maintaining 

acceptable quality when using sampling?
• Is it possible to achieve faster compression at acceptable PSNR using 

meta learning?
• Can we use implicit neural represent to compress “large” 

hyperspectral image? 
• Is it possible to compress regions of an image differentially?
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The results suggest that the answer 
to all these questions is a YES!



Contributions

• Explored the use of implicit neural representations for hyperspectral 
image compression
• Sampling
• Meta learning
• Managing large-scale images
• Differential compression

• Evaluated on standard benchmarks against state-of-the-art schemes, 
posting competitive performance
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Publications

• Hyperspectral Image Compression Using Implicit Neural Representations. Rezasoltani, S.; and 
Qureshi, F. In Proc. 20th Conference on Robots and Vision (CRV23), pages 8pp, Montreal, Jun 2023.

• Hyperspectral Image Compression Using Sampling and Implicit Neural Representations. 
Rezasoltani, S.; and Qureshi, F. Z. IEEE Transactions on Geoscience and Remote Sensing, 63: 12pp. 
December 2024. 
(top journal in the field of remote sensing, impact factor: 7.5)

• Hyperspectral Image Compression Using Implicit Neural Representation and Meta-Learned 
Based Network. Rezasoltani, S.; and Qureshi, F. Z. In Proc. 14th International Conference on 
Pattern Recognition Applications and Methods, pages 9pp, Porto, February 2025. (Honorable 
Mention)

• Meta-Learned Implicit Neural Representations for Scalable and Fast Hyperspectral Image 
Compression. Rezasoltani, S.; and Qureshi, F.Z. Lecture Notes in Computer Science – ICPRAM 
2025 Selected Papers, Springer, pages 18pp (In review)
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Limitations

• Theoretical understanding of the limits of implicit neural 
representations from an information theoretic perspective: model 
capacity vs. compression quality
• We have side-stepped this issue in this thesis via “architecture search”

• More rigorous evaluation of model performance in compression large 
hyperspectral images
• Evaluation of the proposed technique on more benchmarks
• We have evaluated the model on the benchmarks that are currently used in 

the literature, but clearly it is desirable to evaluate to model on a wider set of 
benchmarks
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Future Work

• Apply this framework to multispectral and medical imaging types to 
improve storage and diagnostics.
• Enable incremental learning and make it compatible with edge 

devices for real-time use in satellites and autonomous vehicles.
• Build privacy-preserving frameworks and establish guidelines for 

using sensitive data responsibly.
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Metrics

• Peak Signal-to-Noise Ratio (PSNR)
• The PSNR measures the proximity of the original image to its 

reconstruction

𝑃𝑆𝑁𝑅 = 10  log/0
𝑅1

𝑀𝑆𝐸

𝑀𝑆𝐸 =2
2

𝐼 𝑖 − 6𝐼 𝑖 1

𝑖
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Metrics

• Structure similarity (SSIM)
• The SSIM measures the visual quality of the reconstructed image

			𝑆𝑆𝐼𝑀 𝑥, 𝑦 =
6 8% 8& 5 9' 6 :%& 5 9(

8%( 5 8&( 5 9' :%( 5 :&( 5 9(
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Metrics

• The number of bits-per-pixel-per-band (bpppb): captures the level of 
compression achieved by a model
• Lower values of bpppb indicate higher compression rates
• The parameter bpppb is calculated as follows:

𝑏𝑝𝑝𝑝𝑏 =
#parameters× bits per parameter

pixels per band ×#bands

107



Implicit Neural Representations (INRs)

• Represent an image by overfitting a neural network to it
• Parameters of the neural network serve as the compact representation of the 

image
• Use this image representation as the compressed version of the image
• Reconstruct the original image by evaluating the neural network at all pixel 

locations
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