Hyperspectral Image Compression using Implicit Neural Representations

Shima Rezasoltani

Computer Science, Faculty of Science

PhD Defense

Hyperspectral Images

• A hyperspectral image is a data cube that captures spatial information across hundreds of contiguous spectral bands

Credit: European Space Agency, hyperspectral image "data cube."

Hyperspectral Images

• A hyperspectral image is a data cube that captures spatial information across hundreds of contiguous spectral bands

Credit: European Space Agency, hyperspectral image "data cube." Enables detailed analysis of material properties based on their spectral signatures.

RGB vs. Hyperspectral Images

 $5712 \times 4284 \times 3 \approx 293 \text{ MB}$

 $4192 \times 6708 \times 270 \approx 30 \text{ GB}$

RGB vs. Hyperspectral Images

Hyperspectral images require orders of magnitude more storage space and bandwidth than those for RGB images.

Require efficient schemes for hyperspectral data compression in order to make hyperspectral images a practical choice for real world applications

 $5712 \times 4284 \times 3 \approx 293 \text{ MB}$

Disk: 9 MB JPEG

 $4192 \times 6708 \times 270 \approx 30 \text{ GB}$

Disk: 28 GB

Previous Work Highlights

Transform-based methods

• 3D Discrete Cosine Transform, Wavelength Transform, Tucker decomposition, compressed sensing approaches

Learning-based approaches

• Evolutionary approaches, Autoencoders

Dimensionality reduction

- Principle Component Analysis, band selection
- Hyperspectral images as videos
- Region-aware schemes

Previous Work Highlights

Transform-based methods

• 3D Discrete Cosine Transform, Wavelength Transform, Tucker decomposition, compressed sensing approaches

Learning-based approaches

• Evolutionary approaches, Autoencodors

Dimensionality reduction

- Principle Component An
- Hyperspectral images as
- Region-aware schemes

There is no clear winner, or generally agreed upon, scheme for compressing hyperspectral data. There is no JPEG standard for hyperspectral images!

Thesis Focus

 Study and develop new methods for hyperspectral image compression

Emerging applications of hyperspectral images

Benchmarks

- Indian Pines: Commonly used for agricultural and vegetation analysis.
- Jasper Ridge: Features a mix of vegetation and urban features.
- Pavia University: High-resolution urban dataset.
- **Cuprite:** Primarily geological and mineralogical.

Widely used benchmarks for evaluating hyperspectral compression

Offer an opportunity to capture method's performance in different application scenarios: urban, agricultural, minerology, etc.

Metrics

Peak Signal-to-Noise Ratio (1)

• Quantifies the reconstruction quality by comparing the similarity between the original and compressed images using an interpretable logarithmic scale.

Structural Similarity Index Metric (1)

• Evaluates perceived image quality by modeling structural information, luminance, and contrast, aligning more closely with human visual perception.

Bits per pixel per band

• Captures the level of compression achieved by a model. (\downarrow)

Implicit Neural Representations (INRs)

• Idea: Represent hyperspectral images as *implicit neural representations* [Dupont *et al.,* 2021]

Networks that map a (pixel) location to (pixel) spectra

Given a hyperspectral image $I \in \mathbb{R}^{H \times W \times C}$, train a neural network Φ_{θ} , such that $\Phi_{\theta}: (x, y) \mapsto I(x, y)$

Model training

HSI Compression using INRs

Compression

Given a hyperspectral image $I \in \mathbb{R}^{H \times W \times C}$, train a neural network $\Phi_{\theta}: (x, y) \mapsto I(x, y)$

Store network parameters $\theta \in \mathbb{R}^D$ as the representation for I

Decompression

Evaluate $\Phi_{\theta}(x, y)$ at pixel locations to reconstruct the image

 θ is a compressed encoding of image *I* since $D \ll (H)(W)(C)$

Quantize θ to achieve further savings

A multilayer perceptron network f_{Θ} with sinusoidal activation functions "learns" to map pixel locations to pixel intensities for a given hyperspectral image I.

The parameters of the network, along with its structure, represent a compressed encoding of the original hyperspectral image.

To reconstruct the hyperspectral image, the transmitted MLP is evaluated at all pixel positions.

HSI Compression using INRs

A thought experiment

A 100x100, 300 channel HSI image 100 x 100 x 300 x 4 = 12 MB

INR representation 10 hidden layers with width 30 = (4 + 4 + 4)+ (4 + 4)+ $(3 \times 30) + (9 \times 31 \times 30) + (300 \times 30) \times 4$ = 0.07 MB

HSI Compression using INRs

Question 1: Is it possible to achieve high compression rates while maintaining acceptable quality when using implicit neural representations?

PSNR at different compression rates

bpppb = 8 for uncompressed images

Smaller bpppb reflects higher compression rates

For INR, network structures determines bpppb

Qualitative results

Original

Reconstructed

Original

Reconstructed

Original

Reconstructed

Original

Reconstructed

Indian Pines

Jasper Ridge

Pavia University

Cuprite

HSI Compression using INRs

Question 1:Is it possible to achieve high compression rates while
maintaining acceptable quality when using implicit
neural representations?YES

Model training (PSNR vs. Epochs)

Compression is a slow process since it require multiple training epochs.

Architecture search further slows down the process.

Reducing compression times

Proposal:

Do not visit every pixel location during training. Rather employ *sampling*.

An image is divided into tiles and each fraction of pixels are sampled within each tile

Reducing compression times

Proposal:Do not visit every pixel location during training. Rather
employ sampling.

Question 2: Is it possible to achieve high compression rates while maintaining acceptable quality when using *sampling*?

Dataset	Method	bppppb	compression time (Sec)	decompression time (Sec)	PSNR ↑
	ours	0.1	243.64	0	36.98
Indian Dinas	hp_ours	0.05	243.64	0	36.95
indian rines	ours_sampling	0.1	132.87	0.0005	39.20
	hp_ours_sampling	0.05	132.87	0.0005	29.94
	JPEG	0.1	7.353	3.27	27.47
	JPEG2000	0.1	0.1455	0.3115	33.58
	PCA-DCT	0.1	1.66	0.04	32.28
	ours	0.1	235.19	0.0005	35.77
Jaaman Didaa	hp_ours	0.06	235.19	0.0005	35.70
Jasper Ridge	ours_sampling	0.1	126.33	0.0005	40.20
	hp_ours_sampling	0.06	126.33	0.0005	19.58
	JPEG	0.1	3.71	1.62	24.39
	JPEG2000	0.1	0.138	0.395	16.75
	PCA-DCT	0.1	1.029	0.027	25.98
	ours	0.1	352.74	0.0009	33.67
Davia University	hp_ours	0.05	352.74	0.0009	19.75
Pavia University	ours_sampling	0.1	72.512	0.0004	38.08
	hp_ours_sampling	0.05	72.512	0.0004	27.02
8	JPEG	0.1	33.86	14.61	20.86
	JPEG2000	0.1	0.408	0.628	17.02
	PCA-DCT	0.1	6.525	0.235	25.121
	ours	0.06	1565.97	0.001	28.02
Cumita	hp_ours	0.03	1565.97	0.001	27.90
Cuprite	ours_sampling	0.06	664.87	0.001	37.27
	hp_ours_sampling	0.03	664.87	0.001	24.85
	JPEG	0.06	101.195	45.02	12.88
	JPEG2000	0.06	1.193	2.476	15.16
	PCA-DCT	0.06	11.67	0.754	26.75

(compression times) Comparison

Dataset	Method	bppppb	compression time (Sec)	decompression time (Sec)	PSNR ↑
	ours	0.1	243.64	0	36.98
Indian Dinas	hp_ours	0.05	243.64	0	36.95
mutan rmes	ours_sampling	0.1	132.87	0.0005	39.20
	hp_ours_sampling	0.05	132.87	0.0005	29.94
	JPEG	0.1	7.353	3.27	27.47
	JPEG2000	0.1	0.1455	0.3115	33.58
	PCA-DCT	0.1	1.66	0.04	32.28
	ours	0.1	235.19	0.0005	35.77
Jaspar Didga	hp_ours	0.06	235.19	0.0005	35.70
Jasper Kluge	ours_sampling	0.1	126.33	0.0005	40.20
	hp_ours_sampling	0.06	126.33	0.0005	19.58
	JPEG	0.1	3.71	1.62	24.39
	JPEG2000	0.1	0.138	0.395	16.75
	PCA-DCT	0.1	1.029	0.027	25.98
	ours	0.1	352.74	0.0009	33.67
Davia University	hp_ours	0.05	352.74	0.0009	19.75
	ours_sampling	0.1	72.512	0.0004	38.08
	hp_ours_sampling	0.05	72.512	0.0004	27.02
	JPEG	0.1	33.86	14.61	20.86
	JPEG2000	0.1	0.408	0.628	17.02
	PCA-DCT	0.1	6.525	0.235	25.121
	ours	0.06	1565.97	0.001	28.02
Cuprito	hp_ours	0.03	1565.97	0.001	27.90
Cuprite	ours_sampling	0.06	664.87	0.001	37.27
	hp_ours_sampling	0.03	664.87	0.001	24.85
	JPEG	0.06	101.195	45.02	12.88
	JPEG2000	0.06	1.193	2.476	15.16
	PCA-DCT	0.06	11.67	0.754	26.75

Comparison (PSNR)

Comparison baseline methods used for evaluating the proposed compression approach.

Dataset	Method	References		
	PCA+JPEG2000	[Du et al., 2007]		
Indian Dinoc	FPCA+JPEG2000	[Mei et al., 2018]		
inuian Fines	HEVC	[Sullivan et al., 2012]		
	RPM	[Paul et al., 2016]		
	PCA+JPEG2000	[Du et al., 2007]		
	3D DCT	[Yadav et al., 2018]		
	3D DWT+SVR	[Zikiou et al., 2021]		
	WSRC	[Ouahioune et al., 2021]		
	HEVC	[Sullivan et al., 2012]		
	RPM	[Paul et al., 2016]		
Cuprito	3D DCT	[Yadav et al., 2018]		
cupitte	3D-SPECK	[Tang et al., 2006]		
	3D-SPHIT	[Fowler et al., 2007]		
	3D- WBTC	[Bajpai et al., 2019]		
	3D-LSK	[Ngadiran et al., 2010]		
	3D-NLS	[Sudha et al., 2013]		
	3D-LMBTC	[Bajpai et al., 2020]		
	3D-ZM-SPECK	[Bajpai et al., 2022]		

Γ	Method	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h
ľ	-		9251	∞	16	-,-		4800	∞	16	-,-
ľ	JPEG		115.6	34.085	0.2	-,-		30	21.130	0.1	-,-
F	JPEG2000	Indian Dinas	115.6	38.098	0.2	-,-	Jacpar Didga	30	17.494	0.1	-,-
ſ	PCA-DCT	Indian Fines	115.6	33.173	0.2	-,-	Jasper Kluge	30	26.821	0.1	-,-
ſ	PCA+JPEG2000		115.6	39.5	0.2	-,-		30	-	0.1	-,-
Γ	FPCA+JPEG2000	1	115.6	40.5	0.2			30	-	0.1	-,-
Γ	HEVC		115.6	32	0.2	-,-		30	-	0.1	-,-
Γ	RPM		115.6	38	0.2	-,-		30	-	0.1	-,-
Γ	3D SPECK		115.6	-	0.2	-,-		30	-	0.1	-,-
Γ	3D DCT		115.6	-	0.2	-,-		30	-	0.1	-,-
Γ	3D DWT+SVR		115.6	-	0.2	-,-		30	-	0.1	-,-
Γ	WSRC		115.6	-	0.2	-,-		30	-	0.1	-,-
Γ	ours		115.6	40.61	0.2	15,40		30	35.696	0.1	10,20
Γ	hp_ours		57.5	40.35	0.1	15,40		15	35.467	0.06	10,20
	ours sampling		115.6	44.46	0.2	15.40		30	41.58	0.1	15,20
	hp_ours_sampling		57.5	30.20	0.2	15,40		15	21.48	0.06	15,20
	-		42724	∞	16	-,-		140836	∞	16	-,-
Γ	JPEG		267	20.253	0.1	-,-		880.2	24.274	0.1	-,-
Γ	JPEG2000	Pavia University	267	17.752	0.1	-,-	Cuprite	880.2	20.889	0.1	-,-
Γ	PCA-DCT		267	25.436	0.1	-,-	Cupine	880.2	27.302	0.1	-,-
Γ	PCA+JPEG2000		267	-	0.1	-,-		880.2	27.5	0.1	-,-
Γ	FPCA+JPEG2000		267	-	0.1	-,-		880.2	-	0.1	-,-
	HEVC		267	-	0.1	-,-		880.2	31	0.1	-,-
	RPM		267	-	0.1	-,-		880.2	34	0.1	-,-
	3D SPECK		267	-	0.1	-,-		880.2	27.1	0.1	-,-
	3D DCT		267	-	0.1	-,-		880.2	33.4	0.1	-,-
	3D DWT+SVR		267	-	0.1	-,-		880.2	28.20	0.1	-,-
	WSRC		267	-	0.1	-,-		880.2	35	0.1	-,-
	ours		267	33.749	0.1	20,60		880.2	28.954	0.1	25,100
	hp_ours		133.5	20.886	0.05	20,60		440.1	24.334	0.06	25,100
	ours_sampling		267	40.001	0.1	10,100		880.2	37.007	0.1	25,100
Γ	hp_ours_sampling		133.5	27.49	0.05	10,100		440.1	24.96	0.06	25,100

Method	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h
-		9251	∞	16	-,-		4800	∞	16	-,-
JPEG	1	115.6	34.085	0.2	-,-	1	30	21.130	0.1	-,-
JPEG2000	Indian Dines	115.6	38.098	0.2	-,-	Jacper Didge	30	17.494	0.1	-,-
PCA-DCT		115.6	33.173	0.2	-,-	Jasper Kluge	30	26.821	0.1	-,-
PCA+JPEG2000]	115.6	39.5	0.2	-,-		30	-	0.1	-,-
FPCA+JPEG2000		115.6	40.5	0.2]	30	-	0.1	-,-
HEVC		115.6	32	0.2	-,-		30	-	0.1	-,-
RPM]	115.6	38	0.2	-,-]	30	-	0.1	-,-
3D SPECK]	115.6	-	0.2	-,-		30	-	0.1	-,-
3D DCT]	115.6	-	0.2	-,-]	30	-	0.1	-,-
3D DWT+SVR]	115.6	-	0.2	-,-]	30	-	0.1	-,-
WSRC		115.6	-	0.2	-,-		30	-	0.1	-,-
ours		115.6	40.61	0.2	15,40		30	35.696	0.1	10,20
hp_ours		57.5	40.35	0.1	15,40		15	35.467	0.06	10,20
ours_sampling		115.6	44.46	0.2	15,40		30	41.58	0.1	15,20
hp_ours_sampling		57.5	30.20	0.2	15,40		15	21.48	0.06	15,20
-		42724	∞	16	-,-		140836	∞	16	-,-
JPEG		267	20.253	0.1	-,-		880.2	24.274	0.1	-,-
JPEG2000	Pavia University	267	17.752	0.1	-,-	Cuprite	880.2	20.889	0.1	-,-
PCA-DCT	I avia University	267	25.436	0.1	-,-		880.2	27.302	0.1	-,-
PCA+JPEG2000		267	-	0.1	-,-		880.2	27.5	0.1	-,-
FPCA+JPEG2000		267	-	0.1	-,-		880.2	-	0.1	-,-
HEVC		267	-	0.1	-,-		880.2	31	0.1	-,-
RPM		267	-	0.1	-,-		880.2	34	0.1	-,-
3D SPECK		267	-	0.1	-,-		880.2	27.1	0.1	-,-
3D DCT		267	-	0.1	-,-		880.2	33.4	0.1	-,-
3D DWT+SVR		267	-	0.1	-,-		880.2	28.20	0.1	-,-
WSRC		267	-	0.1	-,-		880.2	35	0.1	-,-
ours		267	33.749	0.1	20,60		880.2	28.954	0.1	25,100
hp_ours		133.5	20.886	0.05	20,60		440.1	24.334	0.06	25,100
ours sampling		267	40.001	0.1	10.100		880.2	37.007	0.1	25,100
hp_ours_sampling		133.5	27.49	0.05	10,100		440.1	24.96	0.06	25,100

ſ	Method	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h
Ī	-		9251	∞	16	-,-		4800	∞	16	-,-
Ī	JPEG		115.6	34.085	0.2	-,-		30	21.130	0.1	-,-
Ī	JPEG2000	Indian Dinas	115.6	38.098	0.2	-,-	Jaspar Pidga	30	17.494	0.1	-,-
ſ	PCA-DCT	This are This	115.6	33.173	0.2	-,-	Jasper Kluge	30	26.821	0.1	-,-
	PCA+JPEG2000		115.6	39.5	0.2	-,-		30	-	0.1	-,-
	FPCA+JPEG2000		115.6	40.5	0.2			30	-	0.1	-,-
[HEVC		115.6	32	0.2	-,-		30	-	0.1	-,-
ſ	RPM		115.6	38	0.2	-,-		30	-	0.1	-,-
	3D SPECK		115.6	-	0.2	-,-		30	-	0.1	-,-
[3D DCT		115.6	-	0.2	-,-		30	-	0.1	-,-
[3D DWT+SVR		115.6	-	0.2	-,-		30	-	0.1	-,-
[WSRC		115.6	-	0.2	-,-		30	-	0.1	-,-
	ours		115.6	40.61	0.2	15,40		30	35.696	0.1	10,20
	hp_ours		57.5	40.35	0.1	15,40		15	35.467	0.06	10,20
	ours sampling		115.6	44.40	0.2	15.40		30	41.58	0.1	15.20
	hp_ours_sampling		57.5	30.20	0.2	15,40		15	21.48	0.06	15,20
	-		42724	∞	16	-,-		140836	∞	16	-,-
	JPEG		267	20.253	0.1	-,-		880.2	24.274	0.1	-,-
	JPEG2000	Pavia University	267	17.752	0.1	-,-	Cuprite	880.2	20.889	0.1	-,-
	PCA-DCT		267	25.436	0.1	-,-		880.2	27.302	0.1	-,-
	PCA+JPEG2000		267	-	0.1	-,-		880.2	27.5	0.1	-,-
	FPCA+JPEG2000		267	-	0.1	-,-		880.2	-	0.1	-,-
	HEVC		267	-	0.1	-,-		880.2	31	0.1	-,-
	RPM		267	-	0.1	-,-		880.2	34	0.1	-,-
	3D SPECK		267	-	0.1	-,-		880.2	27.1	0.1	-,-
	3D DCT		267	-	0.1	-,-		880.2	33.4	0.1	-,-
	3D DWT+SVR		267	-	0.1	-,-		880.2	28.20	0.1	-,-
	WSRC		267	-	0.1	-,-		880.2	35	0.1	-,-
	ours		267	33.749	0.1	20,60		880.2	28.954	0.1	25,100
	hp_ours		133.5	20.886	0.05	20,60		440.1	24.334	0.06	25,100
	ours_sampling		267	40.001	0.1	10,100		880.2	37.007	0.1	25,100
	hp_ours_sampling		133.5	27.49	0.05	10,100		440.1	24.96	0.06	25,100

Comparison (quality)

Method	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h	Dataset	Size (KB)	PSNR	bpppb	n _h , w _h
-		9251	∞	16	-,-		4800	∞	16	-,-
JPEG	1	115.6	34.085	0.2	-,-		30	21.130	0.1	-,-
JPEG2000	Indian Dinas	115.6	38.098	0.2	-,-	Jacmar Didga	30	17.494	0.1	-,-
PCA-DCT		115.6	33.173	0.2	-,-	Jasper Kluge	30	26.821	0.1	-,-
PCA+JPEG2000	1	115.6	39.5	0.2	-,-	1	30	-	0.1	-,-
FPCA+JPEG2000]	115.6	40.5	0.2			30	-	0.1	-,-
HEVC		115.6	32	0.2	-,-		30	-	0.1	-,-
RPM		115.6	38	0.2	-,-		30	-	0.1	-,-
3D SPECK		115.6	-	0.2	-,-		30	-	0.1	-,-
3D DCT		115.6	-	0.2	-,-		30	-	0.1	-,-
3D DWT+SVR		115.6	-	0.2	-,-		30	-	0.1	-,-
WSRC		115.6	-	0.2	-,-		30	-	0.1	-,-
ours		115.6	40.61	0.2	15,40		30	35.696	0.1	10,20
hp_ours		57.5	40.35	0.1	15,40		15	35.467	0.06	10,20
ours_sampling		115.6	44.46	0.2	15,40		30	41.58	0.1	15,20
hp_ours_sampling		57.5	30.20	0.2	15,40		15	21.48	0.06	15,20
-		42724	∞	16	-,-		140836	∞	16	-,-
JPEG		267	20.253	0.1	-,-		880.2	24.274	0.1	-,-
JPEG2000	Pavia LL:	267	17.752	0.1	-,-	Cuprite	880.2	20.889	0.1	-,-
PCA-DCT	Ture oniversity	267	25.436	0.1	-,-	Cupite	880.2	27.302	0.1	-,-
PCA+JPEG2000		267	-	0.1	-,-		880.2	27.5	0.1	-,-
FPCA+JPEG2000		267	-	0.1	-,-		880.2	-	0.1	-,-
HEVC		267	-	0.1	-,-		880.2	31	0.1	-,-
RPM		267	-	0.1	-,-		880.2	34	0.1	-,-
3D SPECK		267	-	0.1	-,-		880.2	27.1	0.1	-,-
3D DCT		267	-	0.1	-,-		880.2	33.4	0.1	-,-
3D DWT+SVR		267	-	0.1	-,-		880.2	28.20	0.1	-,-
WSRC		267	-	0.1	-,-		880.2	35	0.1	-,-
ours		267	33.749	0.1	20,60		880.2	28.954	0.1	25,100
hp_ours		133.5	20.886	0.05	20,60		440.1	24.334	0.06	25,100
ours sampling	-	267	40.001	0.1	10.100		880.2	37.007	0.1	25.100
hp_ours_sampling		133.5	27.49	0.05	10,100		440.1	24.96	0.06	25,100

bpppb	method	SSIM ↑
0.1	WSRC	0.75
0.1	ours_sampling	0.9798
	3D-SPECK	0.142
	3D-SPIHT	0.136
	3D-WBTC	0.141
	3D-LSK	0.138
	3D-NLS	0.135
0.01	3D-LMBTC	0.140
	3D-ZM-SPECK	0.141
	ours	0.9565
	hp_ours	0.9514
	ours_sampling	0.9527
	hp_ours_sampling	0.9390

Cuprite

bpppb	method	SSIM ↑
	3D-SPHIT	0.4
	3D-DCT	0.85
0.1	ours	0.9564
0.1	hp_ours	0.9527
	ours_sampling	0.9901
	hp_ours_sampling	0.8518

Pavia University

bpppb	method	SSIM ↑
0.1	WSRC	0.75
0.1	ours_sampling	0.9798
	3D-SPECK	0.142
	3D-SPIHT	0.136
	3D-WBTC	0.141
	3D-LSK	0.138
	3D-NLS	0.135
0.01	3D-LMBTC	0.140
	3D-ZM-SPECK	0.141
	ours	0.9565
	hp_ours	0.9514
	ours_sampling	0.9527
	hp_ours_sampling	0.9390

Cuprite

bpppb	method	SSIM ↑
	3D-SPHIT	0.4
	3D-DCT	0.85
0.1	ours	0.9564
0.1	hp_ours	0.9527
	ours_sampling	0.9901
	hp_ours_sampling	0.8518

Pavia University

bpppb	method	SSIM↑
0.1	WSRC	0.75
	ours_sampling	0.9798
0.01	3D-SPECK	0.142
	3D-SPIHT	0.136
	3D-WBTC	0.141
	3D-LSK	0.138
	3D-NLS	0.135
	3D-LMBTC	0.140
	3D-ZM-SPECK	0.141
	ours	0.9565
	hp_ours	0.9514
	ours_sampling	0.9527
	hp_ours_sampling	0.9390

Cuprite

bpppb	method	SSIM ↑
0.1	3D-SPHIT	0.4
	3D-DCT	0.85
	ours	0.9564
	hp_ours	0.9527
	ours_sampling	0.9901
	hp_ours_sampling	0.8518

Pavia University

bpppb	method	SSIM ↑
0.1	WSRC	0.75
	ours_sampling	0.9798
0.01	3D-SPECK	0.142
	3D-SPIHT	0.136
	3D-WBTC	0.141
	3D-LSK	0.138
	3D-NLS	0.135
	3D-LMBTC	0.140
	3D-ZM-SPECK	0.141
	ours	0.9565
	hp_ours	0.9514
	ours_sampling	0.9527
	hp_ours_sampling	0.9390

Cuprite

bpppb	method	SSIM ↑
0.1	3D-SPHIT	0.4
	3D-DCT	0.85
	ours	0.9564
	hp_ours	0.9527
	ours_sampling	0.9901
	hp_ours_sampling	0.8518

Pavia University

PSNR at different compression rates

bpppb = 8 for uncompressed images

Smaller bpppb reflects higher compression rates

For INR, network structures determines bpppb

Reducing compression times

Proposal: Do not visit every pixel location during training. Rather employ *sampling*.

Question 2:Is it possible to achieve high compression rates while
maintaining acceptable quality when using sampling?YES

Even faster compression

Network is trained from scratch for each new hyperspectral image

Compression

Given a hyperspectral image $I \in \mathbb{R}^{H \times W \times C}$, train a neural network $\Phi_{\theta}: (x, y) \mapsto I(x, y)$

Problem

Network training is slow, resulting in large compression times

Why

Does not take advantage of spatial and spectral structural similarities between images
Idea (Meta Learning) [Finn et al. 2017, Dupont et al. 2022]

A base network encodes the "common" structure of hyperspectral images

Modulations that are applied to the base network record image-specific details

Further savings are achieved by storing a latent code to generate the modulations (i.e., modulations are never explicitly stored)

Meta Network

Idea (Meta Learning) [Finn et al. 2017, Dupont et al. 2022]

A base network encodes the "common" structure of hyperspectral images

Modulations that are applied to the base network record image-specific details

Siren Network (an MLP with sinusoidal activations)

Input : $h_0 \in \mathbb{R}^2$ Hidden layers: $h_i = sin(W_i h_{i-1} + b_i)$ $i \in [1, K], W_1 \in \mathbb{R}^{d \times 2}, W_i \in \mathbb{R}^{d \times d}, b_i \in \mathbb{R}^d$ Output: $h_{K+1} = W_{K+1}h_K + b_{K+1}$ $W_{K+1} \in \mathbb{R}^{C \times d}, h_{K+1}, b_{K+1} \in \mathbb{R}^C$

Idea (Meta Learning)

A base network encodes the "common" structure of hyperspectral images

Modulations that are applied to the base network record image-specific details

Siren Network (an MLP with sinusoidal activations) Input : $h_0 \in \mathbb{R}^2$ Hidden layers: $h_i = sin(W_ih_{i-1} + b_i)$ $i \in [1, K], W_1 \in \mathbb{R}^{d \times 2}, W_i \in \mathbb{R}^{d \times d}, b_i \in \mathbb{R}^d$ Output: $h_{K+1} = W_{K+1}h_K + b_{K+1})$ $W_{K+1} \in \mathbb{R}^{C \times d}, h_{K+1}, b_{K+1} \in \mathbb{R}^C$

> Modulations β_i (constructed using latent vector φ) Modulated hidden layers: $h_i = sin((W_ih_{i-1} + b_i) + \beta_i)$ $\beta = W_M \varphi + b_M \quad W_M \in \mathbb{R}^{(d)(K) \times d_{latent}}, \varphi \in \mathbb{R}^{d_{latent}}, b_M \in \mathbb{R}^{(d)(K)}$

Idea (Meta Learning)

A base network encodes the "common" structure of hyperspectral images

Modulations that are applied to the base network record image-specific details

Use

Given a pre-trained network, a new image is "compressed" by updating modulations only **Faster and Cheaper**

Plus, we can achieve higher compression by storing only modulations for each image

Cost of the shared network parameters storage_ is amortized over multiple images

Idea (Meta Learning)

A base network encodes the "common" struct

Modulations that are applied to the base netw details

Use

Given a pre-trained network, a new image is "

Plus, we can achieve higher compression by st

Cost of the shared network parame is amortized over multiple images

A thought experiment

A 100x100, 300 channel HSI image 100 x 100 x 300 x 4 = 12 MB

Only storing modulations 10 hidden layers with width 30 Latent vector size 32 = 32 x 4 = 0.000128 MB

Reducing compression times

Proposal:Exploit spatial and spectral similarities between
hyperspectral images using meta learning to achieve
faster compression

Question 3:Is it possible to achieve faster compression at
acceptable PSNR using meta learning?

Model Agnostic Meta-Learning

Inner loop

Update image-specific modulations

 $\beta^{(t)} = \beta - \alpha_{inner} \nabla_{\beta} \mathcal{L} \left(I^{(t)}, \phi_{[\theta|\beta]} \right)$

Network parameters θ are frozen Here $\beta^{(t)}$ denotes modulations parameters for image $I^{(t)}$ Initially β are set to 0

Outer loop

Update network parameters θ

$$\theta = \theta - \alpha_{outer} \sum_{t \in [1,T]} \nabla_{\theta} \mathcal{L}\left(I^{(t)}, \phi_{\left[\theta \mid \beta^{(t)}\right]}\right)$$

 $\beta^{(t)}$ is frozen

Latent Vector φ to Construct Modulations eta

Inner loop

Update image-specific modulations

 $\varphi^{(t)} = \varphi - \alpha_{inner} \nabla_{\varphi} \mathcal{L} \left(I^{(t)}, \phi_{[\theta^+|\varphi]} \right)$

Set $\theta^+ = \{\theta, W_M, b_M\}$ Here $\varphi^{(t)}$ denotes latent vector for constructing modulations for image $I^{(t)}$ Initially φ are set to 0

Outer loop

Update network parameters $\boldsymbol{\theta}$ and the linear layer for mapping latent vectors to modulations

$$\theta^{+} = \theta^{+} - \alpha_{outer} \sum_{t \in [1,T]} \nabla_{\theta^{+}} \mathcal{L}\left(I^{(t)}, \phi_{\left[\theta^{+} | \varphi^{(t)}\right]}\right)$$

Evaluation

- A single network is trained on four benchmarks
 - Indian Pines
 - Pavia University
 - Jasper Ridge
 - Cuprite
- Modulations capture the structure unique to each benchmark
- Compression time is amortized over four benchmarks

PSNR at different compression rates

bpppb = 8 for uncompressed images

Smaller bpppb reflects higher compression rates

For INR, network structures determines bpppb

In	dian Pines				Jasper Ridge				
Method	Size (KB)	PSNR	bpppb	n _h , w _h	Method	Size (KB)	PSNR	bpppb	n_h, w_h
	9251	∞	16	-,-	-	4800	00	16	-,-
JPEG [17, 37]	115.6	34.085	0.2	-,-	JPEG [17, 37]	30	21.130	0.1	-,-
JPEG2000 [9]	115.6	35.84	0.2	-,-	JPEG2000 [9]	30	17.494	0.1	-,-
PCA-DCT [31]	115.6	33.173	0.2	0.2 -,- PCA-DCT [31]		30	26.821	0.1	-,-
PCA+JPEG2000 [9]	115.6	39.5	0.2 -,- PCA+JPEG2000		PCA+JPEG2000 [9]	30	-	0.1	-,-
FPCA+JPEG2000 [28]	115.6	40.5	0.2	0.2 FPCA+JPEG2000 [28]		30	-	0.1	-,-
HEVC [45]	115.6	32	0.2	-,-	HEVC [45]	30	-	0.1	-,-
RPM [35]	115.6	38	0.2	-,-	RPM [35]	30	-	0.1	-,-
3D SPECK [47]	115.6	- (0.2	-,-	3D SPECK [47]	30	-	0.1	-,-
3D DCT [48]	115.6		0.2	-,-	3D DCT [48]	30	-	0.1	-,-
3D DWT+SVR [51]	115.6	-	0.2	-,-	3D DWT+SVR [51]	30	-	0.1	-,-
WSRC [32]	115.6	-	0.2	-,-	WSRC [32]	30	-	0.1	-,-
ours-32bit [39]	115.6	42.22	0.2	5,60	ours-32bit [39]	30	32.54	0.1	5,20
ours-16bit [39]	57.5	29.68	0.1	5,60	ours-16bit [39]	15	22.07	0.06	5,20
ours-sampling-32bit [40]	115.6	42.22	0.2	5,60	ours-sampling-32bit [40]	30	34.77	0.1	5,20
ours-sampling-16bit [40]	57.5	29.68	0.2	5,60	ours-sampling-16bit [40]	15	22.07	0.06	5,20
meta-learning	0.003	33.36	6.9e-6	10,128	meta-learning	0.003	30.87	1.4e-5	10,128
meta rearing									
Pavi	a Universit	у			B	Cuprite			
Pavi	a Universit Size (KB)	y PSNR	bpppb	n _h , w _h	Method	Cuprite Size (KB)	PSNR	bpppb	n _h , w _h
Pavi Method	a Universit Size (KB) 42724	y PSNR ∞	bpppb 16	n _h , w _h	Method	Cuprite Size (KB) 140836	PSNR ∞	bpppb 16	n _h , w _h
Pavi Method - JPEG [17, 37]	a Universit Size (KB) 42724 267	y PSNR ∞ 20.253	bpppb 16 0.1	n _h , w _h -,- -,-	Method - JPEG [17, 37]	Cuprite Size (KB) 140836 880.2	PSNR ∞ 24.274	bpppb 16 0.1	n _h , w _h
Incluit Integration Pavi Method - JPEG [17, 37] JPEG2000 [9]	a Universit Size (KB) 42724 267 267	y PSNR ∞ 20.253 17.752	bpppb 16 0.1 0.1	n _h , w _h -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2	PSNR ∞ 24.274 20.889	bpppb 16 0.1 0.1	n _h , w _h
Incur teaming Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	a Universit Size (KB) 42724 267 267 267	y PSNR ∞ 20.253 17.752 25.436	bpppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	Cuprite Size (KB) 140836 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302	bpppb 16 0.1 0.1 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	a Universit Size (KB) 42724 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 -	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	a Universit Size (KB) 42724 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	a Universit Size (KB) 42724 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - 34.46 34.17 38.08 27.49	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55 24.91	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,

Indian Pines

In	Indian Pines				Jasper Ridge				
Method	Size (KB)	PSNR	bpppb	n_h, w_h	Method	Size (KB)	PSNR	bpppb	n_h, w_h
17	9251	8	16	-,-	-	4800	8	16	-,-
JPEG [17, 37]	115.6	34.085	0.2	-,-	JPEG [17, 37]	30	21.130	0.1	-,-
JPEG2000 [9]	115.6	35.84	0.2	-,-	JPEG2000 [9]	30	17.494	0.1	-,-
PCA-DCT [31]	115.6	33.173	0.2	-,-	PCA-DCT [31]	30	26.821	0.1	-,-
PCA+JPEG2000 [9]	115.6	39.5	0.2	-,-	PCA+JPEG2000 [9]	30	-	0.1	-,-
FPCA+JPEG2000 [28]	115.6	40.5	0.2		FPCA+JPEG2000 [28]	30	-	0.1	-,-
HEVC [45]	115.6	32	0.2	-,-	HEVC [45]	30	-	0.1	-,-
RPM [35]	115.6	38	0.2	-,-	RPM [35]	30	-	0.1	-,-
3D SPECK [47]	115.6	-	0.2	-,-	3D SPECK [47]	30	-	0.1	-,-
3D DCT [48]	115.6	-	0.2	-,-	3D DCT [48]	30	-	0.1	-,-
3D DWT+SVR [51]	115.6	-	0.2	-,-	3D DWT+SVR [51]	30	-	0.1	-,-
WSRC [32]	115.6	-	0.2	-,-	WSRC [32]	30	-	0.1	-,-
ours-32bit [39]	115.6	42.22	0.2	5,60	ours-32bit [39]	30	32.54	0.1	5,20
ours-16bit [39]	57.5	29.68	0.1	5,60	ours-16bit [39]	15	22.07	0.06	5,20
ours-sampling-32bit [40]	115.6	42.22	0.2	5,60	ours-sampling-32bit [40]	30	34.77	0.1	5,20
ours-sampling-16bit [40]	57.5	29.68	0.2	5,60	ours-sampling-16bit [40]	15	22.07	0.06	5,20
meta-learning	0.003	33.36	6.9e-6	10,128	meta-learning	0.003	30.87	1.4e-5	10,128
					Cuprite				
Pavi	a Universit	у				Cuprite			
Pavi Method	a Universit Size (KB)	y PSNR	bpppb	n _h , w _h	Method	Cuprite Size (KB)	PSNR	bpppb	n _h , w _h
Pavi Method	a Universit Size (KB) 42724	y PSNR ∞	bpppb 16	n _h , w _h -,-	Method -	Cuprite Size (KB) 140836	PSNR ∞	bpppb 16	n _h , w _h
Pavi Method - JPEG [17, 37]	a Universit Size (KB) 42724 267	y PSNR ∞ 20.253	bpppb 16 0.1	n _h ,w _h	Method - JPEG [17, 37]	Cuprite Size (KB) 140836 880.2	PSNR ∞ 24.274	bpppb 16 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9]	a Universit Size (KB) 42724 267 267	y PSNR ∞ 20.253 17.752	bpppb 16 0.1 0.1	n _h , w _h -,- -,-	Method - JPEG [17, 37] JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2	PSNR ∞ 24.274 20.889	bpppb 16 0.1 0.1	n _h , w _h -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	a Universit Size (KB) 42724 267 267 267	y PSNR ∞ 20.253 17.752 25.436	bpppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302	bpppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	a Universit Size (KB) 42724 267 267 267 267 267	y PSNR 20.253 17.752 25.436 -	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	a Universit Size (KB) 42724 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	a Universiti Size (KB) 42724 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - 34.46 34.17	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universiti Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - 34.46 34.17 38.08	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - 34.46 34.17 38.08 27.49	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55 24.91	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,

Pavia University

In	Indian Pines				Jasper Ridge				
Method	Size (KB)	PSNR	bpppb	n _h , w _h	Method	Size (KB)	PSNR	bpppb	n_h, w_h
-	9251	00	16	-,-	-	4800	00	16	-,-
JPEG [17, 37]	115.6	34.085	0.2	-,-	JPEG [17, 37]	30	21.130	0.1	-,-
JPEG2000 [9]	115.6	35.84	0.2	-,-	JPEG2000 [9]	30	17.494	0.1	-,-
PCA-DCT [31]	115.6	33.173	0.2	-,-	PCA-DCT [31]	30	26.821	0.1	-,-
PCA+JPEG2000 [9]	115.6	39.5	0.2	-,-	PCA+JPEG2000 [9]	30	-	0.1	-,-
FPCA+JPEG2000 [28]	115.6	40.5	0.2		FPCA+JPEG2000 [28]	30	-	0.1	-,-
HEVC [45]	115.6	32	0.2	-,-	HEVC [45]	30	-	0.1	-,-
RPM [35]	115.6	38	0.2	-,-	RPM [35]	30	-	0.1	-,-
3D SPECK [47]	115.6	-	0.2	-,-	3D SPECK [47]	30		0.1	-,-
3D DCT [48]	115.6	-	0.2	-,-	3D DCT [48]	30	-	0.1	-,-
3D DWT+SVR [51]	115.6	-	0.2	-,-	3D DWT+SVR [51]	30	-	0.1	-,-
WSRC [32]	115.6	-	0.2	-,-	WSRC [32]	30	-	0.1	-,-
ours-32bit [39]	115.6	42.22	0.2	5,60	ours-32bit [39]	30	32.54	0.1	5,20
ours-16bit [39]	57.5	29.68	0.1	5,60	ours-16bit [39]	15	22.07	0.06	5,20
ours-sampling-32bit [40]	115.6	42.22	0.2	5,60	ours-sampling-32bit [40]	30	34.77	0.1	5,20
ours-sampling-16bit [40]	57.5	29.68	0.2	5,60	ours-sampling-16bit [40]	15	22.07	0.06	5,20
meta-learning	0.003	33.36	6.9e-6	10,128	meta-learning	0.003	30.87	1.4e-5	10,128
0									
Pavi	a Universit	y				Cuprite			
Pavi Method	a Universit Size (KB)	y PSNR	bpppb	n _h , w _h	Method	Cuprite Size (KB)	PSNR	bpppb	n _h , w _h
Pavi Method	a Universit Size (KB) 42724	y PSNR ∞	bpppb 16	n _h , w _h	Method	Cuprite Size (KB) 140836	PSNR ∞	bpppb 16	n _h , w _h
Pavi Method - JPEG [17, 37]	a Universit Size (KB) 42724 267	y PSNR ∞ 20.253	bpppb 16 0.1	n _h , w _h -,- -,-	Method - JPEG [17, 37]	Cuprite Size (KB) 140836 880.2	PSNR ∞ 24.274	bpppb 16 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9]	a Universit Size (KB) 42724 267 267	y PSNR ∞ 20.253 17.752	bpppb 16 0.1 0.1	n _h , w _h -,- -,- -,-	Method 	Cuprite Size (KB) 140836 880.2 880.2	PSNR ∞ 24.274 20.889	bpppb 16 0.1 0.1	n _h , w _h -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	a Universit Size (KB) 42724 267 267 267	y PSNR ∞ 20.253 17.752 25.436	bpppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	Cuprite Size (KB) 140836 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302	bpppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	a Universit Size (KB) 42724 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 -	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	a Universit Size (KB) 42724 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h ,w _h -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	a Universit Size (KB) 42724 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,-	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h ,w _h -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-	Method 	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 27.1 33.4 28.20 35 28.954 24.334 36.55	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - 34.46 34.17 38.08 27.49	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55 24.91	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,

Jasper Ridge

In	dian Pines				Jasper Ridge				
Method	Size (KB)	PSNR	bpppb	n _h , w _h	Method	Size (KB)	PSNR	bpppb	n _h , w _h
	9251	00	16	-,-		4800	∞	16	-,-
JPEG [17, 37]	115.6	34.085	0.2	-,-	JPEG [17, 37]	30	21.130	0.1	-,-
JPEG2000 [9]	115.6	35.84	0.2	-,-	JPEG2000 [9]	30	17.494	0.1	-,-
PCA-DCT [31]	115.6	33.173	0.2	-,-	PCA-DCT [31]	30	26.821	0.1	-,-
PCA+JPEG2000 [9]	115.6	39.5	0.2	-,-	PCA+JPEG2000 [9]	30	-	0.1	-,-
FPCA+JPEG2000 [28]	115.6	40.5	0.2		FPCA+JPEG2000 [28]	30	-	0.1	-,-
HEVC [45]	115.6	32	0.2	-,-	HEVC [45]	30	-	0.1	-,-
RPM [35]	115.6	38	0.2	-,-	RPM [35]	30	-	0.1	-,-
3D SPECK [47]	115.6	-	0.2	-,-	3D SPECK [47]	30	-	0.1	-,-
3D DCT [48]	115.6	-	0.2	-,-	3D DCT [48]	30	-	0.1	-,-
3D DWT+SVR [51]	115.6	-	0.2	-,-	3D DWT+SVR [51]	30	-	0.1	-,-
WSRC [32]	115.6	-	0.2	-,-	WSRC [32]	30	-	0.1	-,-
ours-32bit [39]	115.6	42.22	0.2	5,60	ours-32bit [39]	30	32.54	0.1	5,20
ours-16bit [39]	57.5	29.68	0.1	5,60	ours-16bit [39]	15	22.07	0.06	5,20
ours-sampling-32bit [40]	115.6	42.22	0.2	5,60	ours-sampling-32bit [40]	30	34.77	0.1	5,20
ours-sampling-16bit [40]	57.5	29.68	0.2	5,60	ours-sampling-16bit [40]	15	22.07	0.06	5,20
meta-learning	0.003	33 36	6.9e-6	10 128	meta-learning	0.003	30.87	14e-5	10.128
meta-rearning	0.005	55.50	0.70 0	10,120	meta rearing	0.005	20.07	1.10 0	
Pavi	a Universit	y	0.70 0	10,120	incu tearing	Cuprite	50.07	1.10 5	10,120
Pavi Method	a Universit Size (KB)	y PSNR	bpppb	n _h , w _h	Method	Cuprite Size (KB)	PSNR	bpppb	n _h , w _h
Pavi Method	a Universit Size (KB) 42724	y PSNR ∞	bpppb	n _h , w _h	Method -	Cuprite Size (KB) 140836	PSNR ∞	bpppb	n _h , w _h
Pavi Method JPEG [17, 37]	a Universit Size (KB) 42724 267	y PSNR 20.253	bpppb 16 0.1	n _h , w _h	Method - JPEG [17, 37]	Cuprite Size (KB) 140836 880.2	PSNR ∞ 24.274	bpppb 16 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9]	a Universit Size (KB) 42724 267 267	y PSNR ∞ 20.253 17.752	bpppb 16 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2	PSNR 24.274 20.889	bpppb 16 0.1 0.1	n _h , w _h
Incta-tearing Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	a Universit Size (KB) 42724 267 267 267	y PSNR ∞ 20.253 17.752 25.436	bpppb 16 0.1 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31]	Cuprite Size (KB) 140836 880.2 880.2 880.2	PSNR <u>∞</u> 24.274 20.889 27.302	bpppb 16 0.1 0.1 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	a Universit Size (KB) 42724 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 -	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2	PSNR [∞] 24.274 20.889 27.302 40.90	bpppb 16 0.1 0.1 0.1 0.1	n _h , w _h
Pavi Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	a Universit Size (KB) 42724 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 -	bpppb 16 0.1 0.1 0.1 0.1 0.1	n _h , w _h
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	a Universit Size (KB) 42724 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR [∞] 24.274 20.889 27.302 40.90 - 31	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h
Pavi Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,-
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR [∞] 24.274 20.889 27.302 40.90 - 31 34 27.1	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR [∞] 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR [∞] 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Period - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Period - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	Cuprite Size (KB) 140836 880.2	PSNR [∞] 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Pavi Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - -	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40]	Cuprite Size (KB) 140836 880.2	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavi Period - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DWT+SVR [51] WSRC [32] ours-32bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	a Universit Size (KB) 42724 267 267 267 267 267 267 267 267 267 267	y PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - 34.46 34.17 38.08 27.49	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method - JPEG [17, 37] JPEG2000 [9] PCA-DCT [31] PCA+JPEG2000 [9] FPCA+JPEG2000 [28] HEVC [45] RPM [35] 3D SPECK [47] 3D DCT [48] 3D DVT+SVR [51] WSRC [32] ours-32bit [39] ours-16bit [39] ours-sampling-32bit [40] ours-sampling-16bit [40]	Cuprite Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 40.90 - 31 34 27.1 33.4 28.20 35 28.954 24.334 36.55 24.91	bpppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,

Cuprite

	es				Jasper Ridge				
Method	Size (KB	PSNR	opppb	n _h , w _h	Method	Size (KB)	PSNR	pppb	n _h , w _h
-	9251	00	16	-,-	-	4800	∞0	16	-,-
JPEG (Good et al., 1994; Qiao et al., 2014)	115.6	34.085	0.2	-,-	JPEG (Good et al., 1994; Qiao et al., 2014)	30	21.130	0.1	-,-
JPEG2000 (Du and Fowler, 2007)	115.6	36.098	0.2	-,- JPEG2000 (Du and Fowler, 2007)		30	17.494	0.1	-,-
PCA-DCT (Nian et al., 2016)	115.6	33.173	0.2	-,-	PCA-DCT (Nian et al., 2016)	30	26.821	0.1	-,-
PCA+JPEG2000 (Du and Fowler, 2007)	115.6	39.5	0.2	-,-	PCA+JPEG2000 (Du and Fowler, 2007)	30	-	0.1	-,-
FPCA+JPEG2000 (Mei et al., 2018)	115.6	40.5	0.2		FPCA+JPEG2000 (Mei et al., 2018)	30	-	0.1	-,-
HEVC (Sullivan et al., 2012)	115.6	32	0.2	-,-	HEVC (Sullivan et al., 2012)	30	-	0.1	-,-
RPM (Paul et al., 2016)	115.6	38	0.2	-,-	RPM (Paul et al., 2016)	30	-	0.1	-,-
3D SPECK (Tang and Pearlman, 2006)	115.6	-	0.2	-,-	3D SPECK (Tang and Pearlman, 2006)	30	-	0.1	-,-
3D DCT (Yadav and Nagmode, 2018)	115.6	-	0.2	-,-	3D DCT (Yadav and Nagmode, 2018)	30		0.1	-,-
3D DWT+SVR (Zikiou et al., 2020)	115.6	-	0.2	-,-	3D DWT+SVR (Zikiou et al., 2020)	30	-	0.1	-,-
WSRC (Ouahioune et al., 2021)	115.6	-	0.2		WSRC (Ouahioune et al., 2021)	30	-	0.1	
INR (Rezasoltani and Qureshi, 2023)	115.6	40.61	0.2		IR (Rezasoltani and Qureshi, 2023)	30	35.696	0.1	
HP_INR (Rezasoltani and Qureshi, 2023)	57.5	40.35	0.1	Cth h	INR (Rezasoltani and Qureshi, 2023)	15	35.467	0.06	Dect
INR_sampling (Rezasoltani and Qureshi, 2024)	115.6	44.46	0.2	0 0	mpling (Rezasoltani and Qureshi, 2024)	30	41.58	0.1	Best
HP_INR_sampling (Rezasoltani and Qureshi, 2024)	57.5	30.20	0.2		sampling (Rezasoltani and Qureshi, 2024)	15	21.48	0.06	
Meta_learning	2.4	36.6		5,20	Meta_learning	2.3	36.6		10,00
D. ' II '	mitt				Cuprite				
Pavia Unive	isity				Cupine				
Method Pavia Unive	Size (KB	PSNR	opppb	n _h ,w _h	Method	Size (KB)	PSNR	pppb	n _h , w _h
Method -	Size (KB 42724	PSNR ∞	opppb 16	n _h ,w _h	Method -	Size (KB) 140836	PSNR ∞)pppb 16	n _h ,w _h
Pavia Unive Method - JPEG (Good et al., 1994; Qiao et al., 2014)	Size (KB) 42724 267	PSNR ∞ 20.253	pppb 16 0.1	n _h , w _h -,- -,-	Method - JPEG (Good et al., 1994; Qiao et al., 2014)	Size (KB) 140836 880.2	PSNR ∞ 24.274	pppb 16 0.1	n _h , w _h
JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007)	Size (KB) 42724 267 267	PSNR ∞ 20.253 17.752)pppb 16 0.1 0.1	n _h , w _h	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007)	Size (KB) 140836 880.2 880.2	PSNR ∞ 24.274 20.889	pppb 16 0.1 0.1	n _h , w _h -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016)	Size (KB) 42724 267 267 267	PSNR ∞ 20.253 17.752 25.436	ppppb 16 0.1 0.1 0.1	n _h , w _h -,- -,- -,-	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016)	Size (KB) 140836 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302)pppb 16 0.1 0.1 0.1	n _h ,w _h -,- -,- -,-
Pavia Unive Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007)	Size (KB) 42724 267 267 267 267 267 267	PSNR ∞ 20.253 17.752 25.436	ppppb 16 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,-	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5	pppb 16 0.1 0.1 0.1 0.1 0.1	n _h ,w _h -,- -,- -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018)	Size (KB) 42724 267 267 267 267 267 267 267 267	PSNR ∞ 20.253 17.752 25.436 - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5	pppb 16 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012)	Size (KB) 42724 267 267 267 267 267 267 267 267 267 267 267	PSNR ∞ 20.253 17.752 25.436 - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR	pppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016)	Size (KB) 42724 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267	PSNR ∞ 20.253 17.752 25.436 - - - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34	ypppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006)	Size (KB) 42724 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267	PSNR ∞ 20.253 17.752 25.436 - - - - - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1	ypppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h
Pavia Unive Method - JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018)	Size (KB) 42724 267	PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4	ypppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	nh, wh -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020)	Size (KB) 42724 267	PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - - - - - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20	pppb 16 0.1	nh, wh -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2017) HEVC (Sullivan et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021)	Size (KB) 42724 267	PSNR ∞ 20.253 17.752 25.436 - - - - - - - - - - - - - - - - -	ppppb 16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35	pppb 16 0.1	nh, wh -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) INR (Rezasoltani and Qureshi, 2023)	Size (KB) 42724 267	PSNR ∞ 20.253 17.752 25.436 - - - - - - - 33.749	ppppb 16 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) IR (Rezasoltani and Qureshi, 2023)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35 28.954	ypppb 16 0.1	nh, wh -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,- -,-
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) INR (Rezasoltani and Qureshi, 2023) HP_INR (Rezasoltani and Qureshi, 2023)	Size (KB) 42724 267 </td <td>PSNR ∞ 20.253 17.752 25.436 - - - - - - 33.749 20.886</td> <td>ppppb 16 0.1</td> <td>n_h, w_h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,</td> <td>Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) IR (Rezasoltani and Qureshi, 2023) INR (Rezasoltani and Qureshi, 2023)</td> <td>Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1</td> <td>PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35 28.954 24.334</td> <td>ypppb 16 0.1</td> <td>n_h, w_h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,</td>	PSNR ∞ 20.253 17.752 25.436 - - - - - - 33.749 20.886	ppppb 16 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) IR (Rezasoltani and Qureshi, 2023) INR (Rezasoltani and Qureshi, 2023)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35 28.954 24.334	ypppb 16 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) INR (Rezasoltani and Qureshi, 2023) HP_INR (Rezasoltani and Qureshi, 2024)	Size (KB) 42724 267	PSNR ∞ 20.253 17.752 25.436 -	ppppb 16 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) IR (Rezasoltani and Qureshi, 2023) mpling (Rezasoltani and Qureshi, 2024)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1 880.2	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35 28.954 24.334 37.007	ypppb 16 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,
Pavia Unive Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2012) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) INR (Rezasoltani and Qureshi, 2023) HP_INR (Rezasoltani and Qureshi, 2024) HP_INR_sampling (Rezasoltani and Qureshi, 2024)	Size (KB) 42724 267 133.5 267	PSNR ∞ 20.253 17.752 25.436 -	ppppb 16 0.1	n _h , w _h	Method JPEG (Good et al., 1994; Qiao et al., 2014) JPEG2000 (Du and Fowler, 2007) PCA-DCT (Nian et al., 2016) PCA+JPEG2000 (Du and Fowler, 2007) FPCA+JPEG2000 (Mei et al., 2018) HEVC (Sullivan et al., 2012) RPM (Paul et al., 2016) 3D SPECK (Tang and Pearlman, 2006) 3D DCT (Yadav and Nagmode, 2018) 3D DWT+SVR (Zikiou et al., 2020) WSRC (Ouahioune et al., 2021) IR (Rezasoltani and Qureshi, 2023) mpling (Rezasoltani and Qureshi, 2024) sampling (Rezasoltani and Qureshi, 2024)	Size (KB) 140836 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 880.2 440.1 880.2 440.1	PSNR ∞ 24.274 20.889 27.302 27.5 - 31 34 27.1 33.4 28.20 35 28.954 24.334 37.007 24.96	ypppb 16 0.1	n _h , w _h -,- -,- -,- -,- -,- -,- -,- -,- -,- -,

Dataset	Method		bppppb	compression time (Sec)	decompression time (Sec)	PSNR ↑
	JPEG ⁺ [Good et al., 1994, Qia	o et al., 2014]	0.1	7.353	3.27	27.47
Indian Pines	JPEG2000 ⁺ [Du and Fowl	er, 2007]	0.1	0.1455	0.3115	33.58
indian i mes	PCA-DCT ⁺ [Nian et al.	, 2016]	0.1	1.66	0.04	32.28
	ours-32bit	ours-32bit		243.64	0	36.98
	ours-16bit		5	243.64	0	36.95
	ours-sampling-32	Best	L	282.08	0.0005	40.1
	ours-sampling-16		5	282.08	0.0005	28.40
	meta-learning			0.033	0.000717	33.36
	JPEG ⁺ [Good et al., 1994, Qia	o et al., 2014]	0.1	3.71	1.62	21.13
Jasper Ridge	JPEG2000 ⁺ [Du and Fow]	er, 2007]	0.1	0.138	0.395	17.49
Jasper Kluge	PCA-DCT ⁺ [Nian et al.	, 2016]	0.1	1.029	0.027	26.82
	ours-32bit		0.1	312.38	0.0005	32.54
	ours-16bit		6	312.38	0.0005	32.51
	ours-sampling-32	Best	L	75.91	0.0005	34.77
	ours-sampling-16		6	75.91	0.0005	22.07
	meta-learning			0.025	0.0007	30.87
	JPEG ⁺ [Good et al., 1994, Qia	o et al., 2014]	0.1	33.86	14.61	20.25
Dovio University	JPEG2000 ⁺ [Du and Fowl	er, 2007]	0.1	0.408	0.628	17.75
Favia University	PCA-DCT ⁺ [Nian et al.	, 2016]	0.1	6.525	0.235	25.43
	ours-32bit		0.1	780.16	0.0009	34.46
	ours-16bit		5	780.16	0.0009	34.17
	ours-sampling-32	Best	L	72.512	0.0004	38.08
	ours-sampling-16	2000	5	72.512	0.0004	27.02
	meta-learning			0.43	0.0006	35.3
	JPEG ⁺ [Good et al., 1994, Qia	o et al., 2014]	0.06	101.195	45.02	12.88
Cuprito	JPEG2000 ⁺ [Du and Fowl	er, 2007]	0.06	1.193	2.476	15.16
Cuprite	PCA-DCT ⁺ [Nian et al.	, 2016]	0.06	11.67	0.754	26.75
	ours-32bit		0.06	1565.97	0.001	28.02
	ours-16bit		3	1565.97	0.001	27.90
	ours-sampling-32	Best	6	664.87	0.001	37.27
	ours-sampling-16		3	664.87	0.001	24.85
	meta-learning			1.11	0.0007	24.57

(compression times) Comparison

Dataset	Method	bppppb	compression time (Sec)	decompression time (Sec)	PSNR ↑	
	JPEG ⁺ [Good et al., 1994, Qiao et al., 2014]	0.1	7.353	3.27	27.47	
Indian Dines	JPEG2000 ⁺ [Du and Fowler, 2007]	0.1	0.1455	0.3115	33.58	-
Indian Fines	PCA-DCT ⁺ [Nian et al., 2016]	0.1	1.66	0.04	32.28	-
	ours-32bit	0.1	243.64	0	36.98	
	ours-16bit	0.05	243.64	0	36	
	ours-sampling-32bit	0.1	282.08	0.0005	4(Best
	ours-sampling-16bit	0.05	282.08	0.0005	28	Dest
	meta-learning	6.9e-6	0.033	0.000717		
	JPEG ⁺ [Good et al., 1994, Qiao et al., 2014]	0.1	3.71	1.62	21.13	
Jasper Pidge	JPEG2000 ⁺ [Du and Fowler, 2007]	0.1	0.138	0.395	17.49	
Jasper Kluge	PCA-DCT ⁺ [Nian et al., 2016]	0.1	1.029	0.027	26.82	
	ours-32bit	0.1	312.38	0.0005	32.54	
	ours-16bit	0.06	312.38	0.0005	32	
	ours-sampling-32bit	0.1	75.91	0.0005	34	Best
	ours-sampling-16bit	0.06	75.91	0.0005	22	Dest
	meta-learning	1.4e-5	0.025	0.0007		
	JPEG ⁺ [Good et al., 1994, Qiao et al., 2014]	0.1	33.86	14.61	20.25	
Davia University	JPEG2000 ⁺ [Du and Fowler, 2007]	0.1	0.408	0.628	17.75	
Pavia University	PCA-DCT ⁺ [Nian et al., 2016]	0.1	6.525	0.235	25.43	
	ours-32bit	0.1	780.16	0.0009	34.46	
	ours-16bit	0.05	780.16	0.0009	34	
	ours-sampling-32bit	0.1	72.512	0.0004	38	Post
	ours-sampling-16bit	0.05	72.512	0.0004	27	DESL
	meta-learning	0.003	0.43	0.0006		
	JPEG ⁺ [Good et al., 1994, Qiao et al., 2014]	0.06	101.195	45.02	12.88	
Cuprito	JPEG2000 ⁺ [Du and Fowler, 2007]	0.06	1.193	2.476	15.16	
Cuprite	PCA-DCT ⁺ [Nian et al., 2016]	0.06	11.67	0.754	26.75	
	ours-32bit	0.06	1565.97	0.001	28.02	
	ours-16bit	0.03	1565.97	0.001	27	
	ours-sampling-32bit	0.06	664.87	0.001	37	Best
	ours-sampling-16bit	0.03	664.87	0.001	24	2000
	meta-learning	4.5e-7	1.11	0.0007		

(decompression times) Comparison

Reducing compression times

Proposal:Exploit spatial and spectral similarities between
hyperspectral images using meta learning to achieve
faster compression

Question 3:Is it possible to achieve faster compression at
acceptable PSNR using meta learning?YES

Can we use implicit neural represent to compress "large" hyperspectral image?

Can we use implicit neural represent to compress "large" hyperspectral image?

Can we use implicit neural represent to compress "large" hyperspectral image?

Can we use implicit neural represent to compress "large" hyperspectral image? YES

Task-Aware Compression

Is it possible to compress regions of an image differentially?

Indian Pine PSNR: 33.47 PSNR left side: 33.82 PSNR right side: 33.15

Jasper Ridge PSNR: 28.15 PSNR left side: 29.82 PSNR right side: 26.94

Pavia University

PSNR: 30.54

PSNR left side: 29.40

PSNR right side: 32.11

Cuprite PSNR: 23.66 PSNR left side: 23.66 PSNR right side: 23.67

Region-Specific Compression on Pavia Dataset

Slice 2 Sampling Rate	Slice 1 PSNR	Slice 2 PSNR	
10	26.72	23.84	
20	26.60	24.72	
30	26.51	25.22	
40	26.49	25.54	
50	26.23	25.69	
60	26.17	25.79	
70	26.25	25.95	
80	26.06	26.12	
90	26.06	26.15	
100	25.99	26.21	

Region-Specific Compression

Pavia University

Top and bottom slices sampled at different rates

Region-Specific Compression

- Regions of Interest (ROI)
 - K-Means
 - Clusters regions based upon spectral similarity
 - UNet
 - Uses deep learning to perform object-level segmentation

K-Means for ROI: An illustration

ROI

Indian Pines

Jasper Ridge

Results K-means

Dataset	PSNR-ROI	PSNR	bpppb-ROI	bpppb	Compressed-size (KB)	Original-size (KB)
Indian Pines	42.28	25.94	0.072	0.28	332.6	9251
Jasper Ridge	38.21	13.62	1.54	0.59	333.5	4800
Pavia University	37.67	20.40	0.14	0.05	304	42724
Cuprite	37.54	22.03	0.08	0.01	333.5	140836
Large dataset	38.05	16.89	7.06	0.008	344.8	2.82e+7

UNet for ROI: An illustration

Indian Pines

Jasper Ridge

ROI are shown in Yellow

Results U-net

Dataset	PSNR-ROI	PSNR	bpppb-ROI	bpppb	Compressed-size(KB)	Original-size(KB)
Indian Pines	35.07	25.46	0.66	0.28	332.6	9251
Jasper Ridge	26.43	13.79	2.11	0.59	333.5	4800
Pavia University	32.39	21.28	0.140	0.05	304.0	42724
Cuprite	26.21	23.75	0.040	0.018	333.5	140836
Large dataset	36.009	27.82	0.180	0.008	344.8	2.82e+7

Task-Aware Compression

Is it possible to compress regions of an image differentially?

YES

Thesis Questions

- Is it possible to achieve high compression rates while maintaining acceptable quality when using implicit neural representations?
- Is it possible to achieve high compression rates while maintaining acceptable quality when using *sampling*?
- Is it possible to achieve faster compression at acceptable PSNR using *meta learning*?
- Can we use implicit neural represent to compress "large" hyperspectral image?
- Is it possible to compress regions of an image differentially?

Questions

 Is it possible to achieve high compression rates while maintaining acceptable quality when using implicit neural representations?

Is it acce
Is it mete
Can hyper

• Is it possible to compress regions of an image differentially?

Contributions

- Explored the use of implicit neural representations for hyperspectral image compression
 - Sampling
 - Meta learning
 - Managing large-scale images
 - Differential compression
- Evaluated on standard benchmarks against state-of-the-art schemes, posting competitive performance

Publications

- Hyperspectral Image Compression Using Implicit Neural Representations. Rezasoltani, S.; and Qureshi, F. In *Proc. 20th Conference on Robots and Vision (CRV23)*, pages 8pp, Montreal, Jun 2023.
- Hyperspectral Image Compression Using Sampling and Implicit Neural Representations. Rezasoltani, S.; and Qureshi, F. Z. *IEEE Transactions on Geoscience and Remote Sensing*, 63: 12pp. December 2024. (top journal in the field of remote sensing, impact factor: 7.5)
- Hyperspectral Image Compression Using Implicit Neural Representation and Meta-Learned Based Network. Rezasoltani, S.; and Qureshi, F. Z. In *Proc. 14th International Conference on Pattern Recognition Applications and Methods*, pages 9pp, Porto, February 2025. (Honorable Mention)
- Meta-Learned Implicit Neural Representations for Scalable and Fast Hyperspectral Image Compression. Rezasoltani, S.; and Qureshi, F.Z. Lecture Notes in Computer Science – ICPRAM 2025 Selected Papers, Springer, pages 18pp (In review)
Limitations

- Theoretical understanding of the limits of implicit neural representations from an information theoretic perspective: model capacity vs. compression quality
 - We have side-stepped this issue in this thesis via "architecture search"
- More rigorous evaluation of model performance in compression large hyperspectral images
- Evaluation of the proposed technique on more benchmarks
 - We have evaluated the model on the benchmarks that are currently used in the literature, but clearly it is desirable to evaluate to model on a wider set of benchmarks

Future Work

- Apply this framework to multispectral and medical imaging types to improve storage and diagnostics.
- Enable incremental learning and make it compatible with edge devices for real-time use in satellites and autonomous vehicles.
- Build privacy-preserving frameworks and establish guidelines for using sensitive data responsibly.

References

- S. Rezasoltani and F. Qureshi, "Hyperspectral Image Compression Using Implicit Neural Representation and Meta-Learned Based Network," in Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 23–31, Feb. 2025.
- S. Rezasoltani and F. Qureshi, "Hyperspectral Image Compression Using Sampling and Implicit Neural Representations," IEEE Transactions on Geoscience and Remote Sensing, Dec. 2024.
- S. Rezasoltani and F. Qureshi, "Hyperspectral Image Compression Using Implicit Neural Representations," in 2023 20th Conference on Computer and Robot Vision (CRV), pp. 31–38, May 2023.
- J. Zhang, Y. Zhang, X. Cai, and L. Xie, "Three-stages hyperspectral image compression sensing with band selection." CMES-Computer Modeling in Engineering & Sciences, vol. 134, no. 1, 2023.
- Y. Guo, Y. Chong, and S. Pan, "Hyperspectral image compression via cross-channel contrastive learning," IEEE Transactions on Geoscience and Remote Sensing, 2023.
- S. Bajpai, N. R. Kidwai, H. V. Singh, and A. K. Singh, "A low complexity hyperspectral image compression through 3d set partitioned embedded zero block coding," Multimedia Tools and Applications, pp. 1–32, 2022.
- L. Wang and W. Wang, "Hyperspectral image compressed processing: Evolutionary multi-objective optimization sparse decomposition," Plos one, vol. 17, no. 4, p. e0267754, 2022.
- Y. Guo, Y. Tao, Y. Chong, S. Pan, and M. Liu, "Edge-guided hyperspectral image compression with interactive dual attention," IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–17, 2022.
- B. Sujitha, V. S. Parvathy, E. L. Lydia, P. Rani, Z. Polkowski, and K. Shankar, "Optimal deep learning based image compression technique for data transmission on industrial internet of things applications," Trans- actions on Emerging Telecommunications Technologies, vol. 32, no. 7, p.e3976, 2021.
- M. P. Uddin, M. A. Mamun, and M. A. Hossain, "Pca-based feature reduction for hyperspectral remote sensing image classification," IETE Technical Review, vol. 38, no. 4, pp. 377–396, 2021.

Previous Research

Method	Datasets	Reference	
Transform-based			
Sampling design and uncertainty based on spatial variability of spectral variables for mapping vegetation cover	Indian Pines, Pavia	[Wang et al., 2005]	
Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding	AVIRIS	[Christophe et al., 2008]	
Hyperspectral image compression based on tucker decomposition and discrete cosine transform	AVIRIS	[Karami et al., 2010]	
Lossless hyperspectral image compression using wavelet transform based spectral decorrelation	AVIRIS	[Toreyın et al., 2015]	
Lossy compression of Landsat multispectral images	Landsat	[Kozhemiakin et al., 2016]	
ROI-based on-board compression for hyperspectral remote sensing images on GPU	AVIRIS	[Giordano et al., 2017]	
A new algorithm for the on-board compression of hyperspectral images	Indian Pines, Pavia	[Guerra et al., 2018]	
Hyperspectral image compression using vector quantization, PCA, and JPEG2000	Cuprite	[Bascones et al., 2018]	
PCA-based feature reduction for hyperspectral remote sensing image classification	Indian Pines	[Uddin et al., 2021]	
Three-stages hyperspectral image compression sensing with band selection	Indian Pines, Pavia	[Cai et al., 2022]	
Learning-based			
Hyperspectral image compression based on online learning spectral features dictionary	AVIRIS	[Jifara et al., 2017]	
LSTM based adaptive filtering for reduced prediction errors of hyperspectral images	Indian Pines, Pavia	[Jiang et al., 2018]	
Onboard hyperspectral image compression using compressed sensing and deep learning	Pavia	[Kumar et al., 2018]	
Large-scale hyperspectral image compression via sparse representations based on online learning	AVIRIS	[Ulku et al., 2018]	
The linear prediction vector quantization for hyperspectral image compression	AVIRIS	[Li et al., 2019]	
Hyperspectral image compression and super-resolution using tensor decomposition learning	EUROSAT	[Aidini et al., 2019]	
Auto encoder-based dimensionality reduction and classification using convolutional neural networks for hyperspectral images	Pavia	Ramamurthy et al., 2020]	
Optimal deep learning-based image compression technique for data transmission on industrial Internet of things applications	SIPI	[Sujitha et al., 2021]	
Edge-guided hyperspectral image compression with interactive dual attention	Pavia, Cave	[Guo et al., 2022]	
Hyperspectral image compressed processing: Evolutionary multi-objective optimization sparse decomposition	Cuprite, Indian Pines, Pavia	[Wang et al., 2022]	
Hyperspectral image compression via cross-channel contrastive learning	Pavia, Cave	[Guo et al., 2023]	

Previous Research

Method	Datasets	Reference	
Transform-based			
Sampling design and uncertainty based on spatial variability of spectral variables for mapping vegetation cover			
Hyperspectral image compression based on tucker decomposition and discrete cosine transform			
Lossless hyperspectral image compression using wavelet transform based spectral decorrelation			
Lossy compression of Landsat multispectral images			
ROI-based on-board compression for hyperspectral remote sensing images on GPU			
A new algorithm for the on-board compression of hyperspectral images			
Three-stages hyperspectral image compression sensing with band selection			
Learning-based			
		[Jifara et al., 2017]	
		[Jiang et al., 2018]	
		[Kumar et al., 2018]	
		[Ulku et al., 2018]	
		[Li et al., 2019]	
		[Aidini et al., 2019]	
		[Guo et al., 2022]	
		[Wang et al., 2022]	

Metrics

- Peak Signal-to-Noise Ratio (PSNR)
- The PSNR measures the proximity of the original image to its reconstruction

$$PSNR = 10 \, \log_{10} \left(\frac{R^2}{MSE} \right)$$

$$MSE = \sum_{i} \frac{\left|I[i] - \tilde{I}[i]\right|^2}{i}$$

Metrics

- Structure similarity (SSIM)
- The SSIM measures the visual quality of the reconstructed image

$$SSIM(x,y) = \frac{(2 \mu_x \mu_y + C_1) (2 \sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1) (\sigma_x^2 + \sigma_y^2 + C_2)}$$

Metrics

- The number of bits-per-pixel-per-band (bpppb): captures the level of compression achieved by a model
- Lower values of bpppb indicate higher compression rates
- The parameter bpppb is calculated as follows:

$$bpppb = \frac{\# parameters \times (bits per parameter)}{(pixels per band) \times \# bands}$$

Implicit Neural Representations (INRs)

- Represent an image by overfitting a neural network to it
 - Parameters of the neural network serve as the compact representation of the image
 - Use this image representation as the compressed version of the image
 - Reconstruct the original image by evaluating the neural network at all pixel locations