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Abstract

Applications of computer vision have seen great success recently, yet there are few ap-
proaches dealing with visual illustrations. We propose a collection of computer vision
applications for parsing genetic models. Genetic models are a visual illustration often
used in the biological sciences literature. These are used to demonstrate how a discovery
fits into what is already known about a biological system. A system that determines the
interactions present in a genetic model can be valuable to researchers studying such in-
teractions. The proposed system contains three parts. First, a triplet network is deployed
to decide whether or not a figure is a genetic model. Second, a popular object detection
network YOLOVS is trained to locate regions of interest within genetic models using var-
ious deep learning training techniques. Lastly, we propose an algorithm that can infer the

relationships between the pairs of genes or textual features present in the genetic model.

Keywords:  Diagram Understanding; Diagram Detection; Visual Illustrations; Bioin-

formatics; Object Detection.
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Chapter 1 Introduction

This thesis develops a computer vision system for constructing textual descrip-
tions from genetic models shown in Figure 1.1. Genetic models are a type of visual
illustration often used within biological sciences to capture the relationship between two
or more genes or proteins. Genetic models are widely used in publications by biological
researchers to convey their contribution regarding a particular biological system. Similar
genetic models are commonly found as figures in biology publications. The publication
figures used throughout this thesis are found on National Center for Biotechnology Infor-

mation PubMed using the search query: Arabidopsis thaliana.

MML3 Al2

Tl

Figure 1.1. Publication figure extracted from National Center for Biotechnology
Information PubMed with the search query Arabidopsis thaliana. Genetic model
from Wang et al. [1].



Computer vision is an active area of research and a large body of work focuses
on image and video analysis and understanding natural imagery. Still, there is little prior
work on computer vision systems for analyzing visual illustrations and more specifically,
for understanding genetic models. We consider the previous work of diagram understand-
ing to be the most comparable to our work, yet consider our work diagram parsing as we
do not conduct question-answering. Work published in the 1990s [23, 24, 25, 26] are
notable exceptions. In 2016, Kembhavi et al. proposed a computer vision system that
focuses on question answering for grade-school science diagrams. Their approach pro-
posed a Long Short-Term Memory (LSTM)-based network for creating diagram parse
graphs, which relied heavily on contextual information that is not made publicly avail-
able. Despite our best efforts, we found that these methods [2] are not reproducible using
the dataset and tools available to us. These methods do not seem to be well-suited for our
problem of constructing textual descriptions from genetic models. Two key reasons why
previous works in diagram understanding cannot be applied to our task are: (1) These fo-
cus on question-answering and (2) these models assume contextual information available

in the images.

Within this context, this thesis develops a computer vision system for (1) detect-
ing genetic models and (2) constructing textual descriptions from these genetic models.
Step (1) is important since biological publications often contain multiple images, most of

which are not genetic models. Only genetic models are subsequently processed in step

2).

1.1 Motivation

The motivation of this work comes from discussions at a recent Multinational
Arabidopsis Steering Committee [27] that suggest a desire within the plant biology com-
munity to have access to better tools for data mining information from existing papers.
For example, one user commented, “Can we make the literature database easier to auto-

matically mine for the content of papers?” Another user wrote, “I think we need more
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text and data mining sites.” Someone chimed, “We’d like to easily search new literature
and datasets for connections.” While it is possible to utilize data mining text analysis
techniques to search within these publications, currently we lack necessary tools to ana-
lyze and make sense of graphical elements occurring within these papers. Genetic models
are but one such element. Some other examples of the graphical elements found in pub-
lications include graphs and images. This work aims to use computer vision technology
capable of parsing genetic models to create more powerful tools for biological researchers
than are currently available. The classification network from our proposed computer vi-
sion system to reason about genetic models developed in this thesis is already being used
to support the search functionality available within University of Toronto’s Bio-Analytic

Resource for Plant Biology (BAR).

Current popular bioinformatics works focus on the visualization such as ePlant
[28]; a suite of open-source worldwide web-based tools for visualization of datasets from
the organism Arabidopsis thaliana. Given the aforementioned computer vision system
which extracts textual descriptions from genetic models, bioinformaticians can use this
information for visualization purposes. Visualizations can include showing relationships
between a wide collection of genes, while also referring directly to publications and ge-

netic models where this information is found.

The work introduced in this thesis can extract information from genetic models,
which can be used on plant biological systems and gene search engines to recommend
additional genes or proteins which have inherent relationships within genetic models. We
propose a system that, for example, given a search query of “Gene A”, we will be capable
of providing any relationships associated with “Gene A”. This would produce a resulting
output for this search query: “Gene A activates Gene B”; “Gene A inhibits Gene C”’; and
“Gene D activates Gene A”. The system can be considered low-risk as its purpose is to
assist researchers in discovering other associated genes from their original search. Any
biological researcher using a search engine of this nature would naturally have their own

validation to ensure our recommendations of associated genes would be correct through



Figure 1.2. Genetic models (top-left) exhibit different visual characteristics than
images typically used for training computer vision deep networks. Clock-wise
from top-right: images from CIFAR-10, ImageNet, and MNIST datasets. Genetic
model from Wang et al. [1].

visualizations of the resulting relationships.

1.2 Datasets

We have developed deep learning-based methods for genetic model detection and
analysis. Deep learning methods are data-dependent. Specifically, developing deep learn-
ing methods for extracting relationships among genes found within a genetic model re-
quires access to richly annotated genetic models. These annotations must account for any
entities found in the genetic model, including genes (textual features) and the relationship
between these genes. We found that deep learning models trained on widely available
natural image datasets discussed in Section 2.2.1, such as ImageNet, perform poorly on

genetic models. This lack of functionality is to be expected.



Genetic models have little in common with natural imagery typically used for
training deep learning-based computer vision systems demonstrated in Figure 1.2. These
various datasets which are shown in the above figure often contain one verb or region
of interest, unlike genetic models which can have many. Therefore, we needed to create
genetic model dataset(s) that can be used to develop deep learning detection and analy-
sis models. To this end, the thesis constructs two datasets: (a) a set of genetic models
collected from plant biology publications found on PubMed and (b) a scheme for gener-
ating richly annotated synthetic datasets that exhibit the visual and semantic cues found

in genetic models in (a).

1.3 Overview

Triplet Region Relationship
Classification Detection Parsing

| |

MML3 A1

—| Inhibition

=P Stimulation

DNA methylation inhibits VLCFA
MML3_A12 stimulates siRNA
miR828/858 stimulates MYB2

HDAS inhibits AUX1 HD1 MYB25
HUB2 inhibits KNL1

VLCFA stimulates Fiber Development
siRNA stimulates Fiber Development
MYB2 stimulates Fiber Development
AUX1 HD1 MYB25 stimulates Fiber
development

KNL1 inhibits Fiber Development

Figure 1.3. Proposed solution for diagram parsing on a genetic model displaying
desired output. Broken into three pillars: triplet classification, region detection,
and parsing relationships. The goal of this system is to create a textual descrip-
tion of relationships in a genetic model. Genetic model from Wang et al. [1]

Figure 1.3 shows the proposed method for constructing textual descriptions from
a genetic model. It consists of three steps. First, a Triplet classification network is trained

on our synthetic dataset named GeneNetSyn, which classifies whether or not an image



is a genetic model. Next, a YOLOvVS model identifies the constituents blocks within ge-
netic models. These blocks consist of genes (geometric shapes enclosing textual elements
of gene or protein names) and activation and inhibition lines between these nodes. It is
relatively easy to manually create a set of labeled datasets needed to train the classifica-
tion network in the first step. This dataset simply requires images of genetic models and
other publication figures paired with a binary label indicating whether or not an image is
a genetic model. Our region detection YOLOv5 model in the second step, however, re-
quires richly annotated datasets, which are burdensome to acquire. Instead, the YOLOv5
model, which was initially trained on natural image datasets, is fine-tuned using syn-
thetic datasets. Furthermore, we employ learning techniques, such as domain adaptation
[5, 6, 29] and transfer learning [30]. Before the third step, the system leverages Google
OCR API discussed in Appendix A.3 to extract textual elements from the genetic mod-
els. These extracted textual elements, often being genes and proteins, are presented in a
convenient scheme to index the genetic model within the University of Toronto’s BAR.
Lastly, the thesis develops an activation/inhibition line analysis system to extract a textual

description of the form, “Gene A inhibits Gene B.”

1.4 Contributions

A system that can reason about genetic models is desirable. Our work described
throughout this thesis introduces a system capable of improving the quality and efficiency
of data mining and literature review in the field of biology. This can be made possible
by implementing the proposed system into a search engine and using the results for each
image to recommend additional genes of interest. For example, if a researcher is to launch
a search query for gene A, and a relationship is present between gene A and gene B, the
system would recommend the researcher to also look at gene B. We leverage applica-
tions of computer vision to increase the capability of search engines within publication

libraries. The contributions made in this thesis include the following:

* GeneNet-98/500 - Real biological diagrams datasets. A collection of publica-
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tion figures retrieved from NCBI PubMed on the biological organism Arabidopsis
thaliana. These are manually annotated with binary labels to distinguish whether
or not a diagram is a genetic model.

GeneNet-DP - An extension of our real biological diagram dataset GeneNet-500.
These images were manually annotated for object detection and diagram parsing
ground truth to be used as the validation set for the proposed system.
GeneNetSyn - synthetic biological diagram datasets. These datasets attempt to
replicate the visual characteristics of real biological diagrams. These richly an-
notated datasets contain ground truth of regions of interest using both normalized
and darknet standards, textual feature information, and entity-relationship triplets.
Triplet classification network to identify if a diagram from scholarly works is con-
sidered a genetic model.

Application of object detection from a popular architecture, YOLOVS, trained to
identify classes within genetic models using domain adaptation and transfer learn-
ing.

An algorithm for diagram parsing given regions of interest detected from YOLOVS,
powered by an energy-minimizing spline guided through external constraint forces

approach.



Chapter 2 Related Works

In this chapter, the prior work in diagram understanding and the technical pre-
liminaries required for this thesis will be discussed. First, we outline a collection of the
classical diagram understanding techniques and one modern approach on grade-school
scientific diagrams. Secondly, we outline the works within computer vision applied on

natural imagery used to leverage our parsing of genetic models.

2.1 Prior Works

Diagram understanding is a task which attempts to transcribe a visual illustration
for question/answering or research discovery. A visual illustration can be generalized as
an image that is used to convey some concept capable of being described textually. A
classic example of a visual illustration is the water cycle shown in Figure 2.1. The water
cycle can be broken into four fundamental steps: collection, evaporation, condensation,
and precipitation. These steps are often depicted with arrows indicating the direction of
association such that collection moves to evaporation. Although capable of being visually

described in many ways, the concept fundamentally will always follow the same steps.

1

condensatio, )

Figure 2.1. Visual illustration demonstrating the water cycle. Courtesy:
https://biologydictionary.net/water-cycle/



If Known H §
Question o Relationship Result

Bank (Answer)

Figure 2.2. Summarized demonstration of classical diagram understanding
which uses prior knowledge or data banks to find a solution to a given prob-
lem.

Previous approaches of diagram understanding attempt to learn patterns present
within concepts to be stored within a data bank shown in Figure 2.2. The task of un-
derstanding diagrams was explored in the 1990s [23, 24, 25, 26] using handwritten rules
and manual annotations. These systems relied on previous knowledge often stored in data

banks or user-given information to assist in finding a solution.

In 2016, Kembhavi et al. [2] claimed that visual illustrations fundamentally of-
fer a unique set of challenges to create high-quality representations compared to natural
images. Their approach proposes a multiple-choice question answering system for grade-
school science diagrams. They define a diagram to be a composite image that consists
of graphic space, a set of constituents, and a set of relationships involving these con-
stituents. Visual illustrations offer opportunities for deeper reasoning using applications

of computer vision compared to approaches on natural images.

To further the study of diagram understanding, the Paul Allen Institute for Ar-
tificial Intelligence (AI2) released a publicly available dataset [2] that consists of 5,000
grade-school science diagrams with 150,000 rich annotations across them. The dataset
is used to leverage the tasks of both capturing, and reasoning with information found in
diagrams. It also proposes a machine learning model to tackle these tasks. The problem
of diagram interpretation and reasoning has two important stages. The first stage is syn-
tactic parsing, which includes detecting and recognizing constituents and their syntactic
relationship in a diagram. The second stage includes syntactic interpretation that maps

constituents and their relationships to semantic entities and events (real-world concepts).
The concept of diagram parse graphs (DPGs) was first introduced by Kembhavi

9



Diagram

Constituents

Diagram Parse Graph

Figure 2.3. Examples of computed diagram parse graphs. Demonstrates the
throughput of DSDP-Net on grade-school science diagrams. Courtesy: Kemb-
havi et al. [2]

| Constituent | Description |
Blobs Drawings / Illustrative elements
Text Boxes Titles / Annotations
Arrows Arrow bodies
Arrow Heads Arrow heads

Table 2.1. Table showing the various constituent types [2].

el al. [2]. DPGs shown in Figure 2.3 is a representation of a diagram that captures
the textual and pictorial constituents of a diagram. Furthermore, their relationships are
represented by arrows between constituents. Syntactic diagram parsing is the task of
building a diagram parse graph given an image of a diagram. In the context of DPGs,
nodes of a graph represent constituents of a diagram, while edges capture relationships
between constituents. The authors go on to define four types of constituents shown in

Table 2.1 that make up the foundation of a diagram.

Additionally, they go on to propose the Deep Sequential Diagram Parser (DSDP-
Net) [2] shown in Figure 2.4, a long short-term memory (LSTM) based model for infer-
ring diagram parse graphs from diagram images. DSDP-Net is a two-stage model that
consists of first generating constituent and relationship proposals, and second, present-

ing the proposals to the DSDP-Net model which builds the DPG iteratively. The first

10
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Figure 2.4. Overview of DSDP-Net, an LSTM-based network for inferring diagram
parse graph from a given diagram. Courtesy: Kembhavi et al. [2]

stage uses a variety of feature extraction methods combined with random forest clas-
sifiers for generating the constituent and relationship proposals. The second stage is a
2-layer LSTM that has a hidden state vector consisting of 512 units. One important fea-
ture of their approach is the 92-dimensional relationship feature vector which is input for
the DSDP-Net. This feature vector contains information including positions, detection
score, candidate overlap scores, relationship scores, etc. The important portion of their
contribution missing from their publication is the description of the values that the rela-
tionship feature vector contains and how they are computed. The lack of description of

the relationship feature vector makes this work non-reproducible.

The work done by Kim el al. [31] builds on that of Kembhavi el al. [2]. Similar to
the DSDP-Net, the Dynamic Graph Generation Network (DGGN) is a two-stage model.
However, unlike the prior work, both stages can be trained simultaneously in an end-to-

end manner. To facilitate this, the first stage of the model is replaced with a single-shot
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object detection model (a retrained implementation of Single Shot Detector (SSD) [32])
for constituent and proposal generation. These proposals are then sent to the DGGN to
parse the DPG. The authors model the DPG using an adjacency matrix, and a recurrent

neural network to extract it from the proposals.

These approaches are both are trained and evaluated on the AI2D which contains
a large number of richly annotated grade-school science diagrams. DQA-Net proposed by
Kembhavi el al. [2] offers an effective approach to answering multiple-choice questions
given a diagram. One weakness of DQA-Net is the preliminary step of DSDP-Net, which
does not identify how their initial data items are processed. This lack of description raises
the question of whether there is pre-processing information of the given diagram. Al-
though there is no indication that prior information is used, the question or an information
bank sourced by the question given may be used to create values present in the relation-
ship feature vector based on the topic present in the image. DGGN proposed by Kim
et al. [31] offers a different approach for developing dynamic parse graphs considered
diagram graph generation in their work. Their use of a retrained object detection network
proves to be an effective approach for identifying constituents. Our approach described
throughout this thesis takes inspiration from DGGN, although it does not require previous

information to parse the diagram.

Although diagram understanding has seen some traction in recent years as de-
scribed in the aforementioned approaches, we are interested in producing a system that
requires no prior information. To the best of our knowledge, there is no work of this na-
ture in computer vision literature. Therefore, we can consider the prior work in diagram
understanding by Kembhavi ef al. [2] and Kim et al. [31] as inspiration, as we create
our proposed system from scratch. Without being capable of using the AI2D dataset that
systems of previous works were built off of, we are required to build datasets to train and
evaluate our approach. Currently, there is no readily available datasets containing genetic
models and ground truth for computer vision applications including image classification,

object detection, and relationship parsing.
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2.2 Technical Preliminaries

In this section, the technical preliminaries for computer vision applications used
within the steps of the proposed solution will be discussed. These topics can be considered

required knowledge for techniques used in this thesis.

2.2.1 Natural Imagery

Throughout computer vision research, natural images are the popular choice to be
used while motivating and training deep neural networks. Training deep neural networks
for computer vision applications is considered a data-dependent task. Applications of
computer vision often rely on large datasets of natural images. These datasets often only
contain a few main topics to summarize the image. As we know it in the modern-day,
computer vision emerged following much interest in image recognition and more specif-
ically image classification. Classically, the task of image classification requires a set of
images that are labeled with a single category (class). These images are split into training
and evaluation subsets. The network is trained on the training set, and the performance
of the network is captured using the evaluation set. Often 20% of the available dataset is

used as the evaluation set.

Before the introduction of deep neural networks classical computer vision often
relied on low-level image features to solve computer vision tasks. The first large-scale
natural image data was introduced in 1998, the Modified National Institute of Standards
and Technology (MNIST) dataset [33]. The MNIST dataset contains a set of 70,000 single
digit hand-written numeric imagery. The dataset was extended in 2017 by Cohen et al.

[34] to 280,000 images.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [35] was re-
leased in 2010. The goal of this challenge was to evaluate vision image recognition al-

gorithms on a standard benchmark. ImageNet also provided labeled images that can be
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used to train image recognition algorithms. This challenge showed the high potential of
deep neural networks in computer vision. Furthermore, the interest that ILSVRC brought
to these deep neural network approaches can be attributed to the rapid advancement in the
field of computer vision in the past 10 years. ImageNet is an extremely large database de-
signed for training visual mechanisms, specifically image recognition tasks. Containing
more than 14 million images with approximately 20,000 categories and over 1 million im-
ages containing bounding box positions, ImageNet is one of the most widely used natural
image datasets. A few example images from a selection of classes can be seen in Figure

2.5.

Figure 2.5. Examples of various image classes from ImageNet, including varia-
tions within the same class. Courtesy: Krizhevsky et al. [3]

Since the introduction of ILSVRC the error rate has continued to decrease an-
nually. Performance of approaches in ILSVRC has come close to human-level accuracy
recently. For the 2017 challenge, 29 of 38 competing teams achieved greater than 95% ac-
curacy. ImageNet showcased the importance of data availability for training deep learning

models.
As tasks within the field of computer vision continue to become more complex,
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image datasets need to evolve to meet the demand. More recent image datasets are an
order of magnitude larger than ImageNet or MNIST. The Microsoft COCO (Common
Objects in Context) [4] dataset is a large dataset that is primarily known for its wide as-
sortment of available ground truth. Although expensive to collect this richly annotated
dataset contains full scene segmentation as shown in Figure 2.6. Introduced in 2014, Mi-
crosoft COCO consists of over 328,000 images, with more than half containing complex
annotations. Since its creation, Microsoft COCO has had a very diverse collection of
use cases. For example, Microsoft COCO has been used in a knowledge base to create
machine-developed structured sentences by training models that understand high-level

concepts within the image [36].

Figure 2.6. Original image (left) and the annotated image (right) from Microsoft
COCO. Courtesy: Lin et al. [4]

Some of the available richly annotated ground truth in the Microsoft COCO dataset in-
cludes the following: object detection and instance segmentation bounding boxes; image
caption; person instances labeled with keypoints; image segmentation masks; full scene
segmentation including things (object) and stuff (background); and person instances la-

beled with key points.
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2.2.2 Object Detection

Numerous deep neural networks have been proposed over the years for the task of
image recognition. Image recognition can be considered a hypernym for computer visions
tasks including object detection, image segmentation, localization, and image classifica-
tion. Specifically, object detection is a fundamental challenge within computer vision
works as it focuses on identifying and localizing objects present from known categories
in the image. Furthermore, recent approaches to object detection [22, 32] explore com-
bining various neural network layer types. Convolutional neural networks predominately
saturate these architectures, yet each approach often proposes various tweaks between
subsequent layers (activation, pooling, etc.). The application of deep learning to the task
of object detection has seen human-level accuracy in recent works. Typically object de-
tection assumes that both training and testing subsets are from the same domain and dis-

tribution of data.

Two popular approaches of object detection include: Single Shot Multi-Box De-
tector [32] and You Only Look Once [37, 38, 39, 22] and both have seen much success
concerning precision and speed on natural image datasets [40, 41, 33, 4]. In this thesis,
You Only Look Once (YOLO) has been chosen as the object detection network outlined in
Section 5.1. Having similar performance to SSD, YOLO was selected based on its read-
ily available code online. In the past few years, YOLO has seen multiple revisions which
have iteratively increased its speed and performance. These versions include: YOLO9000

[37], YOLOv3 [38], YOLOv4 [39], and YOLOVS [22].

The architectural similarity between all of these versions is the use of a triple pyra-
mid network approach. This approach is used for classification using dimension clusters
as anchor boxes. To train YOLO networks, a standard of Darknet formatting of labels
which is [class, centerX, centerY, width, height] normalized between 0.0 and 1.0 to scale
directly to the image. The architecture can be summarized into a two-stage detector which

selects the valid resolution and highest confidence bounding box for a particular object in
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the image.

The deep learning object detectors often rely upon a feature extraction step to
identify the class and location of an object. Feature extractors construct high dimensional
representations of a given image. This portion of these deep neural networks is particu-
larly important as even if object detection is not the final goal, these features can be used
for other tasks on the same dataset. A handful of these popular deep neural networks in

which the feature extractor’s structure differs can be seen in Table 2.2.

| Network Name | Authors | Year |

R-CNN [42] Girshick et al. 2013
VGG16 [43] Simonyan and Zisserman | 2014
Alexnet [3] Krizhevsky 2014
Inception [44] Szegedy et al. 2016
Resnet [45] He et al. 2016
SqueezeNet [46] Iandola et al. 2017
Densenet [47] Huang et al. 2017

Table 2.2. Popular object detection networks in which their feature extractors
have been seen in various tasks in computer vision.

The networks shown above in Table 2.2 have achieved the highest testing accura-
cies in the ImageNet Large-Scale Visual Recognition Challenge [35] over the past years.
To obtain good performance on ILSVRC, the ImageNet dataset [40] is used to train these
feature extraction networks. Furthermore, these feature extraction networks are publicly
available with popular deep learning libraries such as PyTorch [48]. Publicly available
pre-trained feature extraction networks are popular choices for new applications of com-
puter vision in a variety of domains. Moreover, the mentioned approaches have been seen
to create viable representations when applied to other computer vision tasks. Deep neural
network approaches require training to create valuable representations making them need
large datasets which may not be available in new target domains. Thus, image recog-
nition approaches rely on hundreds or thousands of examples from each class to train a

well-performing network.
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2.2.3 Shared Weight Networks

One underlying assumption in deep learning is that deep hierarchical models
which include CNNs, RNNs, and LSTMs create useful representations of the processed
image in some high dimensional feature space. These extracted feature vectors from deep
networks can be used to compare sets of images. This comparison began the work that

uses shared weight networks for the purposes of image classification.
Siamese Neural Network

A Siamese neural network [49] takes two images as input and computes the dis-
tance (in some space) between these two images. Siamese neural networks can be used
to decide if the two images belong to the same class. Feed-forward networks use shared
parameters to ensure that the same network weights are applied to both input images.
Ideally, when using a Siamese network two images of the same class should have little
difference between their representations. Say S represents the network and X represents
the dataset then

S(x1,x;) € {0,1}, where (x1,%x;) € X

these the two data items x; (data item of interest) and x, (reference class data item) are
passed through a feature extraction network. These image feature vectors are passed
through fully connected layers. The output of a Siamese network is a binary value that

represents whether the image belongs to the same class (1) or not (0).

Triplet Network

A Triplet network [50] inspired by Koch er al. [49] is composed of three instances of the
same feed-forward network. The approach of the Triplet network contrasts to a Siamese
network which only has two instances. A Triplet network uses an L, distance compari-
son between an anchor to a positive and a negative example. Subsequently, the smaller

distance is selected as the class for the anchor.
Say N represents a suitable feature extractor. N can be any one of the options listed
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in Table 2.2. X is a dataset of images. X,, is a positive data item. This image belongs to the
same class as the anchor. X, is the anchor data item. This image is our reference image
which we are attempting to classify if its extracted features are closer to the positive or
negative data item. X, is a negative data item. This image belongs to a different class than

the anchor. The triplet set of images can be represented as

(Xp, X2, Xp) € X

where given a set of three images (X, X,, X,) the goal is to determine which features
extracted by N for x, and x, are most similar to x,. We can assume that if the anchor
image X, is closer to the positive image x,,, then x, belongs to the class of x,. We compute
the L, distance

T = mln(”N(Xa) - N(Xp)|l> ||N(Xa) - N(Xﬂ)”)

between these features to discriminate the difference between the features, then select
as the prediction the lower distance. This prediction is the resolving output of 7, which

would resolve the class that the anchor belongs to during evaluation.

To train a Triplet network, Hoffer et al. [50] proposed Triplet loss. Triplet loss Ly

Ly = max(([[N(xa) = N(x)[| = [[N(xa) = N(xa)[[) +m,0)

attempts to minimize the distance between the anchor and positive image over time while
training. We compute the difference between the sets of (anchor, positive) and (anchor,
negative), then additionally consider a margin m which is set with an empirically deter-

mined value before training. We define Ly as the following:

2.2.4 Domain Adaptation

The use of deep neural networks has been widely adapted across various niches of

computer vision literature. Often the networks of these applications rely on large amounts
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Figure 2.7. Proposed architecture for unsupervised domain adaptation. This
architecture in particular focuses on the task of image classification. Courtesy:
Ganin et al. [5]

of annotated data to tune weights for their respective task. Although some applications of
computer vision do not have sufficient annotated datasets for supervised learning, meth-
ods using unsupervised training such as domain adaptation [5, 51, 52, 53, 54, 6, 29] can
leverage the use of other datasets to apply a pre-trained network to a new domain of inter-
est. These applications can still find other related datasets with viable training sets for a
deep neural network, yet once the testing application is shifted to the desired domain for

testing performance is not adequate.

Domain adaptation focuses on training a discriminative classifier that helps tune
the weights trained on a source domain to improve the evaluation performance on a target
domain. Domain adaptation differs from the widely used approach of transfer learning
which applies a target domain’s training set to a source domain’s pre-trained weights.
Primarily domain adaptation is useful for learning a mapping between two domains in
which the target domain’s dataset is not annotated (unsupervised domain adaptation) or

has very few annotation samples (semi-supervised domain adaptation).

Typically when domain adaptation is used for a particular scope of imagery, anno-
tated ground truth is either sparse or not available. Thus unsupervised domain adaptation

can leverage learning domain invariant models in which both the image and annotation
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are available in the source domain while only the image is available in the target domain.
Works within unsupervised domain adaptation in the scope of image classification mostly
use distribution-matching-based approaches. These approaches ensure that features ex-
tracted from both domains are similar to each other using the maximum mean discrepancy

or a domain classifier network.

The key contribution of domain adaptation is its use of a gradient reversal layer
(GRL). The GRL acts as an identity transform to reverse the feature passing through the
domain classifier. This has an impact on both the forward and backward propagation
during training. The implementation of this layer into deep neural networks is trivial.
Within the forward pass, it is an identity transform applied at the final feature vector, and
in the backward pass, the gradient is multiplied by a constant A. A represents a scalar value
which changes from O to 1 throughout training a given network. Further detail is included
about domain adaptation and GRL below where a full example of domain adaptation is

shown.

Domain adaptation assumes that there are no available labels for some target do-
main and a suitable amount of labels are available in the source domain. The lack of
target domain data forces a given network to learn prediction features on the source do-

main dataset. Let us consider the following example:

Example of Domain Adaptation

Figure 2.8. Datasets of use for desired domain adaptation application for image
classification. Courtesy: Ganin et al. [5]
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Given two datasets MNIST [33] (source domain) S and MNIST-M [5] (target do-
main) T as shown in Figure 2.8. The goal will be to train a classifier on images from the

source domain. We can assume:

* S(x,y): Contains both imagery and labeled ground truth.

* T(x): Only has imagery.

To predict class labels as outlined in Figure 2.7, the source domain S(x, y) would
be used in which y € Y of class labels. When using an image classification network on
domain adaptation, this portion of the network’s architecture is not modified, but the loss
will now also consider the domain’s loss. The primary change to the image classification
network architecture will be the addition of the domain classifier and the use of a gradient

reversal layer.

Predicting the domain label d; of a given image in the source or target domain is a

binary value. The domain of image x; domain is determined given some network N:

x; € S(x), ifdi=0
wiey = ] €5 )

(x; € T'(x), ifdi=1)

The goal of domain adaptation is to maximize the loss of the domain classifier
while training the feature extractor of the network on the source domain. When back-
propagating the network we have the loss for both the class label Ly and the domain
label Ly. It is desirable to minimize L, and maximize L;. To maximize Ly, a gradient
reversal layer (GRL) is used. The GRL which is inserted between the feature extractor
and domain classifier requires no predefined parameters or hyperparameters besides the
meta-parameter A\. Over the course of training A is gradually changed from O to 1 which

p € [0,1] is the training process. The change of A can be defined as:

2
=
1+ exp(—10-p)
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Figure 2.9. Domain Adaptive Faster R-CNN model, tackling the domain shift on
both the image and instance level. Courtesy: Chen et al. [6]

During forward-propagation, the GRL acts as an identity transform using A. Sec-
ondly, during the back-propagation, the GRL takes the gradient from the subsequent level,

which is then multiplied by —\ and passes it to the preceding layer.
Domain Adaptation on Object Detection

Domain adaptation has seen extensive applications on image classification tasks
in computer vision as discussed in Section 2.2.4. These approaches are often used to
adapt a given network from a large richly annotated natural image datasets [40, 41, 33, 4]
(source) to a new dataset (target) which has little to no ground truth. Object detection
networks perform well when evaluating on the same domain as the training set, yet shifts

in the target dataset’s distribution can significantly decrease performance.

Chen et al. [6] proposed an application of domain adaptation to be used on object
detection, which is objectively more challenging as both the object location and category
need to be predicted. The architecture shown in Figure 2.9 outlines their approach. Prior
works using domain adaptation for image classification often only dealt with the class
and domain loss. Object detection complicates the task of minimizing class loss and
maximizing the domain loss as we are also interested in computing loss for the region and

each instance level. Let L represent the summation of object detection loss such that:

L= Ldet + A(Limg + Lins + Lcst)
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The proposed loss by Chen et al. [6] seen above also considers using a A constant
to tune the collection of domain losses. In this implementation, three losses are computed

for the domain:

* Liy,: Concerned with predicting the domain using the image-level representation
being the tensor from the feature extractor before the region of interest and class
is determined. The key benefit of predicting the domain using the feature map
is to help reduce the shift caused by the fundamental image differences between
domains.

* Li,: Similar to Li,, when predicting the domain, yet the features used are the
instance-level representation. These features would be the flattened version of
the image-level representation following their pass through various other steps of
Faster R-CNN including the region of interest pooling and fully connected layers.

* L.« Maintaining consistency between the domain classifier on different levels

which helps to improve the cross-domain robustness of bounding box prediction.

Inoue et al. [29] developed a solution for the task of object detection using domain
adaptation with their cross-domain weakly-supervised approach. This is done by having
instance-level annotation in the source domain, and image-level annotation in the target
domain. Fully supervised detectors (FSDs) as described in Chapter 2.2.2 can be used to
effectively capture features yet require large amounts of data to perform effectively. In
this instance, FSDs are trained using the source domain and applied to target domains.

Inoue et al. [29] proposes two methods which include:

* Using domain transfer to generate images that look like those in the target domain
from the source domain, which has instance-level annotations.

» Using pseudo-labeling to generate pseudo-instance-level annotations. This is done
by using an FSD on the source domain and applying it to the target domain. These
candidates are processed into pseudo labels, furthermore, the FSD is then fine-
tuned on the artificially generated samples using domain transfer as discussed

above.
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Figure 2.10. Example the Active Contour Model proposed by Kass et al. [7], an
implementation used from scikit-image library. Red dashed line indicates the
initial position, and the blue solid line indicates the final contour at the end of the
routine. Courtesy: Scikit-image [55]

2.2.5 Active Contour Model

Although in modern computing the use of machine learning and deep neural net-
works seems to be the obvious choice to solve particular tasks, active contour models can
be extremely useful for unsupervised line detection. In the case that labeled data is not
present for a line detection task, active contours give the ability to find the pixel-wise po-
sition of the line from tip to tail. In 1988, Kass et al. [7] introduced an energy-minimizing
spline guided by external constraint forces and influenced by image forces which cause
the snake to converge on image features such as lines and edges. Active contour models
[7] have practical uses for computer vision problems such as edge detection, line detec-

tion; contour completion, motion tracking, and stereo matching.

Computer vision research often relies on deep neural networks or blackbox ap-
proaches to find lines and edges. These autonomous approaches typically have well-
developed interactive techniques for guiding these models to contours. Given an area of
interest, as shown in Figure 2.10, there is an interest in converging the initial position
of the algorithm’s snake to the contours within this space. Using an energy-minimizing

spline guided model [7] can solve this task. Throughout the active contour model task, the
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snake deforms itself from its initial state to conform to the nearest salient contour. Their
procedure runs in Big Oh O(n) time complexity, for the iterative technique using sparse

matrix methods.
Energy Functional

The external constraint forces are responsible for putting the snake near the desired
local minimum. These forces are often predefined by the user which can be tuned to find
particular contours, line, or edge styles. The active contour model’s energy functional is

defined as follows:

E*snake = /0 Esnake(v(s))ds
= /O Eim(v(s)) + Eimage(U(S)) + Econ(v(s))ds

We consider the energy functional of the snake as E*,,. such that the position of
the snake is represented by v(s) = (x(s), y(s)). Below each of the values within the energy

functional will be explained:

e Ei: Internal Spline Energy — Considers a first and second order terms which
changes over time as the snake’s points approach corners.

* Eimaee: Image Energy — When dealing with the image energy functional. The
three different energy functionals must be associated which attract a snake to lines,
edges and terminations. The total image energy is expressed as a weighted com-

bination such that:
Eimage = wlineEline + wedgeEedge + wtermEterm

These further representations of E are defined as: Ej,. (Image Intensity), tuned
given I(x,y) which will attract the snake to either light or dark lines; E.q,. (Edge

Functional), extends the Ej;,. functional which will increase the snakes attraction
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to contours with larger image gradients often being corners or edges; and Em
(Termination Functional), used to find terminations of line segments and corners.
Which is improved by increasing the smoothness of the image. Furthermore, this
functional will attract to perpendicular gradients.

e E.n: External Constraint Energy — When initializing the snake, springs can be
defined between positions x; and x,. These springs are anchored at a fixed position

and the snake is given movement with a constant k such that —k(x; + x;)
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Chapter 3 Datasets

This chapter will discuss both the real and synthetic genetic model datasets ti-
tled GeneNet and GeneNetSyn, respectively. Training a deep neural network is a data-
dependent task, thus we require large collections of data which is supplemented by richly

annotated ground truth.

3.1 GeneNet Datasets

There have been many large-scale natural image datasets [40, 41, 33] available
having with high-quality annotations for supervised tasks. Datasets containing thousands
of examples for each class have been shown to train feature extraction models extremely
well. Approaches that complete such tasks are trained to learn class-dependent features
and distinguish inter-class differences to certain confidence. Deep neural networks trained
on natural imagery are not suitable for systems that reason about visual illustrations. The

challenges faced by such an approach to reason about genetic models is three-fold.

The first issue posed by publication figures is their high intra-class variance. In
the natural image domain, classification datasets often contain low intra-class variances,
meaning data items sampled from different image classes will not share the same visual
characteristics. Having a low intra-class variance makes tasks of classification and local-
ization easier for a given approach to leverage the differences to distinguish a data item’s
class. When dealing with publication figures with the goal of distinguishing if a figure
is a genetic model or not, the high intra-class variance present makes this a non-trivial
task. For example, if we compare two figures from the same citation which can be seen in
Figure 3.1 where image a is a genetic model, while image b is not while both share very

similar visual characteristics.

Secondly, throughout biology publication figures there is no standard for the styling
and presentation of genetic models. For example, when considering a natural image ob-

ject class such as a boat, we can assume that a large majority of imagery containing boats
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Figure 3.1. Comparison of the two GeneNet-98 classes. Images shown Bloomer

et al. [8].
will have some of the visual characteristics such as a body of water, a beach, or a dock.
Assumptions of this nature are understood by deep neural networks in a low-level way
(pixel-wise). Generally, when a deep neural network approach is deciding if a given ob-
ject is either a boat or car, it may consider pixel regions in proximity when developing a
confidence metric. Comparing this example of boat imagery to publication figures, there

is a wide variety of ways researchers will convey their contributions artistically including:

» Simplistic white background with black textual features and relationships.

* Collections of polygons with interior sets of genes with relationships among them.
Additionally, relationships between each of the larger polygons connect each set
of genes.

* One large background image such as a plant, leaf, genome visualization, etc. with
the textual features and relationships of the genetic models contained within.

* Smaller sets of genes connected to one particular background image, created to
look like a step-by-step growth pattern from left-to-right or top-to-bottom.

* Portions of the image containing a genetic model, and other portions including
non-genetic models. An example of this could be an image of a plant or micro-
scopic image which is “zoomed” in somewhere else in the image to describe a

contribution via a genetic model.
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* Similar colour palettes used on sets of textual features and relationships nearby
which its purpose is only to look more visually appealing.

* Polygons containing sets of genes in which both the text font and background are
very similar in colour.

* Textual features with and without background filling or stroke for every single
element.

* Colours associated with a hierarchical layer (inwards or outwards change of gra-
dient and colour scheme) for a set of genes, although this progression in colour is
for visual appeal.

* Visualization of a biological system, the textual features of the genetic model are

built into pieces of the background visualization.

As described, publication figures and genetic models can have extremely unexpected vi-
sual characteristics which makes applying deep neural networks extremely challenging.
A few examples of these images that present challenges for a deep neural network are

shown in Figure 3.2.

The last issue posed by publication figures is the amount of background clutter.
This alludes to the previous point of unpredictable visual characteristics often included
for artistic purposes. Typically, genetic models contain a lot of background noise or small
constituents. These shapes containing noise often do not have any effect on the biological
system presented, thus adding confusion to any given deep neural network. This back-
ground noise can also contribute to computer vision applications making errors when they
rely on pixel-wise changes. Within our proposed system, we find this issue arises in the

use of an active contour model in Section 5.2.

Currently, there are no publicly available publication figure datasets in the scope
of plant biology. To train a computer vision system for diagram parsing, we require a
richly annotated dataset of both publication figures and genetic models. We present the
collection of GeneNet datasets that offer ground truth for genetic model classification,

region detection, and diagram parsing. GeneNet introduces a new avenue for creating
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| Biological System | Abbreviation | Figure Count |

Arabidopsis thaliana AT 155,175
Hordeum vulgare HT 10,428
Medicago truncatula MT 5,960
Oryza sativa oS 43,057
Physcomitrella patens PP 2,620

Table 3.1. Description of each biological system scrapped for GeneNet.

computer vision applications for genetic models analysis.

The National Center of Biotechnology Information (NCIB) PubMed comprises
more than 32 million records of biomedical literature from MEDLINE, life science jour-
nals, and online books. The figures within these publications are of interest for the work
within this thesis. To extract publication figures which will be filtered down to only ge-
netic models we require a data scraping tool. Throughout this research we are interested
in a few specific biological systems motivated by the Multinational Arabidopsis Steer-
ing Committee [27]. We focus our data collection of publication figures on the most
researched plant biological system Arabidopsis thaliana. We are interested in collecting
figures from citations that are open source and available on PubMed such as the page dis-
played in Figure 3.3. To gather these images, we use the Publication Figure Web Scraping
tool developed by Alexander Sullivan from the University of Toronto’s Provart Lab. This
tool provides a method for scraping through NCBI’s PubMed publications and retrieving

the figures from open access and publicly available publications.

Although the work shown throughout this thesis contains specifically figures from
the biological organism Arabidopsis thaliana, we also scrape the following organisms:
Hordeum vulgare, Medicago truncatula, Oryza sativa, and Physcomitrella patens. From
the aforementioned biological organisms, approximately 217,000 images were scraped

which is broken down in Table 3.1.

From search queries based on the listed biological organisms, each is used as a
search query to discover publicly available publications. An example of a publication

figure extracted from a page in Osuna ef al. [13] is shown in Figure 3.3. To ensure effec-
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nitrite at acidic pH in germinating seeds, and catechin would also
stimulate the production of NO from nitrite with a maximum at
pH 3-4 (Bethke et al, 2004ab). Nitrite either entering the grain
from soil solution or released by the embryo axis, the scutellum,
or the aleurone layer to the apoplast/endosperm cavity, would
result in NO production (Bethke et al. 2004a), and apoplast
of both GA- and ABA-treated Hordeum vulgare aleurone layers
can produce NO from nitrite. NO would be an ideal signal for
coordinating the activities of the embryo axis, and

initiated by nitrate or nitrite, and cPTIO maintained dormancy
in mitrite- and nitrate-treated seeds. Experimental data from
Libourel et al. (2006) showed that exogenous gaseous NO is
sufficient to disrupt seed dormancy. Cadman et al. (2006) have
also suggested that, in Arabidopsis, the transcriptome anticipates
growth initiation during dormancy-breaking. An increased NR1
transcript abundance would anticipate nitrate assimilation during
seedling growth. In h however, seed i was
not signi by nitrite or nitrate alone, and

aleurone layer in real time. Removal or damage of the aleurone
layer resulted in embryo growth, demonstrating that one function
of the Arabidopsis aleurone layer is to maintain the dormancy of
imbibed seeds.

In Arabidopsis thaliana seeds, sodium nitro-prusside, cyanide,
nitrate and nitrite decreased dormancy and the NO scavenger c-
PTIO effectively promoted the maintenance of seed dormancy
(Bethke et al,, 2006b). NO was required to complete dormancy loss

I’en'ocyﬂmtk was more effective than cyanide (Sarath et al , 2005).

GAs promote germination (Yamaguchi and Kamiya, 2002) and
GA deficient mutants fail to germinate (Ross et al, 1997). The
importance of ABA/GA balance for germination is supported
by the fact that the reduced dormancy of some of the ABA
mutants was linked to a lower GA-requirement for germination
(Koornneef et al, 2002). GAs promote rupld degradation of
DELLA proteins (i Il ), which
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Figure 3.3. Page from the publication by Osuna et al. [13], we extract the figure
shown which would then be parsed by our diagram parsing pipeline if it was
predicted to be a genetic model.



tive collection of publication figures including both genetic models and other non-genetic
model figures, a portion of the dataset was manually annotated with a binary classifica-
tion for both positive and negative examples of a genetic model. Once we initially created
these two sub-sets of this dataset on our own, Alexander Sullivan from the Provart Lab at
the University of Toronto examined our annotations to ensure we correctly classified the

genetic models.

Publications from the field of biology contain a wide variety of figures for various
purposes throughout the article. Often being used to visualize a contribution to the bio-
logical system, genetic models were only found to be approximately 10% of the 155,175
publication figures scrapped from Arabidopsis thaliana. A large majority of publication

figures are considered non-genetic models.

3.1.1 C(lassification Dataset

In particular, a filter was applied for only papers including Arabidopsis thaliana
when initially creating the GeneNet datasets. A total of 155,175 Arabidopsis thaliana
papers were filtered, unfortunately not every paper is open access so figures could not
always be extracted. These publication figures can be split into two particular classes;
genetic models and non genetic models: Models demonstrated in Figure 3.4 are figures
of a genetic model map that contains a gene or a set of genes that biology researchers
may be interested in searching for, and non-models which include publication figures
not considered genetic models. These figures can include graphs, microscopic images,

drawings, or natural images.

Papers written by various authors bring many challenges when creating a dataset
to train a network to distinguish common features within an image. To create our classifi-
cation dataset of biological diagrams containing both genetic models and non-models, ap-
proximately 7,500 images were manually annotated. The dataset was manually classified

by ourselves, then validated by Alexander Sullivan in the Provart Lab at the University of
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Figure 3.4. Example of the variety of genetic models within GeneNet Datasets.
Genetic models shown courtesy: [14, 15, 16, 17].

| Name | # Genetic Models | # Non-Models |

GeneNet-98 55 43
GeneNet-500 208 292

Table 3.2. GeneNet Dataset versions, numerical value beside GeneNet represent-

ing the total number of images in the dataset.
Toronto. Throughout annotating the set of 7,500 images, it was found that genetic mod-
els account for a small fraction of the publication figures. The total number of classified
genetic models and non-models were 208 and 7,292, respectively. Manually annotating
these 7,500 images took approximately 40 hours. We present our two GeneNet datasets
in Table 3.2, which outlines the total number of models and non-models within each and

the suffix representing the number of images.

Being a small dataset compared to popular computer vision datasets [40, 41, 33,
34] this will create difficulty to train a network without over-fitting. Expanding the
GeneNet dataset beyond its current size would require a large amount of time to manually
classify, thus mechanisms using these datasets should consider deep learning techniques
such as weight warm-up to reduce the network over-fitting to non-models. To maintain
an unbiased dataset to avoid over-fitting in classification, a close to even distribution be-
tween models and non-models needed to be maintained. The figures extracted come in
various height and width combinations from 200 to 1,500 containing square and rectan-
gular shapes. The average size of images in the dataset was approximately 600 pixels in
both the width and height. The average dimensions of the dataset are important, as when

training a deep neural network all of the data items must be the same size.
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3.1.2 Detection and Parsing Dataset

A desirable computer vision dataset contains various offerings of ground truth for
each image. This can mean for one given image, ground truth is provided for a wide range
of computer vision applications. We are interested in providing an additional subset of
GeneNet which provides all of the ground truth required for validating a diagram parsing

system.

We present our diagram parsing genetic model dataset named GeneNet-DP. GeneNet-
DP contains 18 manually annotated genetic models which were selected from our set of
diagrams in GeneNet-500. These genetic models were manually annotated by ourselves,
which is an extremely time-consuming task. Listed below, each item within the dataset
will contain all of the ground truth to ensure effective validation can be collected for both

object detection and diagram parsing tasks.

* Manually annotated bounding boxes for object detection purposes.
» Textual feature identification and labelling to each associated bounding box.

* Triplet sets of relationships (entity, relationship, entity) for diagram parsing.

To manually label our object detection bounding boxes, we use a publicly avail-
able Python script named Labellmg which is shown in Figure 3.5. During this annotation,
the textual features within blobs were manually paired with the labeled bounding box in
a sequential nature. Specifically, we validate the performance of our final result in the
proposed diagram parsing algorithm discussed in Chapter 5.2. In Appendix B we present

a full data item from our GeneNet-DP dataset.

3.2 Synthetic Datasets

In this section, the development and details of all versions of synthetic data are dis-
cussed. We propose a collection of datasets that iteratively increase in visual complexity.
The goal of these synthetic datasets is to attempt to mimic the interaction of genes through

relationships present in genetic models from publication figures present in GeneNet.
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Figure 3.5. Demonstration of the annotation tool (Labellmg) used for GeneNet-

DP. This public tool can be found at:

https://github.com/tzutalin/labellmg#installation

Developing a system for diagram parsing described in Section 1.3 requires an as-

sortment of computer vision applications. These applications are mostly deep neural net-
works which are highly data-dependent, which means sufficient training data is required.
Currently, the limitation of the work proposed in this thesis is the lack of richly annotated
data. One of the popular visual illustration datasets proposed by Kembhavi et al. [2] is
the AI2D dataset which is a grade-school science diagrams. Although a richly annotated
visual illustration dataset, there are no plant biology publication figures or genetic models
present in the dataset thus it is not sufficient for our work. We introduce GeneNetSyn,
our collection of synthetic genetic model datasets. GeneNetSyn can be broken into four
versions, each version has one major contribution to the generation or structure of the

genetic models. The versions of GeneNetSyn are summarized below:

3.2.1 Version 1

Developing a dataset of richly annotated biological diagrams is not only expensive
but time-consuming. Developing an automated system that creates synthetic diagrams

can expedite the process of manually annotating a large set of real biological diagrams.
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| Version # | Contribution Description |

1 Collection of ten variations increasing in complexity.
Randomly generated positions for blobs. Short
sequences of text.

2 Structurally generated positions for blobs. Longer
textual sequences dependent on blob width.
3 Increased number of possible blobs within

image. Equal chance for activation, inhibition
and false lines. Chance for rotated textual
sequences and multi-line sequences.
4 Experimental dataset excluded from evaluation.
Use of copyright-free biology imagery as
the background of the genetic model.

Table 3.3. Summarization of each version within GeneNetSyn.

GeneNetSyn Version 1 contains ten variations of the dataset which increase in complexity.
We propose these ten variations in Version 1 to ensure the validity of the synthetic dia-
grams as we attempt to replicate genetic models in Section 3.1. These variations shown in
Table 3.4 each offer a significant change as Version 1 develops. The development ranges
from images with four simple circular blobs to up to 10 blobs with varying sizes and a

wide range of relationship representations.

The aforementioned variations of GeneNetSyn Version 1 contain 12,000 images
which are broken into a 10:1:1 split being training, validation, and testing respectively.
The variations of Version 1 all follow the same random blob position generation approach.
The random blob position generated relies on each subsequent blob position and a fixed
minimum distance of 35 pixels between blobs. These datasets all come with ground
truth and can be used for future works including: Darknet format normalized ground
truth labels; Raw ground truth of bounding boxes; Number of blobs and relationships;
Text within each blob; and Triple (entity, relationship, entity) sets for each relationship,
offering both (text, type, text) or (index, type, index). An example of a diagram from each

variation is shown in Figure 3.6.
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| Index | Name | Max Blob # | Description
1 Circular 4 Circular blobs only
2 Text Only 8 Textual blobs only
3 Circular Text 8 Mixture of circular with
text and only textual blobs
4 V Blob Circular 8 Mixture of circular
and textual blobs
5 V Shape V Text 8 Blobs are random shaped
ellipse and rectangles
6 V Curves 8 Relationship lines can be a
randomly seeded Bezier curve.
Variable arrow colour.
7 V Dashes 8 Relationship lines can
be dashed
8 V Noise 8 Random shapes added
to the background.
More fonts added
9 V False Lines 10 Relationship lines present
without head type
association.
10 V Heads 10 Relationship head types
added to classes

Table 3.4. Variations of GeneNetSyn datasets. V denotes Variable. Contributions

are carried downwards throughout the variations.
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Figure 3.6. Example diagrams from each GeneNetSyn variation. Red indexing at
the top-left of each image represents the variation number from Table 3.4.
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Figure 3.7. Visualization of the 5 object classes within GeneNetSyn; blob, inhibi-
tion, activation, act-head, and in-head. Shown from left to right respectively.

The underlying assumption of a genetic model is that there will be entities that are

bound together through a given relationship. To develop a synthetic diagram of a genetic
model, we require five classes:

* Entity: Any gene or gene product constituent in the diagram, often represented as

text paired with a shape surrounding the text. In some biological diagrams, these
entities may just be text.

* Activation: Flat tipped line relationship between two entities.

* Inhibition: Arrow tipped line relationship between two entities.

* Activation Head: Flat tipped line arrow head.

¢ Inhibition Head: Arrow tipped line arrow head.

In the later variations within Version 1 and beyond, we additionally add the classes

of the head type. Relationship head location as an independent entity is important to
allow us to isolate the tip and tail of the arrow. This isolation will be extremely useful

when attempting to predict the direction of a given relationship between two blobs. These

image classes are shown in Figure 3.7.

The aforementioned object classes appear in a wide range of shapes and styles as diver-
sity over the synthetic datasets. Blobs formally considered textual features are the most
important object class to locate when dealing with genetic models. Blobs require a vast
amount of visual diversity which includes: font sizes, font types, textual element length,

background object, background shape, and background hollowness. Both inhibition and
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activation relationships fall into the same category of visual diversity as their characteris-
tics are generated before selecting which relationship is present. The visual characteristics
of inhibition and activation relationships include length from blobs, line thickness, solid/-

dashed line, curvature, and direction.

Within biology and bioinformatics publications there is no set of rules to stan-
dardize the style, colour, or background clutter in a publication figure. This lack of stan-
dardization makes these images quite difficult to replicate. To understand some of the
global characteristics of GeneNetSyn Version 1, Figure 3.8 offers four visualizations of

distributions within the variable noise dataset (index 8).

40000 -

30000 -

20000 -
10000 -

0-

(o] 1 2

classes

Figure 3.8. Visualizations of variable noise dataset (Index 8) showing: object
class occurrences counts; possible bounding boxes; location of center points
for each class item; and the width and height for all object classes. Visualizations
described are shown clockwise from top-left. Scale using the RGB jet colour map
(blue weak, green moderate, and red strong intensity)
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3.2.2 Generating Images

To generate these images Pygame was used to draw the images, as briefly dis-
cussed in Appendix A.2. Images in the dataset are a fixed canvas size of 512 pixels with
both the height and width dimensions. The datasets contain a random number of blobs
N and relationships (1 - N-1) to a maximum of N=10 in Version 1. Each given diagram
is built from the ground up, such that we begin with a random background colour and

progressively add detail and complexity to the diagram.

Given a particular generated image, there are two primary variables that help to
develop the image which is: maximum constituent count, a minimum distance between

blobs which were set to 10 and 40 respectively.
" §

Figure 3.9. An example of some blobs generated by the Version 1 random posi-
tion approach. Red ovals indicating blob regions, and the blue lines signifying
the minimum distance between blobs.

Version 1 of GeneNetSyn takes an approach of randomly generating blob posi-
tions. This random generation is bounded by two factors: other previously generated blob
location plus the minimum distance, and the location to the edges of the canvas plus or

minus the given scale of the current blob being generated.

Publication figures found in GeneNet, more specifically the genetic models have
inherent distance between blobs with a relationship in-between them. Fundamentally a
minimum distance has to be present between two blobs with a relationship to be capable of

visualizing the relationship line and head type. Additionally, blobs cannot share multiple
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relationships between the same blob. An example can be that blob A cannot have both an
inhibition and activation relationship to blob B. There is no standardization for the spatial
location of relationships which can be assumed as order (vertical-based hierarchy as an

example), therefore relationship locations are completely random.

We first began by ensuring that our object detection network is capable of locating
and identifying identities in images from GeneNetSyn Version 1, row 1 in Table 3.4.
The addition of textual features is considered the most important part of genetic models
as we require two textual elements to connect together when inferring relationships. The
textual feature within a given blob is randomly generated for the variations of GeneNetSyn
Version 1 of the datasets. In the first six datasets (i.e; first 6 rows in Table 3.4) text
is generated in an ordered fashion from A to Z as the prefix which is paired with an
additional random letter. The ordered prefix of textual features was essential initially to
qualitatively visualize where blobs were being randomly generated. The initial datasets
were limited to only textual features of length two to ensure the detection network was
capable of generalizing various visual characteristics of blobs before their increase in
length. Later datasets in GeneNetSyn Version 1 had textual feature-length dependent on
the given width of the current blob. This amount of characters C present in a textual
feature was computed by using the current blob width BW and the current font size FS.
BW
o~ |7
One important feature of synthetic diagrams which is important to challenge a
neural network to properly learn how to identify classes is the use of noise. Each im-
age is completely random concerning the blob and relationship locations, blob colour,
background colour, and background noise (1/30 chance per pixel). The background noise
chance of 1/30 per pixel was empirically determined through analyzing imagery quali-
tatively to find a good balance of noise without fully saturating the initial background

colour. After the introduction of variable noise (row 8 shown in Table 3.4), background
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shapes were added to attempt to confuse the neural network. Often in real biological

diagrams background shapes are added for an artistic impact.

To add more complexity, there is no restriction on where relationships can occur.
The lack of restriction causes a good portion of images to have relationships overlapping
with blobs and relationships. These can have overlapping relationships which lead to
false-positive errors for systems attempting to infer relationships, resulting in the addition

of the aforementioned restriction in later versions of GeneNetSyn.

A genetic model contains both inhibition and activation relationships throughout
the diagram. Fundamentally both relationship types contain a line between two blobs
contained within the relationship. Relationships are determined based on the head type
at the tip of the line. When generating both relationship types, a different approach is

required for how the relationship head is generated:
Inhibition

Inhibition relationships are recognized by a second perpendicular line at the tip
of the relationship line. Given the two points of a candidate line (tip and tail), we need
to generate the perpendicular points for the tip to create our inhibition relationship head.
To do this, we obtain the left and right parallel offset which are the two (x,y) positions
the line segment formed connecting these two points is perpendicular to the line segment
terminating at the tip of the relationship curve. Lastly, we simply need to determine the
final length of both sides of the inhibition relationship so its scale matches closely to the
relationship. Given the width and height of the full relationship, we use the average value
multiplied by an empirically determined 1.4 value to compute the actual length of both
inhibition line sides. This value of 1.4 was the largest value that the inhibition lines could

be multiplied by to not span outside of the original relationship bounding box.
Activation
Activation relationships are recognized as an arrow at the tip of the relationship

line. Given the two points of a relationship line (tip and tail), we need to generate the

45



two additional points to create the arrow at the tip of the line. Thus, we must compute
the vectors from the tip to tail and vise versa in the x and y coordinate system. Following
these vectors being computed, we then use the norm of both aforementioned vectors and
some randomly generated amount of noise to generate the x and y points for both arrow
tips. We need to use the norm in both directions as we need to assume that arrows can be

in any orientation, not simply on each right angle or diagonal.

A full example of a data item from GeneNetSyn can be found in Appendix B.
Some example images from GeneNetSyn Version 1 sampled from all of the variations

can be seen below in Figure 3.10.

3.3 Version2 &3

Following the completion of the GeneNetSyn Version 1 datasets, the approach to
generating these synthetic diagrams was overhauled. The approach overhaul was primar-
ily focused on the spatial location of blobs throughout the diagram. It was found that
as the number of constituents within Version 1 datasets increased, the number of false
positives and overlapping relationships also increased. Furthermore when the larger tex-
tual features were introduced which was dependent on blob width another issue arose.
Object instances tended to converge towards the middle of the canvas, although being
initialized on corners. This limitation caused a reduction in the number of possible blobs
which could be generated in images, due to the required minimum distance from previ-
ously existing blobs. To visualize the previously stated drawbacks and proposed solution,
two variations of GeneNetSyn Version 1 accompanied with Version 2 and 3 are shown in

Figure 3.11.

One key difference between Version 1 to both Version 2 & 3 is the number of
maximum constituents N, which was increased to 12. Although in the figure shown above
it seems that GeneNetSyn Version 1 variable dashes have more spatial diversity, although
its average blob count is 5.3 compared to Version 2 & 3’s 8.6. Increasing the number of

blobs in an image not only increases the difficulty of inferring the relationships present
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Figure 3.10. Mixture of example images sampled from the variations in GeneNet-

Syn Version 1.
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Figure 3.11. Visualization of two variations of GeneNetSyn Version 1, GeneNet-
Syn Version 2, and GeneNetSyn Version 3. Displaying the center origin of object
instances (left sub-image) and the width & height of object instances (right sub-
image). Scale using the RGB jet colour map (blue weak, green moderate, and red
strong intensity)

but will increase the number of objects to be detected while training a deep neural net-
work approach. The proposed approach to generating blob positions is a grid assignment
based on the initial number of blobs to be generated. This approach contrasts to what
was used in Version 1 which relies on a randomly generated position constrained by other
blobs in the image. Our change is visualized in Figure 3.12, in which we first generate
the total number of blobs for the diagram then assign a region of space each blob can re-
side. Furthermore, this new approach will reduce the amount of noise for a relationship’s
line, as previously it would cross through other blobs in the image thus throwing off the

understanding mechanism and region detection.

GeneNetSyn Version 2 introduces this new approach, and takes the highest com-
plexity datasets from Version 1 and combines them all. These key features that we com-
bine include dashes lines, false lines, longer textual features, curved lines, and varying

background noise.
Continuing to increase the difficulty for deep neural networks, Our Version 3 of
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Figure 3.12. Comparison of blob and relationship generation pattern between
GeneNetSyn Version 1 (left) and Version 2 & 3 (center and right). Specifically the
left and center image are showing the difference between a random and proce-
dural approach to selecting 4 blob positions.

synthetic diagrams goal is to increase the difficulty of finding groups of textual con-
stituents. This can be conveyed in two separate ways. Firstly, we can introduce angled
text by tilting the textual features. Secondly, there can be blobs that contain multiple
lines of text. In real biological diagrams, a collection of genes are considered a group
that only one relationship connects to. Thus to effectively attempt to closely replicate real

biological diagrams we need to increase the diversity of text.

3.3.1 Experimental Version 4

One of the key characteristics which challenge approaches on publication figures
from works in biology such as our genetic models discussed in Chapter 3.1 is background
imagery. Background imagery in publication figures makes it extremely difficult for com-
puter vision approaches to reason about the given genetic model as background informa-
tion can easily be confused with regions of interest. We present GeneNetSyn Version 4
which we offer as an experimental dataset for motivation of future work. To develop this
Version of GeneNetSyn, we collect a sample of copyright-free images following search
queries on Google Images including “biology”, “plant system”, and “genetics”. We con-

sider GeneNetSyn Version 4 an experimental dataset to provide insight of our future works

as we continue to increase the complexity of genetic models. Thus, GeneNetSyn Version
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Figure 3.13. Visualization showing the key visual changes between the first 3 ver-
sions of GeneNetSyn. GeneNetSyn Version 1 (top diagrams), Version 2 (middle
diagrams) and Version 3 (bottom diagrams).
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Figure 3.14. Demonstration of copyright-free images incorporated into synthetic
genetic models. An experimental Version 4 of GeneNetSyn.

4 was not included in any evaluation of our proposed system.

Chapter 4 GMM Classification

The first pillar of computer vision applications has the goal of taking a given
publication figure and determining if it is a genetic model. This section introduces a
lightweight feature extraction network specifically for genetic models titled GeneModel-
Net (GMN) whose convolutional architecture is inspired by VGG19, and AlexNet. We
apply the extracted feature maps of GMN, VGG19, AlexNet, and SqueezeNet 1.1 to a
Triplet classification network to determine if a given diagram is a genetic model. The
dataset used to train and validate our approaches is GeneNet-98 and GeneNet-500, our
manually annotated dataset of genetic models and other publication figures introduced in

Section 3.1.

4.1 GeneModelNet

GeneModelNet (GMN) inspired by VGG [43] and AlexNet [3], contains six learned
layers including four 2D convolutions and two fully-connected layers. GMN is intro-
duced to evaluate the performance of a feature extraction network with initialized uniform
weights. GMN is used to compare how effective a feature representation is developed by
its approach to pre-trained feature extraction models on natural imagery. GeneModel-
Net’s convolutional layers use varying kernel sizes from 8x8 to 4 x4 with a stride of 1

and padding of 0. Following each convolutional layer, the output passes through a ReLU
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activation, then a 3x3 max-pooling. Given the large image input size of 600x600, a
larger max-pooling size was chosen to help reduce the dimensionality following each of
the convolutional layers. Following the last convolutional layer, the features are flattened

and a dropout is applied probability p is set to 0.2 (20%).

The base architecture of GeneModelNet’s learned layers is maintained in the two
variations; GMN144 and GMN1028, where the numerical suffix signifies the final fea-
ture output size. The aforementioned variations of GMN differ based on the selection
of kernel sizes, which affects the rate at which the model feature is reduced. Through
initial experimentation of performance when developing the two architectures, it was de-
termined that when GMN contained more than four convolutional layers its performance
began to decrease. These experiments evaluated a wide variation of convolutional neural
network layers, where four layers were found to be the ceiling of performance. Therefore
the total number of convolution layers used in both GMN144 and GMN1028 was four.
GMN is trained throughout the training of the Triplet classification network outlined in
Section 4.2. Initially containing uniform weights, we use the loss computed from the

Triplet classification to tune the weights of GMN.

4.2 Classification Network

We introduce our approach to determining whether a given publication figure is a
genetic model or not. A Triplet classification network shown in Figure 4.1 is leveraged to
complete this task. A Triplet network [50] discussed in Section 2.2.3 requires three input
images to decide whether the image of interest (anchor) is more similar to the positive
or negative class from the dataset X. For each data item passed to the network, the data
is divided into three sub-batches: the image of interest (anchor) x,, the positive class

example x,, and the negative class example x,).

(Xp, X2, Xp) € X
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Figure 4.1. Breakdown of the Triplet classification network used for genetic mod-
els. The proposed Triplet classification network can be separated into two steps,
which are image feature extraction and distance metrics. Fully connected layers
depicted are 3,600 to 1,800 to 10. Images shown are open access images from
NCBI PubMed.

To obtain the best performing network, we must evaluate how an assortment of
feature extraction networks create image features on genetic models. The feature extrac-
tion networks used include: VGG19 [43], AlexNet [3], SqueezeNet 1.1 [46], and GMN.
Besides GMN, the three feature extraction networks selected are popular approaches used
for various image recognition tasks. Each of these approaches architecturally is different,
yet produces similar output feature vectors before the image classification layers of their
networks. The aforementioned feature extraction approaches are trained on ImageNet
[40] for the ImageNet Large Scale Visual Recognition Challenge [35]. Although trained
on natural imagery, these pre-trained models can be used in other domains. The given
assumption is that these vigorously trained models can still produce a feature vector that
represents the image effectively for classification. Each of the three input data items (x,,
X,, X,) are passed through these feature extraction networks separately on the same shared

weights.

Following feature extraction of (X, X,, X,), we require classification layers to
identify which image class each image belongs to. The image classification layers of

VGG, AlexNet, and SqueezeNet are removed and replaced with two fully-connected lay-
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ers trained by the loss computed by the Triplet network. After being flattened, the fully-
connected layers reduce the dimensionality of the feature extraction model from 3,600 to
1,800 to 10. This feature vector of 10 values is trained to represent if the processed image
belongs to either the genetic model or non-genetic model class. The resulting output fea-
ture vector has a Sigmoid function applied which gives the final feature vector for each

data item (Xp, X,, Xp).

The final feature vectors of the triplet of data items (X, X,, X,) are compared using

pairwise distance d (L, distance) in the Triplet network such that d(x,, X,) and d(x,, X;).

n

d (Xa,Xp) = (Xai - Xpi)Q
i—1

(2

n

B0 = | 57 (o — 50

i=1

Once the distance is computed for d(x,, X;,) and d(x,, X,), we accept the smaller distance
to be which image class of x;, or x, the anchor x, belongs to. While training, the loss
computed for the Triplet network was the Triplet Margin Loss [50] defined as L is shown
below. The Triplet Margin Loss uses a margin m of 0.55, that was empirically determined

prior to evaluation of the approach.

Lr(Xa, Xp, Xn) = max (d (X, Xp) — d (Xa, Xn) +m,0)

4.3 Results

During experimentation, the Triplet Classification Networks were run on both
datasets of GeneNet as described in Section 3.1. When developing the GeneNet datasets,
the performance of the Triplet classification network was considered to ensure the best
assortment of publication figures was used. We found in particular that a selection of pub-

lication figures for non-models image class performance was over-fitting to only models
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due to the lack of visual diversity over non-model imagery. The cause of the lack of visual
diversity can be attributed to the sampling mechanism not randomly selecting publication
figures, but selecting images sequentially. Both GeneNet datasets were separated into a

training, validation, and testing split of 70, 10 & 20 respectively.

We present our evaluation results of the proposed Triplet classification network
on our GeneNet datasets in Table 4.1. We consider both the best performing accuracy on
each dataset and the average of 5 runs to validate the best overall approach. We compare
the results of the four feature extraction networks including GeneModelNet, VGG19,
AlexNet, and SqueezeNet 1.1. Furthermore, we explore the evaluation performance of
VGGI19, AlexNet, and SqueezeNet 1.1 when the weights of the feature extraction net-
work are frozen and unfrozen. When unfrozen indicated by “FT”, the pre-trained weights
are fine-tuned to genetic models using transfer learning [30, 56]. When applying this
approach of transfer learning to fine-tune the weights, we use the loss computed by the

Triplet classification network similar to our training technique applied to GMN.

Model GeneNet-98 GeneNet-500
Best | Avg Best | Avg

GMN144 90% | 70% | 85.15% | 80.60%
GMN1028 90% | 82% | 84.16% | 69.90%
VGG19 95% | 91% | 93.07% | 90.69%
AlexNet 85% | 81% | 94.06% | 91.49%
SqueezeNet 75% | 26% | 1.98% | 0.79%
VGG19-FT 90% | 82% | 95.05% | 66.93%
AlexNet-FT 85% | 83% | 91.09% | 88.32%
SqueezeNet-FT | 35% | 7% | 2.97% | 1.19%

Table 4.1. Testing accuracy for Triplet Classification Networks on both GeneNet
datasets.

All of the network conditions were static on all aforementioned approaches when
collecting evaluation results. These hyperparameters include a learning rate [r of 1 x 10™4
using the Adam optimizer trained for 20 epochs. It was found that due to the small size
of the GeneNet datasets, more than 20 epochs would begin to over-fit. The pre-trained

networks are loaded from PyTorch’s model zoo.
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We can conclude that overall the best performing approach of the Triplet clas-
sification network was with the use of VGGI19 as the feature extraction network. Our
hypothesis was confirmed that although we cannot use the image classification layers
of a pre-trained feature extraction network, it can still produce viable representations of

genetic models.

Chapter 5 Transcription

In this chapter, the two steps required to develop a textual description from a
genetic model are described. These steps make up the second and third pillars of computer

vision applications for our system to reason about genetic models.

5.1 Region Detection

In this section, we will discuss the second pillar of our pipeline. We are inter-
ested in effectively detecting objects classes with genetic models from our GeneNet and
GeneNetSyn datasets discussed in Sections 3.1 and 3.2 respectively. As our region detec-
tion application, we leverage a pre-trained version of YOLOvS, which is fine-tuned for

genetic models using instance-based mapping transfer learning and domain adaptation.

5.1.1 Methodology

We introduce our application of object detection being applied to genetic models
which we refer to as region detection throughout this thesis. Our approach to region
detection revolves around using learning techniques to transfer the weights from a natural
imagery dataset to our publication figures. Specifically, we are interested in transferring
the weights from networks trained on natural imagery discussed in Chapter 2.2.1, to our
genetic model datasets: GeneNet-500, and GeneNetSyn. Data dependence is a serious
problem in deep learning approaches, which alludes to the strong need for large amounts

of data to effectively train a network. Insufficient training data is an inescapable issue
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in certain tasks within computer vision which makes it extremely difficult to solve given

problems.

We employ two learning techniques to transfer the weights from Microsoft COCO
[4] to our synthetic genetic models within GeneNetSyn. Firstly, we use instance-based
mapping transfer learning [30, 56] to tune the weights from the source domain to our
target domain. Secondly, to also improve the transition of natural image trained weights to
genetic models, we introduce domain adaptation to our region detection networks training
approach discussed in Chapter 2.2.4. Although our region detection networks are being
trained on GeneNetSyn, we add real genetic models from the GeneNet datasets to make
the transition from synthetic to real genetic models have less impact on performance. A

visualization of the YOLOVS training approach can be seen in Figure 5.1
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Figure 5.1. Breakdown of the region detection network used for genetic models.
An implementation of YOLOv5 and tuning the pre-trained Microsoft COCO [4]
using various learning techniques. Genetic model courtesy: Steber et al. [18].
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One major challenge when attempting to train an application of computer vision
for publication figures, more specifically genetic models, is the lack of annotated images.

The goal of our second pillar of work is to detect object classes from GeneNet imagery
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which does not have a large collection of richly annotated imagery. Subsequently, datasets
with richly annotated data will need to be synthetically generated as discussed in Section
3.2. During the use of instance-based transfer learning, we translate the 80 object classes
from Microsoft COCO [4] to our five object classes in GeneNet and GeneNetSyn dis-

cussed in Section 3.2.1.

The object detection network of choice was You Only Look Once (YOLO) version
5 [22]. YOLOVS is introduced in Section 2.2.2, the specific implementation of YOLOvS5
used is discussed in Appendix A.1.2. The selected variation of YOLOvVS5 used for our
region detection network was YOLOvSm. YOLOv5m was found to be the best balance
between computational size and performance. Computational size is specifically impor-

tant as a future goal of the whole proposed system is to be deployed as a rest-API.

5.1.2 Experiments

The experiments conducted to verify the success of effectively detecting biological
diagrams using GeneNetSyn will be outlined in this section. Our experiments include
a preliminary performance check of the YOLOVS network trained on a natural image
dataset (Microsoft COCO); an iterative training approach to increase the complexity of
the dataset in a step-by-step pattern by introducing new datasets with initial sets from the

previous dataset; and standard single dataset training.

5.1.3 Base YOLOv5m Performance

We first explore using YOLOvS5m pre-trained weights on Microsoft COCO on
our test suite of diagrams and show why these weights are not desirable for use. Before
applying transfer learning to the YOLOvS5m network, we were interested in visualizing
the performance of natural image datasets to see what predictions are made. As shown in
Figure 5.2, the network trained on Microsoft COCO cannot reason about genetic models.

Considering the network was not trained for the relevant classes of interest, these results
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Figure 5.2. Microsoft COCO [4] pre-trained YOLOvV5 40% confidence. Genetic
models shown courtesy: [1, 19].

are to be expected.

Our experiments on our test suite of example images are evaluated using a 40%
confidence to give YOLOv5m a chance to identify anything it possibly can. The network
identifies the bounding boxes of some blobs, yet classifies them as some of the following
classes: frisbee, clock, sports ball, or any other circular in shape class. Furthermore,
relationship arrows and their respective lines are occasionally mistaken for curved objects

such as birds.

The performance of YOLOvSm’s baseline reflects the conflict of using these ex-
tensively trained networks on natural images to not be desirable for visual illustrations.
Nonetheless, these pre-trained weights can be valuable for training a network specifically
for visual illustrations. Although not trained on our specific domain yet, the value of these
pre-trained networks is that they can effectively formulate a solution based on pixel-wise
similarities to other known classes. These weights can be used as a starting point for ap-
plying transfer learning, rather than using normalized weights. This will encourage faster

convergence towards our desired target domain of genetic models trained on GeneNetSyn
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and to be deployed on GeneNet.

5.1.4 Iterative Training

While creating generations of datasets, it is important to evaluate the performance
of YOLOvS5m during the transition to a new dataset. In our initial experimentation using
iterative training, only three object classes were used for GeneNetSyn. Specifically, the
information regarding the head of the relationship was excluded. When training object
detection networks it is important to ensure problem areas within the datasets can be iso-
lated and improved. As GeneNetSyn was developed to be more complex, the performance
of the trained network needs to be monitored. Thus, when new datasets are introduced
we propose training our YOLOv5m network iteratively on the previously trained datasets

weights to validate if the network can quickly adapt to changes.

| Index | Name | Epoch Count |
1 Circular 100
2 Text Only 100
3 Circular Text 100
4 V Blob Circular 100
5 V Shape V Text 100
6 V Curves 50
7 V Dashes 50

Table 5.1. Training steps taken through GeneNetSyn variations (index 1-7)
shown in visualization Figure 5.3. V denotes Variable.

To briefly describe the approach for training iteratively, we train from GeneNetSyn
dataset index 1 (variable circular) to index 7 (variable dashes) outlined in Section 3.2.1.
Each of the first five datasets was trained for 100 epochs, and the two remaining only
under 50 to avoid over-fitting. We break down the iterative training pattern for the datasets
in Table 5.1. Throughout the aforementioned experiment, the same hyperparameters and

learning conditions were used.

As shown in Figure 5.3 when we introduce more complex datasets especially vari-

able curves and variable dashes, we see a downward trend inaccuracy. One of the key
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Figure 5.3. Testing results of transfer learning applied to YOLOv5m over the first
seven GeneNetSyn datasets (Index 1-7) over 600 epochs.

reasons why this is likely is the introduction of longer textual sequences going from 2 to
width dependent (maximum of 6). For 500 epochs, the system has been trained to only de-
tect blobs that were somewhat evenly distributed concerning width and height. The most
complex datasets (Indexes 7-9) attempt to challenge the network by not only changing the

textual sequence length but inherently larger blobs and relationships.

Although these iterative experiments we conducted verified that the network will
begin to struggle as we introduce more complex datasets, it can still perform moderately

well on images from GeneNet datasets in Section 3.1. A demonstration of the perfor-
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Original Base Yolo Circular (1) Circular Text (3) V Shape & Text (5) Var Curves (6)
100 epochs 300 epochs 450 epochs 500 epochs

Figure 5.4. Iterative training results throughout the various GeneNetSyn
datasets. Particular steps of the experiment were excluded for visualization pur-
poses. Weights used from results shown in Figure 5.3. Dataset indexing used
from Section 3.2.1. Genetic model shown courtesy: [57].

mance over the iterative training steps is shown in Figure 5.4.

5.1.5 Standard Training

Following the iterative development of datasets and our experimentation during
the introduction of more complex datasets, we were interested in finding the best-performing
network on genetic models found in GeneNet. Our approach using our standard training
methodology includes the previously mentioned instance-based mapping transfer learning
on YOLOv5m pre-trained weights from Microsoft COCO. Furthermore, we also propose
an addition to include domain adaptation discussed in Section 2.2.4, into the training ap-
proach by introducing images from GeneNet for a domain classification. The introduction
of domain adaptation helps to improve the transition from our training set of synthetic dia-
grams to real biological diagrams considered the domain shift. A discriminative classifier
to predict the domain is added to help tune the weights trained on our source domain

(GeneNetSyn) to improve the evaluation performance on the target domain (GeneNet).

Our standard training experiments were conducted considering all five object classes

of our GeneNetSyn dataset outlined in Chapter 3.2. When finding the most optimally
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Figure 5.5. Comparison between the source domain of GeneNetSyn (a), to the
target domain of GeneNet (b). Right image courtesy: Bloomer et al. [8].

performing network it must gauge good performance while training on synthetic dia-
grams, but its ability to translate over to imagery from GeneNet is essential. Comparing
each dataset and the two approaches including the default training mechanism and do-
main adaptation, results were demonstrated in the quantitative evaluation of our diagram
parsing approach in Chapter 5.2.3. For the aforementioned experiment, we consider a
case-by-case evaluation with the resulting output metrics by Ultralytics YOLOvVS which
collects per epoch: precision, recall, mAP@0.5, and mAP@0.5:0.95. Following initial
tests of the earlier datasets of Version 1 in GeneNetSyn which showed their trained net-
works are not suitable for the next pillar of work. Thus, the datasets from GeneNetSyn
compared include the following: Variable Dashes, Variable False Lines, Version 2, and

Version 3.

The second pillar of region detection for our proposed system is considered the
most essential to accurately determine entity-relationship-entity triple sets for the third
pillar. Without effectively detected regions of interest, our later steps subsequently fail
as it does not have the required information to parse the genetic model. The general
hypothesis is that the most complicated synthetic genetic model dataset (GeneNetSyn

Version 3) would perform best on GeneNet imagery.
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Figure 5.6. Testing results of YOLOv5m over 100 epochs on GeneNetSyn Version
3 dataset.

The performance of YOLOv5m over 100 epochs on the aforementioned datasets
from GeneNetSyn can gauge how well trained the network is shown in Figure 5.6. To
visualize the performance metrics, we consider our most complex dataset being GeneNet-
Syn Version 3 that collects strong evaluation results on both the mAP@0.5:0.95 and pre-
cision metrics. For the sake of discussion, the result metrics of previously less complex
datasets are comparable yet perform worse on imagery from GeneNet. Based on the lim-
itation of a richly annotated set of real biological diagrams, hypothetically the synthetic

diagram datasets should roughly represent the performance of real biological diagrams.
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Figure 5.7. Best performance of YOLOv5m trained on 100 epochs of GeneNetSyn
Version 3 dataset. YOLOv5m’s detection confidence set to 75%. These images
were ran at their base resolution. Genetic models shown courtesy: [1, 57, 21, 16].
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We conclude that training a network on only our most complex dataset is desirable
when shifting domains to our target domain of real genetic models. Compared to our per-
formance as we iterate over datasets shown in Section 5.1.4. To ensure that our synthetic
dataset is a viable training technique for the evaluation of real biological diagrams, we
must inspect the performance qualitatively over all experiments on a test suite of images

from the GeneNet dataset.

We present various examples of our synthetic image trained YOLOvS5m applied to
GeneNet images shown in Figure 5.7, which gives us a good idea of how much we have
advanced the application of object detection to publication figures and genetic models.
The GeneNetSyn Version 3 trained YOLOvS5m can identify upwards of 100% constituents
present within a synthetic diagram with the confidence of over 90% on most of our test

suite of images.

Throughout the presented experiments, it was found that detection confidence of
75% on real genetic models produced the best detection performance. This detection
confidence represents the minimum accepted confidence of a detected object class, thus
an object detected with less than 75% would not be accepted. This confidence currently
offers the best balance between finding the most constituents in the diagram and making
the least amount of mistakes. We find that the network can effectively find a large number

of textual elements classified as blobs with a high degree of confidence.

As demonstrated in our numerous examples of genetic models from GeneNet us-
ing YOLOv5m, our system can locate a majority of regions of interest. Unfortunately,
due to the limitations of richly annotated real genetic models, we cannot provide upwards
of human-level accuracy when shifting domains from synthetic to real diagrams. Below,
we will discuss a few of the shortcomings of our approach to detecting object classes on

real genetic models from GeneNet which hinders its performance:

1. Large blobs: Isolating one bounding box around a large blob. Some ways a large

blob can be formed include extremely large font; large blobs may contain multiple
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textual features in very close proximity (association); and textual features which
have special characters separating a sequence of text.

2. Long relationships: Relationships that span across the whole image, not well
represented in GeneNetSyn due to the random nature of blob and relationship
placement. Long relationships can also represent large relationships in real ge-
netic models which are substantially bigger in dimensions, thus relationship/blob
scaling being much larger.

3. Underlined text: Our system has yet to be trained to understand blobs in which
whose textual features have an underline, which causes it to occasionally classify
an underline paired with a character to be a relationship.

4. Text above relationships: Although considered two different object classes, our
system and datasets were not developed to understand a middle textual feature
above a relationship. Often being smaller fonts tight to the relationship line, our
system often mistakes text above relationships as part of the relationship visual

characteristic.

5.2 Diagram Parsing

In this section, we discuss the third pillar of our proposed system for diagram
parsing on biology publication figures. We introduce our algorithm that from the regions
detected and textual information of an image, entity-relationship-entity triplet pairs are
determined. These entity-relationship-entity triplet pairs are considered the final output
of our proposed system. Later, we present both the qualitative and quantitative results of

our approach.

5.2.1 Methodology

The goal of the third pillar of our diagram parsing system is the ability to parse
relationships from the object classes detected from pillar two discussed in Section 5.1.

Parsing relationships within diagrams was initially proposed in 2016 using an LSTM
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based approach by Kembhavi et al. [2] discussed in Chapter 2.1, thus motivating our ap-
proach. One important consideration we took into account when developing our approach
is the hardware requirement if this system were to ever be deployed as a rest-API. The
development of our approach on a rest-API for commercial use is considered future work.

We require a diagram parsing system without a large computational requirement.

Algorithm 1 Diagram parsing approach for a given genetic model (GMM)
Require: D: GMM Data Item
img < D[0]: GMM image
d < D[1]: GMM region detection output
t < D[2]: GMM text features
R < (): Container for triplet sets
BL <+ (): Best line from active contour model
Collect relationship b-boxes B C d
Collect relationship head b-boxes H C d
Collect blob b-boxes F' C d
for all b; € B do
LR,RL < ACM (img,p): Get active contour model with hyperparameters (p)
PLR, PRL + PF(LR, RL): Compute polyfit of LR & RL
if /||LR|| + [|PLR|| > /||RL|| + || PRL] then

BL + LR
else

BL < RL
end if
CH <+ minVh; € H(|[ho — bil|,- -+, [|hj — bi]|): Closest relationship head to b;
TB < minVf; € F(||fo — BLol|,-- ,||f; — BL||): Closest blob to tip of BL
FB «+ minVf; € F(||fo — BLxl|,-- -, ||f; — BLx||): Closest blob to tail of BL

ct C t: Extract text features for 7B & F'B
R < (TB,b,CH,FB,ct)
end for

We introduce our approach to parsing entities associated with a relationship. We
leverage the use of an active contour model [7] which was described in Section 2.2.5.
Furthermore, this approach does not use any machine learning inference or prediction.
The goal of our task is to generate sets of triplets representing entity-relationship-entities
found within a given diagram. The following methodology offers a solution for both
GeneNet and GeneNetSyn diagrams. One minor difference between the implementations
of the two datasets is how the text within textual features is collected. For the GeneNetSyn

datasets, we assume that text to bounding box association are known. When considering
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Figure 5.8. Full diagram parsing parsing algorithm summarization broken into
four components. Example images used from GeneNetSyn Version 3.
diagrams from GeneNet or other genetic models not known, we would have textual in-
formation located using optical character recognition discussed in Appendix A.3. We can
divide our approach into three steps which we will specifically identify and describe: ini-
tialization; relationship pairing; and entity-relationship-entity. We outline the proposed
solution for our diagram parsing approach in Algorithm 1, which is supplemented Figure

5.8.
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Initialization

The initialization step of our approach includes the collection and organization
of information collected in prior steps of the full pipeline discussed throughout this the-
sis. Assumptions to this approach is that the algorithm includes the following: a genetic
model; textual feature information; and the class and bounding box of each detected re-
gion. Given a diagram of interest deemed a genetic model, we initially begin with: the
RGB image, the bounding boxes from our region detection system, and the textual con-
tents of the image. An example of the region detection output which would be our initial

data item can be seen in Figure 5.9.
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Figure 5.9. Initial data of our diagram parsing approach. Demonstrating the given
bounding box information using gray-scale to represent locations from original
image (right). Inhibition relationships shown in light gray (left image), activation
relationships shown in dark grey (middle image), and blobs are represented by
white regions.

Relationship Pairing

When dealing with a given relationship within an image, the problem of finding the entity-
relationship-entity triplet is two-fold. Firstly, the relationship needs to be paired with its
respective detected relationship head. The pairing is essential to determine the direction
of the relationship such that the entity that the relationship is traveling to can be assumed.
Secondly, given the bounding box of the relationship, the line contained within this space
needs to be isolated. Isolating the tip and tail of the line present within the relationship is

used to determine distances to both the head of the relationship and connected entities.
The goal is to collect the endpoints of each relationship and pair them with their
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associated relationship head. For each given relationship bounding box, our approach

follows the algorithmic steps listed below:

1. Determine the left-to-right (LR) and right-to-left (RL) snakes using an active con-
tour model discussed in Section 2.2.5. The purpose of collecting these snakes is
to find where within the given bounding box the line occurs. To instantiate di-
agonal snakes, we collect the four corners of the bounding box and generate a
linear space from the LR (top-left to the bottom-right) and RL (top-right to the
bottom-left). Before the image is processed by the active contour model, it is set
to gray-scale to encourage edge and line discovery based on given constraints. The
hyperparameters of the active contour model were empirically determined through
initial experimentation. These hyperparameters were tuned to be optimal for both
synthetic and real genetic models. The description of the hyperparameters are as
follows:

* Boundary condition: Limitations of how the snake positions can travel.
Boundary condition in our implementation was set to free.

* Alpha: Snakes shape parameter, a lower value set to make snake contract
slower to avoid clumping. Alpha in our implementation was set to 0.0001.

* Beta: Snakes smoothness parameter, a higher value set to smooth the
snake through the contraction. Beta in our implementation was set to 2.

* W-line: Snakes attractiveness to brightness, was set to negative to attract
the snake towards dark pixels. W-line in our implementation was set to 5.

* W-edge: Snakes attractiveness to edges, set to attract towards edges. W-
edge in our implementation was set to 1.

* Gamma: Explicit step time. Gamma in our implementation was set to
0.0005.

2. The resulting output for both LR and RL snake contours is shown in Figure 5.10.
Following the active contour model output, it is clipped around the bounding box

to ensure the tip and tail of the snake are not outside. Snake points outside of the
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Figure 5.10. Given the relationship bounding box (left), the LR (middle) and RL
(right) contours are computed. The snake is initialized represented by the red
dashed diagonal line. The resulting snakes are representing in blue (LR) and
green (RL).
bounding box are not desirable when collecting the endpoints because due to the
nature of biological diagrams, often other relationships and non-related entities are
nearby. Once any snake points outside of the current bounding box are removed,
we accept one of the outputs as the predicted valid line. In most cases, both snakes
follow a similar direction due to attraction based on dark regions (lines and edges)
present within the bounding box. When selecting the best fit snake, the endpoints
of both snakes are passed also to a polynomial curve fitting model to flatten the
snake. We then take the output of both the ploy-fitted snakes and original snakes
and take the average between both variations of the LR and RL snakes. The best
line is chosen based on the average of the original and poly-fitted output for the LR
and RL snake. This average is then compared to the magnuitude of the relationship
bounding box, where the smaller difference is chosen as the best line.

3. Once the tip and tail of the best line are collected, we lastly need to determine the
head associated with the given line to complete our parsing of the relationship.
Selecting the head of the relationship is a distance-based metric concerning the
center of the relationship head’s bounding box to either the tip or tail of the best
line. We select the relationship head which the center of its bounding box has the

smallest distance to either the tip or tail of the line of interest. We can assume
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that the head we desire should be near the accepted best line of the active contour
model. It is assumed that the relationship head will occur on one of the corners of
the relationship’s bounding box, yet we found greater accuracy using the points of

the best line due to relationship clutter.

Entity-Relationship-Entity Selection

Following the relationship paring step of our algorithm, we have both the active
contour model’s best-associated line and the accepted relationship head for all relation-
ships present in the diagram. With this information, we can now create entity-relationship-
entity triplet sets that can be used to describe textually what interactions are present in the
diagram. Creating our triplet sets requires that the relationship head is correctly detected
within the relationship, as the head information is used to determine the inherent direction
of the relationship. The direction will indicate which entity is at the beginning (from-blob)
and which entity is at the end of the relationship (to-blob). Parsed triplet sets will output

a textual sentence of the form: “HSTE activates YBSZU”.

To collect our two required entities for the current relationship, the closest detected
blob to both the tip and tail needs to be found. A demonstration of a parsed synthetic
genetic model through this approach can be seen in Figure 5.11. We iterate through the
detected blobs and measure their center point to both the tip and tail locations, storing the
smallest distance which is initially set to a default value equal to the height and width of
the image. Distances are determined using a 2-norm from each of the endpoints of the
best line. Once the shortest distances are determined, we accept this as our final output
for the given relationship. Furthermore, before the parsing step, the textual entity which is
already known is paired with the respective blob bounding boxes selected to be the from-
blob and to-blob. Finally, we take the textual entities of the to-blob and from-blob and
connect it with the found relationship to create (from-blob text, relationship type, to-blob

text) which is presented to the user.
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Figure 5.11. Breakdown of each feature of the entity-relationship-entity triplet
sets parsing. The accepted relationship shake contour represented by the green
line, and the relationship head by the red line. Resulting relationship: VnmtO
activates JBVEP.

5.2.2 Discussion

In our discussion, we consider a collection of examples of our aforementioned
relationship parsing approach and evaluate each qualitatively. To describe the success
and shortcomings of the aforementioned approach we use visual examples from both

GeneNetSyn and GeneNet datasets.
Demonstration 1

First we consider a genetic model from GeneNetSyn Version 3 shown in Figure
5.12. This diagram contains six blobs, three inhibition relationships, two activation rela-
tionships, and each relationship’s associated head. Our goal to achieve 100% accuracy on
this diagram is to produce the following output: RGE RTg inhibits JUM; RGE RTg ac-
tivates VCZ; iDdC inhibits TSCY CXLT; TSCY CXLT inhibits LOZ; and LOZ activates
VCI. Initially, our algorithm begins with the region detection output which successfully

extracts all regions of interest, which are represented by a gray-scale visualization demon-
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Figure 5.12. Image #11005 from GeneNetSyn Version 3.

Figure 5.13. Region detection output visualized in gray-scale, white regions indi-
cating blobs and gray regions being relationships.

strating both the class and location of the bounding boxes. As shown in Figure 5.13, we
isolate each relationship and consider each individually with respect to all of the blobs to

determine our entity-relationship-entity triplet set.

Following the steps outlined in the methodology, we are left with enough informa-
tion to generate our triplet set. This information includes the best line determined by the
active contour model, the relationship head bounding box, the bounding boxes, and the
textual features of the two blobs which reside closest to the tip and tail of the best line as

determined by the active contour model result. We visualize these results in Figure 5.14.

The algorithm correctly identifies each of the entity-relationship-entity triplet sets.
Furthermore, we plot the tip and tail of the active contour model snake, which is seen as
the yellow line connecting two points (tip and tail). If we consider the left-most and right-

most sub-images in Figure 5.14, we can see that both the tip and tail (yellow dot) reside
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Figure 5.14. Parsed output from our diagram parsing algorithm. The to-blob and
from-blob are identified with blue and red markers respectfully. The tip and tail
of the active contour model are connected with a straight line in yellow, and the
relationship head’s bounding box being the red line.

—

Figure 5.15. Demonstration of the potential shake that might be present when

both the tip and tail of the best line occur on the same end of the relationship.
near the relationship head. This is one issue present when our active contour model at-
tracts a majority of the snake towards the corners or edges present in the relationship. The
reason why the algorithm still effectively determined the correct related blobs is the use of
the poly-fitted snake, which helps to straighten the resulting active contour model snakes
across the relationship curve/line. In the shown instance, the raw snake output would
likely contain a loop from the tip to the tail which also traveled along the relationship line
before doubling back to the corner and edges towards the relationship head. This instance
is dealt with by a special case that takes the furthest point from the tip and tail of the snake
and poly-fits the snake between the tip and the midpoint. Examples of the resulting raw

snake that loops are shown in Figure 5.15.
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Figure 5.16. Image #75 from both GeneNet-500 and GeneNet-DP. Genetic model
shown courtesy: Chapman et al. [20].

Demonstration 2

Second, we consider a genetic model from GeneNet-DP shown in Figure 5.16.
This diagram contains four blobs, two inhibition relationships, two activation relation-
ships, and each relationship’s associated head. Furthermore, the locations of textual fea-
tures were previously extracted by Google Vision API OCR outlined in Appendix A.3.
Although a simple black and white image, this image offers two primary challenges in-
cluding the long textual feature of “lateral root growth” and long curved relationships.
When passed through the region detection network, we are presented with only three re-
lationships shown in Figure 5.17. At initialization of our diagram parsing approach, we
are only capable of 75% accuracy on the complete diagram as we are missing the rela-
tionship between “suc” and “lateral root growth”. One interesting observation is that the
blob detected for “lateral root growth” detects two textual features creating a bounding
box around “lateral” and “root”. Although trained for multiple textual features, our re-
gion detection system struggles to isolate a collection of text which is both long and large
(“lateral root growth”, containing a 375 width and 215 height) considering a 512 width

and height dimension training set within GeneNetSyn.

Considering the shortcomings of the region detection network on the given dia-

gram discussed above, we can assume that these issues will cause problems when pars-
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Figure 5.17. Region detection output visualized in gray-scale, white regions indi-
cating blobs and gray regions being relationships.

ing the entity-relationship-entity sets. Although the region detection failed at detecting
all relationships present, the relationships which were detected all correctly isolated the
entity-relationship-entity set. The resulting diagram parsing output can be seen in Figure

5.18.

This demonstration identifies that our approach of using the active contour model
is successful when a given diagram has little background clutter. As shown in Figure
5.18, our tip and tail for each relationship do a suitable job to span the relationship line
to allow the distance measurements to effectively select the associated blob (i.e, entities).
One mistake which is made by the algorithm is the selection of the “lateral” blob instead
of “lateral root growth”. This issue was caused by the region detection network’s failure
to isolate the collection of textual features together. For quantitative evaluation, the re-
lationship triplet set of “CEPR1 inhibits lateral” would be marked as incorrect with the
correct relationship being “CEPR1 inhibits lateral root growth”. One thing to consider
when looking at the quantitative evaluation metrics is that the relationship must select
both full and correct blobs, as well as predict its direction properly to count as a correct
prediction. We show within this demonstration that although the diagram parsing algo-
rithm can effectively isolate the current relationship, the region detection may cause a

limitation of effectiveness.
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Figure 5.18. Visualization of the result from our diagram parsing approach. The
to-blob and from-blob are identified with blue and red markers respectfully. The
tip and tail of the active contour model are connected with a straight line in yel-
low, and the relationship head’s bounding box being the red line. Genetic model
shown courtesy: Chapman et al. [20].

Demonstration 3

Lastly, we consider a difficult genetic model from GeneNet-DP shown in Figure
5.19. This diagram contains nine blobs, six inhibition relationships, four activation rela-
tionships, and each relationship’s associated head. Furthermore, the location of textual
features was previously extracted by Google Vision API OCR outlined in Appendix A.3.
This genetic model is challenging for our diagram parsing approach. Genetic models such
as this can offer various obstacles which cannot only throw off the region detection net-
work but inherently attract the active contour model snake towards other features in the

diagram not associated with the relationship of interest.

We can first consider the initial information extracted by our region detection net-
work in Figure 5.20. One positive note for the region detection network is that all of the
required blobs are correctly detected. When considering the relationships detected, only
five of the ten relationships present in the diagram are detected which can be due to the
size of the diagram or other background clutter close to the relationship. Our concerns for

this diagram’s parsing through our diagram parsing algorithm are two-fold.
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Figure 5.19. Image #130 from both GeneNet-500 and GeneNet-DP. Genetic model
shown courtesy: Chérel et al. [21].

Figure 5.20. Region detection output visualized in gray-scale, white regions indi-
cating blobs and gray regions being relationships.

Firstly, although detecting all of the blobs correctly with a high degree of preci-
sion for each bounding box at the top of the diagram both “Drought” and “ABA?” are also
included as a detected blob. These textual features not necessarily associated with a rela-
tionship such as “Drought”, “salt”, “ABA?”, *“ Ca2+”, “Salt?”, and “ABA” which occur
all around the genetic model. Although containing valuable information, these blobs can

be considered as background clutter or false positives for our diagram parsing approach.

Secondly, other relationship types are present in the diagram that are not known
to the region detection network shown as ““ lightning bolt” style constituents. These con-
stituents also offer additional edges and lines which the active contour model’s snake

typically moves towards, introducing a degree of error for a given relationship’s LR and
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Figure 5.21. diagram parsing algorithm output for relationships which performed
well. The to-blob and from-blob are identified with blue and red markers respect-
fully. The tip and tail of the active contour model are connected with a straight
line in yellow, and the relationship head’s bounding box being the red line. Ge-
netic model shown courtesy: Chérel et al. [21].
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Figure 5.22. diagram parsing algorithm output for relationships with large errors.
The to-blob and from-blob are identified with blue and red markers respectfully.
The tip and tail of the active contour model are connected with a straight line
in yellow, and the relationship head’s bounding box being the red line. Genetic
model shown courtesy: Chérel et al. [21].

RL snake. Additionally, these constituents can throw off the region detection network’s

ability to effectively classify each relationship.

When considering the diagram parsing algorithm and its resulting output shown
in Figures 5.21 & 5.22, we can see 80% of the relationships parsed evaluate to the correct
entity-relationship-entity triplet set. Also shown in demonstration 2 with the easier dia-
gram from GeneNet-DP, our limitation of the diagram parsing algorithm is based on the

data being passed to it.

Specifically, we isolate the relationship between “AtPP2CA” and “AKT?2” shown

in Figure 5.22 where one issue with the active contour model is identified. When a col-
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lection of relationships form a circular pattern nearby, the active contour model can easily
gravitate towards other relationships. When initialized, the active contour model snake
will move from its original diagonal across the relationship bounding box towards lines
and edges nearby. Thus if other relationship tip and tails are very close to the bound-
ing box of a relationship of interest, there is a high probability that the active contour
model snake will move towards a relationship line that is not associated. For example, at
initialization, the active contour model snake spans RL and LR of the bounding box the
relationship between “AtPP2CA” and “AKT2”. In this instance, the snake is attracted to

the tail of the relationship between “AtPP2CA” and “CIPK6”.

5.2.3 Results

We present our results for our diagram parsing approach. Specifically, we are in-
terested in evaluating the ability of our approach to isolate triplet sets (entity-relationship-
entity) correctly. Before reaching this stage in our approach, we rely on the high-quality
output of the region detection pillar discussed in Section 5.1 respectfully. Our method de-
fined in Section 5.2.1 outlines specifically the algorithm used to generate our triplet sets,
the accuracy presented below represents the number of correct triplet set predictions. For
a relationship to be included in our performance tables below, the relationship must be de-
tected in the previous step of our system. To ensure a fair evaluation of each method while
training YOLO, we provide each variation of the datasets with the same hyperparameters
and training length. Furthermore, for our networks trained using domain adaptation (DA)
we also show the same set of biological diagrams throughout each training epoch. YOLO
networks that did not contain the use of domain adaptation are identified as default. We
first consider a comparison evaluating various datasets from GeneNetSyn and GeneNet

shown in Table 5.2.

Based on the table 5.2, it is clear that our approach struggles with real genetic

models from GeneNet-DP. In contrast, we see the great success of diagram parsing on
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Train Dashes False Lines GNS-V2 GNS-V3

Test

Default DA Default DA Default DA Default DA

Dashes 85.30% 85.28% | 86.87% 86.67% | 81.91% 82.70% | 80.89% 82.72%

False Lines | 79.99% 79.10% | 83.70% 84.20% | 80.54% 80.00% | 78.91% 79.47%

GNS-V2 83.85% 81.54% | 90.35% 90.56% | 88.73% 88.50% | 89.05% 88.64%

GNS-V3 50.99% 49.61% | 70.16% 70.93% | 56.49% 60.78% | 88.29% 88.95%

GeneNet-DP | 39.13% 39.19% | 47.22% 49.30% | 34.52% 33.33% | 38.10% 45.75%

Table 5.2. 100 epochs training YOLOV5 on all training sets.

various of the GeneNetSyn datasets. Specifically, we achieved upwards of 89% accuracy
for diagram parsing on GeneNetSyn Version 3 being trained with its respective training

set also applying domain adaptation.

We describe some of the shortcomings when parsing real biological diagrams in
our qualitative evaluation discussed in Section 5.2.2. To extend our results, we manually
identified from our set of GeneNet-DP diagrams a collection of both easy and difficult
diagrams. We classify easy diagrams to be genetic models which do not contain large
amounts of visual background clutter and complicated relationship lines. Thus, our diffi-
cult set of diagrams from GeneNet-DP would be considered challenging diagrams that are

difficult to replicate, and often contain a large amount of visual characteristic variance.

To further motivate the evaluation performance differences among various dia-
grams from GeneNet-DP, we offer an additional collection of results shown in Table 5.3.
These experiments were using a region detection system trained on GeneNetSyn Version
3 paired with domain adaptation, which we found to be our best overall performing net-
work. We find as expected our approach lacks effective performance on hard diagrams
from GeneNet-DP. Our challenge arises from the lack of relationships detected by our
region detection network, as our probabilistic approach to diagram parsing relies on the
effective detection of both textual entities (blobs) and the relationships paired with their
head locations. Without both the relationship bounding box and its relationship head
our algorithm does not have sufficient information to make a conclusion on a triplet set

(entity-relationship-entity) associated with a given relationship.
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| Dataset | Blobs Detected | Relationships Detected | DP Accuracy |

GN-DP-Easy 100.0% 63.47% 51.43%
GN-DP-Difficult 89.02% 27.59% 29.17%

Table 5.3. GeneNet-DP performance when dataset is separated subjectively into
an equal distribution of easy and difficult diagrams.

Chapter 6 Conclusion

In this chapter, we will provide a collection of the limitations of our proposed
system, and describe the future works planned for this research. Additionally, we will

conclude the thesis with an overall discussion of the work completed.

6.1 Limitations & Future Works

In this thesis, we develop a collection of computer vision methods to parse genetic
models. The goal of this parsing these diagrams is to create a textual description that could
be used to recommend associated genes given a particular gene search query. Within the
discussions of our two steps of transcription being region detection and diagram parsing,
we offer various limitations or shortcomings which impacted the overall evaluation of real

genetic models. Some of the shortcomings of our approach are the following:

* Detecting with large blobs: Isolating one bounding box around a large blob.
Large blobs may contain multiple textual features in very close proximity (associ-
ation) and textual features which have special characters separating a sequence of
text.

* Detecting long relationships: Relationships that span across the whole image,
not well represented in GeneNetSyn due to the random nature of blob and rela-
tionship placement. Long relationships can also represent large relationships in
real genetic models which are substantially bigger in dimensions, thus relation-
ship/blob scaling being much larger.

* Blobs with underlined text: Our system has yet to be trained to understand blobs

in which whose textual features have an underline, which causes it to occasionally
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classify an underline paired with a character to be a relationship.

* Text above relationships: Although considered two different object classes, our
system and datasets were not developed to understand a middle textual feature
above a relationship. Often being smaller fonts tight to the relationship line, our
system often mistakes text above relationships as part of the relationship visual
characteristic.

* Very small or large genetic models: Throughout this thesis we propose training
a collection of computer vision methods on imagery that has a 512 width and
height. When evaluated on genetic models which are much larger or smaller than
the aforementioned size, our region detection network may struggle to detect all
present object classes.

* Multiple close relationships: When multiple relationships within a genetic model
are in close proximity, the active contour model can occasionally be attracted to
another relationship. This will cause a false positive as although a relationship has

been isolated, it may not correctly pair with the two textual features it belongs to.

In biology, there is a wide amount of other uses for genetic models other than con-
veying activation and inhibition relationships. An extremely important factor for the work
in this thesis to advance in future works is the use of feedback from domain experts in the
field of biology to indicate other interactions present in genetic models. The following
additional functions and meanings used in genetic models are considered future work, as

we continue to iterate to improve the capabilities of our systems.

* When multiple genes are close to each other (often connected visually with poly-
gons), we can infer that there is an association or a bonding present.

* Relationships within genetic models span more than simply activation and inhibi-
tion relationships. A couple of examples of other relationships include association
and textual features above or below relationship lines indicating further interac-
tion.

* Within a particular genetic model, if a majority of the relationships are solid lines

85



and some dashed lines are present this can indicate multiple meanings. These
additional meanings may be of interest to biological researchers to know which
relationships between genes have this different style of the relationship line.

* In some relationships within a genetic model, there may be multiple different re-
lationship lines going from one gene “Gene A” towards “Gene B”. This often has

further meaning biological researchers may be interested in.

6.2 Discussion

Throughout this thesis, we outline the problem of generating a textual description
of the underlying relationships between constituents in a biological diagram. We intro-
duce multiple contributions for applying computer vision to visual illustrations, more
specifically publication figures which are genetic models. Furthermore, we introduce a
collection of both synthetic and real genetic model datasets to encourage a paradigm shift

towards the next generation of bioinformatics tools.

We propose to solve the task of diagram parsing. Using an assortment of computer
vision applications we successfully go from a given figure from a PubMed citation to a
parsed genetic model. To be capable of training modern computer vision approaches that
include the use of deep neural networks, we require large amounts of richly annotated
data. Within the research field of computer vision, there is a wide collection of natural
image datasets which offer ground truth for many specific applications. A dataset of this
nature does not exist in the field of bioinformatics due to the work outlined being the first
work of its kind. We introduce a collection of datasets containing both synthetic and real
genetic models, GeneNetSyn and GeneNet respectively. The three pillars of computer
vision applications are required to fulfill our proposed solution included: genetic model

classification, region detection, and diagram parsing.

To classify a publication figure, we propose a Triplet classification network to de-
termine whether a given figure is a genetic model, thus can be subsequently parsed. To im-

prove our study, we propose GeneModelNet a feature extraction network instantiated with
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uniform weights, and compare it to pre-trained popular feature extraction networks used
on natural imagery. We conclude that VGG19 to be the best performing feature extraction
network to pass a set of features to the Triplet classification network. VGG19 success-
fully obtaining 95% and 93.07% classification accuracy on GeneNet-98 and GeneNet-500

respectfully.

Once a given diagram is determined to be a genetic model, we are interested in
gathering the regions of interest to be the initial input to our probabilistic diagram parsing
approach. With the use of transfer learning and domain adaptation, a YOLOv5m network
is trained on our most complex set of synthetic diagrams GeneNetSyn Version 3. Lack-
ing a large dataset of richly annotated real genetic models, we find it suitable to train the
object detection network on synthetic genetic models. These synthetic genetic models
are created to best mimic the visual characteristics of a real genetic model. A few short-
comings were found when transitioning our trained network to real genetic models. This
predominately can be attributed to the immense visual differences from image to image

caused by citation creators adding artistic features to their figures.

Finally, we employ an algorithm for diagram parsing leveraging active contour
models. Active contour models remove the need to train a deep neural network on anno-
tated arrows and relationship lines, hypothetically leveraging its capability to generalize
on any relationship line style. The initial snake of the active contour model is a set based
on the detected region of the relationships bounding box in a diagonal pattern from left-
to-right and right-to-left. Once the best snake is accepted and the respective relationship
head is found, entity-relationship-entity triplet sets are developed by selecting the two
closest textual features to the tip and tail of the relationship. Although obtaining approx-
imately 50% relationship accuracy in the quantitative evaluation, the shortcomings and

success of the aforementioned approach are discussed qualitatively to validate its success.

Diagram parsing is a complex task that requires various applications of computer
vision to work coherently to effectively create a textual description of a biological di-

agram. Our approach to diagram parsing although not obtaining human-level accuracy
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lays the foundation of a new interdisciplinary field within computer vision. A solution is
not only proposed, but we introduce a large set of datasets that can be used to both train

and evaluate any future work to improve this space.
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Chapter A Tools

In this section of the appendix the tools and software suites used throughout the afore-
mentioned system are explained. Throughout this thesis, most of the programming com-
pleted was programmed in the language Python. Furthermore, various popular Python
libraries which helped bring particular functionality include OpenCV for image loading
and manipulation, PIL for image rendering, and NumPy for scientific mathematics. Py-
Torch introduces a complete suite for most deep learning tasks, it was solely used for the
development of deep neural networks throughout the research. To develop synthetic dia-
grams as discussed in Chapter 3.2, we use PyGame to draw our visual illustrations. When
extracting textual features from real biological diagrams as shown in Chapter 3.1, we use

Google Cloud Vision API optical character recognition.

A.1 PyTorch

PyTorch [48] is a Python scientific computing package, used for experiments in
Chapters 4, 5.1, and 5.2. PyTorch offers a very Pythonic way to build neural network
models effortlessly, offering various modules such as nn, optim, Dataset, and Dataloader.
These modules are the foundation for building neural networks. This deep learning li-
brary offers a great amount of flexibility within these modules and high computing speed.
The torch.nn module offers many pre-built neural network layers which only require a
definition of setting the input and output tensor size, as well as many optional parame-
ters. Numerous loss functions are also available in the torch.nn package, including Binary

Cross-Entropy and Triplet Loss, used throughout the diagram understanding pipeline.

There are two key features that make PyTorch stand out as the future front runner
of deep learning libraries compared to TensorFlow and Keras. Firstly, PyTorch offers a
torch package which is a replacement for common scientific computing packages such as
NumPy and SciPy with the benefit of GPU-based computation. This allows n-dimensional

torch tensors, similar to NumPy ndarrays to be run as CUDA data items compared to be-
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ing detached and transferred to cpu memory. Secondly, backward propagation is consid-
ered one of the most tedious parts of deep learning libraries, this is why PyTorch offers

automatic differentiation and backward propagation while training models.

A.1.1 Datasets & Pre-processing

During the production of a deep neural network approach, the dataset and effective
pre-processing before the development of network architecture. This is required to ensure
the validity and input structure of data items. PyTorch by default supplies a wide range of
pre-loaded datasets which include many of the popular natural image datasets discussed in
Chapter 2.2.1. Unfortunately, there is no visual illustration or biological diagram datasets

available in the torch dataset library so custom data loaders are required.

When developing custom PyTorch datasets and data loaders it is imperative to
understand the input and output of the data loader, specifically a common mistake being
loading imagery as a BGR image using OpenCV instead of RGB. Throughout this thesis,
some of the input data to various PyTorch data loaders include RGB images, grayscale
images of region detection results, bounding box ground truth, classification ground truth,

and relationship triple entities for diagram understanding.

One shortcoming of developing custom data loaders is often maintaining a reason-
able time complexity when loading each batch of data items which can drastically increase
a neural networks training jobs running time. Pre-processing data item tensors is essen-
tial when training deep neural networks to reduce the amount of time data loaders take
reading off the disk. Alternatively, another technique used in addition to pre-processing
tensors is the use of caching to store images. The only issue when using caching for data
items is when storing tensors larger than typical RGB images, the memory of the system
can quickly run out of capacity. To ensure the most time is saved when loading data,
pre-processing can be done if a particular subsequent task in a pipeline requires data pro-

cessed by a deep neural network. Within this thesis, pre-processing is used to effectively
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Figure A.1. Versions of YOLOvV5 architecture outlined by Ultralytics [22]. Cour-
tesy: Glenn et al.

load data for both contribution in Chapter 5.

A.1.2 Ultralytics YOLOvVS Implementation

Founded in 2014, Ultralytics is an open-source research company whose inter-
ested in advancing computer vision applications. Specifically, Ultralytics is well known
for its implementation of a family of YOLOVS architectures in PyTorch [48]. These im-
plementations offer ease-free deployment and various easily accessible features for apply-
ing transfer learning and visualization of performance. They offer multiple variations of
the object detection network including YOLOvVSs, YOLOv5Sm, YOLOvSI, and YOLOv5x
which increase in parameters respectively. These variations of the YOLOVS5 architecture

are shown in Figure A.1.

In this thesis, we use the open-source implementation of YOLOv5m to train a
region detection system for biological diagrams as discussed in Section 5.1. YOLOv5m
was selected as it offers a good balance between parameters and space complexity. These
implementations were trained on Microsoft COCO [4], meaning various learning tech-
niques are required to adapt the pre-trained weights to biological diagrams. Furthermore,
the suite offered by Ultralytics also ensures that re-training these COCO weights are sim-

ple to encourage researchers to explore object detection on a wide range of applications.
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When training these networks on custom data, they are required to follow particular guide-

lines which will be explained below.
System YAML Files

Recently, YAML files have been found used much more than JSON files for net-
work configuration. The YOLOVS architectures implemented by Ultralytics use YAML

files to:

Identify the location of the dataset being used.

Specify the number of classes being trained.

List the names of classes in the dataset.

Identify each piece of the network’s neural architecture.

When dealing with custom datasets, it is required that the YAML file specifying data
details is changed. In our implementation of biological diagrams, we use the following

YAML configuration shown in Listing 1.

train: data/curData/images/train
val: data/curData/images/valid
test: data/curData/images/test
# nc = number of classes

nc: 5

names: ['blob', 'inhib', 'act', 'actHead', 'inHead']

Listing 1. YAML file named ’blobFive.yaml’ used for both GeneNet and GeneNet-

Syn region detection.

Data Item Formatting

Throughout most modern computer vision datasets there are various standards for
how labels are saved such as comma-separated values or text files. These standards are
implemented to make data loaders easy to replicate if not available. Ultralytics implemen-
tation of YOLOVS5 uses the YOLO format which considers the center of a given bounding

box and both it’s width and height (class, x-center, y-center, width, height).
Directory Management
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Directory management with multi-folder datasets is essential to ensure organiza-
tion and differentiation between training, validation, and testing subsets. Proper directory

organization is as follows:

* images € train - valid - test

¢ labels € train - valid - test

A.2 PyGame

PyGame is a collection of Python modules originally designed for writing video
games which was last updated in January of 2017. PyGame’s easy function use and mod-
ularity make creating canvas drawing trivial using the Pygame.draw module. The drawing
module was specifically used for creating synthetic genetic models as discussed in Chap-
ter 3.2. Specifically, to develop synthetic genetic models, only four drawing functions
were required shown in Listing 2, which were used to draw a variation of shapes, and

lines.

pygame.draw.ellipse () #Hollow Ovals

pygame .draw.rect () #Rectangles / Squares
pygame.draw. lines () #Set of lines through list of points
pygame .draw. line () #Line drawn between two points

Listing 2. Draw functions used from PyGame

PyGame offers a wide range of textual elements when drawing text on a canvas
of a given image. An example of the single-line textual features used in GeneNetSyn is
shown in Listing 3. Furthermore, we are capable of adding any font outside of the origi-
nally supported fonts by PyGame by importing a TrueType Font file (TTF). Some of the
fonts used include PyGame default font, EathomaSan, Laser, Lokey, Mintmolly, and Tay-
lorsit. These fonts were selected as they offer a variety of different visual characteristics

such as boldness, roundness, and shape.
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def writeText(text, curFont, posX, posY):
textFont = pygame.font.Font(get_default_font(),curFont)
textScreen = textFont.render(text, True, (0,0,0))
textRect = textScreen. get_rect ()
textRect.center = (posX,posY)

screen.blit(textScreen, textRect)

Listing 3. Example of rendering textual features on a canvas

A.3 Optical Character Recognition

The genetic models collected for datasets discussed in Section 3.1, do not have
any annotated textual features after being scraped. Optical character recognition (OCR)
what and where text occurs within a given image. These two features of text occurrences
are extremely important when isolating relationship triple sets as discussed in Section 5.2.
We use Google’s Cloud Vision API for our optical character recognition needs. Vision
API offers powerful pre-trained machine learning models through both REST and RPC
APIs which can be called through Python scripts in our case. The API offers various
computer vision features such as object detection over millions of pre-defined categories,
OCR, and image metadata collection. The primary reason for the use of Vision API’s
OCR is most standard OCR libraries are not trained on a diverse set of fonts and typically
excels in only finding text on article-like images. Genetic models require the assumption
that text can be found anywhere throughout the image, making a publication style OCR

system not desirable.

Once a publication figure has been determined to be a genetic model, we can
execute OCR to collect textual features. Textual features are not obtained prior as Google
Cloud Vision API’'s OCR is a paid service, and non-genetic models will not be used. We
collect all OCR output for a given image and store it into a comma separated values file
for ease of use in later applications. We demonstrate our use of Vision API’s OCR below

in Listing 4.
This OCR textual output is used in the University of Toronto’s BAR General Agri-
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cultural Intelligent Agent (GAIA) to locate which images contain a particular gene from
a search query. Furthermore, we can use this output to validate the location of textual
features and connect detected bounding boxes with its respective text when using our dia-
gram understanding algorithm. Once all images are processed through OCR, we evaluate
the outputting CSV files and generate a large JSON file which identifies which images
and where a gene occurs within our dataset. An example of the result from the search

query “abi3/abi5” can be seen in Appendix B Listing 7.

client = vision.ImageAnnotatorClient ()

fName = os.path.abspath(path)

with io.open(fName, 'rb') as imageFile:
content = imageFile.read ()
imageFile. __exit__ ()

imageFile.close ()

image = vision.types.Image(content=content)
response = client.text_-detection (image=image)
texts = response.text_annotations

output = []

output.append(path)

for text in texts:
currText = []
currText.append(text.description)
for vertex in text.bounding_poly.vertices:

currText.append ([ vertex.x, vertex.y])

output.append(currText)

return output

Listing 4. Interior of detectText function using Google Cloud Vision API's OCR.
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Chapter B Data Item Listings

Full GeneNet-DP Data Item

N
ZiS

(b) Dark (/

[ GID1a GID1b GID1a GID1b

P [ LI

GID1c GID1c

g |

Germination Germination

(a) Light

Figure B.1. Image #59 from GeneNet-500. This image was selected to be anno-
tated in GeneNet-DP. Image shown courtesy: Steber et al. [18].

[0,
[3,
[2,
[3,
[4,
[4,
[5,
[6,
[5,

'GID1a",
'GIDla",

7
6

'GIDIb', 6, 'GIDlc', 1],
'GID1c', 7
7

'GID1b ",

'GIDla', 1, 'Germination', 2],
'GID1b', 2, 'GIDlc¢', 1],

'GIDIc¢', 1, 'Germination', 2],
'GIDIb', 1, 'Germination', 2],

"Germination ', 2],

‘GIDIc', 17,

'Germination ', 2],

'Germination ', 2]

Listing 5. Image #59 annotations from relationship.csv
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[0, O, 'GIDla', 0.10578, 0.30021, 0.20310, 0.13034],

[0, 1, 'Germination', 0.23977, 0.93269, 0.45416, 0.12606],

2, 'GIDlc¢', 0.253879, 0.625, 0.25387, 0.11324],
[0, 3. 'GIDIb', 0.33709, 0.29914, 0.22284, 0.13675],
4, 'GIDla', 0.66431, 0.29914, 0.20310, 0.13247],

[0, 5, 'GIDIb', 0.88787, 0.30021, 0.21861, 0.13461],

[0, 6, 'GIDIc', 0.755994, 0.63034, 0.25105, 0.11538],

[0, 7. "Germination', 0.73483, 0.93589, 0.44851, 0.11965],

[2, -1, 'activation ', 0.08885, 0.62179, 0.06205, 0.48717],

[3., =2, '"act—head', 0.08744, 0.81837, 0.0648, 0.08974],

[1, =1, "inhibition ', 0.27221, 0.47115, 0.09026, 0.1773],

[4, -2, 'inhib-head', 0.2729, 0.53632, 0.09167, 0.04273],

[2, -1, "activation ', 0.24964, 0.77670, 0.0959, 0.18162],

[3. -2, "act—head', 0.24541, 0.82478, 0.0959, 0.07265].

[2, =1, "activation ', 0.39633, 0.62393, 0.0648, 0.48717],

[3, =2, '"act—head', 0.39562, 0.81837, 0.0634, 0.09401],

[2, -1, 'activation ', 0.59661, 0.61645, 0.0648, 0.48931],

[3, =2, '"act—head', 0.59661, 0.80982, 0.0648, 0.10256],

[1. -1, "inhibition ", 0.70239, 0.46367., 0.09026, 0.17948],

[4, -2, 'inhib-head', 0.70380, 0.52564, 0.08744, 0.04700],

[1, =1, "inhibition ', 0.81241, 0.46047, 0.09026, 0.17307],

[4, -2, 'inhib-head', 0.81100, 0.52243, 0.08180, 0.04487],

[2, -1, "activation ', 0.74894, 0.77777., 0.08744, 0.17094],

[3. -2, "act—head', 0.75035, 0.82051, 0.08744, 0.08119],

[2, =1, "activation ', 0.91748, 0.61645, 0.04936, 0.48076],

[3, =2, 'act—head', 0.91748, 0.821581, 0.04654, 0.07051]

Listing 6. Image #59 annotations from relaData.csv

Textual Occurences of abi3/abi5 in GeneNet

”abi3 /abi5”:
[

{”imageName”: 7/tpc1902454f09.jpg”,

”bbox ”:

[[293, 1731, [388, 173],
[388, 186], [293. 186]1}.

{”imageName”: ”/nihms892484f3.jpg”,

”bbox ”:

[[186, 6111, [232, 6117,
[232, 618], [186, 618]]}

Listing 7. JSON data item for ’abi3/abi5’
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Figure B.2. Example testing image #11041 from Variable Heads. The original
image (left) and ground truth image (right).

Full GeneNetSyn Data Item

To demonstrate the availability of data for a given data item, we will show all of
the information for an image in the variable heads dataset of GeneNetSyn. We first begin
with the actual synthetic image shown in Figure B.2. Image #11401 is quite a sparse
image containing: 5 blobs, 1 activation relationship, and 1 false relationship line. This
image contains blobs with and without dependent backgrounds for their textual features
to challenge neural networks to only isolate text and not identify shapes as blobs. In
particular, a background noise shape (lime green circle) is present which would attempt

to confuse a given object detection network as 3 blobs can be found within this region.

Enabling these diagrams to be used as a training resource for object detection
networks, we generate the Darknet labels shown in Table B.1. To ensure both standard
and normalized variations of the coordinates for bounding boxes was given, we have
broken the data item into three comma separated value (CSV) files for ease of access and

readability.

The entry of the CSV below primarily contains the standardized values for the
bounding boxes. The first line of the entry contains the number of blobs followed by the
number of relationships present in the image. The second line of the entry contains the

standardized values of the blob positions (Center X, Center Y, Width, Height). Following
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| Class# | CenterX | CenterY | Width | Height |

0 0.466796875 0.75 0.1015625 | 0.083984375
0 0.66015625 0.3984375 | 0.185546875 | 0.0859375

0 0.412109375 | 0.1953125 0.15625 0.09765625

0 0.255859375 | 0.400390625 | 0.23828125 0.0859375

0 0.73046875 | 0.861328125 | 0.1640625 0.09375

2 0.34765625 | 0.30078125 0.078125 0.13671875

3 0.359375 0.23828125 0.109375 0.1015625

Table B.1. Darknet labels of image #11041.

this, the actual points of each blobs bounding box are given.

[5, 1]

[[239. 384, 52, 43], [338. 204, 95, 44], [211, 100, 80, 50],
[131, 205, 122, 44], [374, 441, 84, 48]]

[[[208, 358], [270, 358]. [208, 410], [270, 410]]

[[281, 178], [395, 178], [281, 230]., [395. 230]]

[[163. 70], [259, 70]. [163, 130], [259, 130]]

[[58. 179], [204, 179], [58, 231], [204, 231]]

[[324., 412], [424, 412], [324, 470], [424, 470]]]

[[2. [[158, 119], [198, 119], [158, 189], [198, 189]]]]

Listing 8. Entry of 11041 from SyntheticData.csv

The entry of the CSV below contains the darknet labels shown in Table B.1, and
additionally labelling the textual feature attatched to the blob, or what relationship / head
type the region contains. Furthermore in the second column of the entries, the blobs are

indexed based on their generation pattern.

[[O, O, 'UV', 0.466796875, 0.75, 0.1015625, 0.083984375],

[0, 1, 'dXpspW', 0.66015625, 0.3984375, 0.185546875, 0.0859375],

[0, 2, 'eGoc', 0.412109375, 0.1953125, 0.15625, 0.09765625],

[0, 3, 'isZcfOW ', 0.255859375, 0.400390625, 0.23828125, 0.0859375],
[0, 5. "augEL', 0.73046875, 0.861328125, 0.1640625, 0.09375].

[2, =1, "activation', 0.34765625, 0.30078125, 0.078125, 0.13671875]7,
[3, -2, '"act—head', 0.359375, 0.23828125, 0.109375, 0.1015625]]"

Listing 9. Entry of 11041 from RelaData.csv

The entry of the CSV below contains relationship information present in the im-

age. In particular this entry relies on RelaData.csv shown above to reference the index to
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identify which blob is within the relationship. Each cell is generated as: To Blob Index

(tail), To Blob Text, From Blob Index (tip), From Blob Text, and Relationship Type.

[3, 'isZcfOW ', 2, 'eGoc', 2]

Listing 10. Entry of 11041 from Relationships.csv
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