
Multi-character
Prediction Using

Attention
by

Mohmmed Baeenh

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science
Ontario Tech University
Oshawa, Ontario, Canada

January 2020

c© Mohmmed Baeenh 2020

Thesis Examination Information
Submitted by:Mohmmed Baeenh

Master of Science in Computer Science

Thesis Title:

Multi-Character Prediction Using Attention.

An oral defense of this thesis took place onOctober 03, 2019 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Alvaro Quevedo

Research Supervisor Dr. Faisal Qureshi

Examining Committee Member Dr. Ken Pu

Thesis Examiner Dr. Bill Kapralos,

Ontario Tech University

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demon-

strated by the candidate during an oral examination. A signed copy of the Certifi-

cate of Approval is available from the School of Graduate and Postdoctoral Studies.

ii

Abstract
Multi-character Prediction Using Attention

Mohmmed Baeenh

Faculty of Science (Computer Science)

Ontario Tech University

2020

We propose a computational attention approach to localize and classify charac-

ters in a sequence in a given image. Our approach combines spatial soft-attention

with attention regularization and learns "where-to-look" to carry out the sequence

classification task. The image is first passed through a Convolutional Neural Net-

work (CNN) that serves as feature extractor. Then at each Recurrent Neural Net-

work (RNN) time step, the attention mechanism attends to the relevant features

sequentially to make predictions. The attention mechanism also includes a start

and stop state, which instructs the mechanism to start looking and guides it when

to stop (e.g., when the sequence has been exhausted). We demonstrate our ap-

proach on two sequence detection tasks—multi-digit classification and CAPTCHA

unlocking—using the publicly available StreetViewHouseNumbers (SVHN)dataset

and a customCAPTCHA dataset. The experiments confirm our hypothesis that the

network learns to attend to relevant features by minimizing the loss between the

ground truth attention masks and the predicted attention masks.

Keywords: Computational Attention; Convolutional Neural Networks; Recurrent

Neural Networks; Multi-Digit Classification; CAPTCHA

iii

Author’s Declaration

I hereby declare that this thesis consists of originalwork

of which I have authored. This is a true copy of the the-

sis, including any required final revisions, as accepted

by my examiners. I authorize the University of Ontario

Institute of Technology to lend this thesis to other insti-

tutions or individuals for the purpose of scholarly re-

search. I further authorize theUniversity of Ontario Insti-

tute of Technology to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request

of other institutions or individuals for the purpose of

scholarly research. I understand that my thesis will be

made electronically available to the public.

Mohmmed Baeenh
(author)

iv

Statement Of Contributions

I hereby certify that I am the sole author of this thesis and that no part of this the-

sis has been published. I have used standard referencing practices to acknowledge

ideas, research techniques, or other materials that belong to others. Furthermore, I

hereby certify that I am sole source of the creative works and/or inventive knowl-

edge described in this thesis.

v

Acknowledgments

I would like to thank my parents Fekri Baeenh and Ameenh Al-oufi for their un-

conditional love and support. Thanks are also owed tomy brothers and sisters. I am

especially indebted tomy older sister, Enas Baeenh, who supportedme throughout

during my graduate studies.

I would like to thank my advisor Dr. Faisal Qureshi for his endless support and

encouragement. I am grateful for his patience and continuous guidance throughout

my graduate studies.

I would like to thank my colleague and close friend Tony Joseph for the many in-

tellectually stimulating discussions. Tony was always there to answer my Python

or LaTeX questions. I will miss our time together.

In addition, I want to thank my close friends Nizar Al-shrief, Ahmad Mohammed,

Abdullah Al-Shehri, Ibrahim Diabate, and Ahmad Alqurashi for making graduate

studies fun.

Lastly, I am grateful to the Saudi government and the Arabian Cultural Bureau for

their generous funding that made it possible for me to pursue graduate studies in

Canada.

vi

Contents

Thesis Examination Information ii

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgments vi

Contents vii

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Outline . 4

2 Background 6

2.1 Machine Learning . 6

2.1.1 Supervised Learning . 7

2.2 Neural Networks . 7

2.2.1 Activation Functions . 8

2.3 Convolutional Neural Networks . 10

vii

2.3.1 Convolution . 11

2.3.2 Pooling Layer . 13

2.4 Batch-Normalization . 13

2.5 Recurrent Neural Networks . 14

2.5.1 RNNModels for Sequence-to-Sequence prediction 14

2.5.2 Long Short-Term Memory Networks 15

2.6 Training Neural Networks . 17

2.6.1 Optimization . 17

2.6.2 Training Procedure . 18

2.7 Summary . 20

3 Related Works 21

3.1 Feature Extraction . 21

3.2 Attention . 22

3.2.1 Sequential Attention Models 23

3.3 Multi-Digit classification . 25

3.4 CAPTCHA . 26

3.5 Summary . 26

4 Methodology 27

4.1 Network Architecture . 27

4.1.1 Feature extractor . 28

4.1.2 Localization network . 28

4.1.3 Classification network . 29

4.2 Feature Extraction . 29

4.3 Localization Module . 30

4.3.1 Attention Mechanism. 30

4.4 Detection Module . 32

viii

4.4.1 Spatial Transformer Network (STN) 32

4.5 Loss Functions . 33

4.6 Summary . 35

5 Experimental Results 36

5.1 Datasets . 36

5.1.1 Street View House Numbers Dataset (SVHN) 36

5.1.2 Data-Preprocessing . 37

5.2 Discussion . 42

5.3 Summary . 43

6 Conclusion 50

Bibliography 52

Appendices 59

A Qualitative Results 60

B Code Listings 65

B.1 Feature Extractor (TensorFlow Implementation) 65

B.2 Spatial Transformer Network (TensorFlow Implementation) 68

B.3 Attention Module (TensorFlow Implementation) 68

B.4 Grid Generation for STN (TensorFlow Implementation) 69

B.5 Sampler for STN (TensorFlow Implementation) 70

B.6 CAPTCHA Generation . 72

ix

List of Tables

5.1 Comparison between our approach and other existing approaches. . 44

5.2 Mean sequence accuracy results onmulti-digit classification andCAPTCHA

tasks. 45

5.3 The sequence IOU score for the predicted bounding boxes with re-

spect to the ground-truth bounding boxes. 45

x

List of Figures

1.1 Samples from SVHN (top row) and CAPTCHA (bottom row) datasets. 2

2.1 An artificial neuron . 8

2.2 Activation functions . 9

2.3 Convolution Operation on RGB Images 11

2.4 VGG-16 convolutional neural network 12

2.5 Pooling layer . 14

2.6 Recurrent neural networks . 15

2.7 Long Short-Term Memory . 16

3.1 Visualizing Soft Attention . 24

3.2 SVHN dataset samples . 25

3.3 CAPTCHA dataset samples . 26

4.1 Illustration of the proposed end-to-end system 28

4.2 Feature Extractor . 29

4.3 Illustration of the CNN output . 30

4.4 Attention Model . 31

4.5 Spatial Transformer Network . 33

5.1 Samples from SVHN training set. 38

xi

5.2 Samples from SVHN test set. 39

5.3 Samples from CAPTCHA training set. 40

5.4 Samples from CAPTCHA test set. 41

5.5 Intersection-Over-Union (IOU) computes the area of overlap (inter-

section) divided by area of union between the ground-truth bound-

ing box (shown in green) and the predicted bounding box (shown

in red). IOU takes into account how closely the predicted box and

ground-truth boxes match. 43

5.6 Qualitative results for our method on SVHN Dataset 46

5.7 Qualitative results for our method on CAPTCHA Dataset 47

5.8 Soft attention mechanism on SVHN test dataset. 48

5.9 Soft attention mechanism on CAPTCHA test dataset. 49

A.1 Qualitative results on CAPTCHA Dataset. Ground truth bounding

box is shown in green and the prediction bounding box is shown in

red. 60

A.2 Qualitative results on CAPTCHA Dataset. Ground truth bounding

box is shown in green and the prediction bounding box is shown in

red. 61

A.3 Qualitative results on SVHNDataset. Ground truth bounding box is

shown in green and the prediction bounding box is shown in red. . . 62

A.4 Soft attention mechanism on SVHN test dataset. White regions indi-

cate attended regions. 63

A.5 Soft attention mechanism on CAPTCHA test dataset. White regions

indicate attended regions. 64

xii

chapter 1
Introduction

Over the last decade, deep learning approaches have made tremendous progress

on long standing computer vision problems, including face recognition, object clas-

sification, medical imaging, etc. [1–8]. Deep networks have been shown to learn to

construct powerful image representations that can be subsequently used for com-

plex computer vision tasks. Within this broader context, in this work, we explore a

model for computational attention, an emerging area within deep learning. Com-

putational attention models attempt to mimic mechanisms of attention found in bi-

ological systems [9, 10]. Even insects exhibit behaviours that suggest that these are

capable of attending to the relevant sensory inputs. Attention, it has been argued,

is closely tied to perception [11]. Indeed it is the first step in perception. Atten-

tion helps brain cope with large volumes of sensory data that flows into it through

various senses: vision, audition, touch, taste, and smell. Computational attention

models then enable a computer to focus on the “relevant” data when carrying out

a task, and this has many advantages:

• It will lead to more efficient data processing regimes, since the computer only

1

Chapter 1. Introduction

Figure 1.1: Samples from SVHN (top row) and CAPTCHA (bottom row) datasets.

needs to store and process part of the data during subsequent steps.

• Itmay lead to newmechanisms for anomaly detection, since unexpected events

should force attention in a particular manner.

• In time, it will lead to algorithms that exhibit traits such as curiosity, excite-

ment, boredom, or annoyance.

• It can be used to gain insight into the innerworkings of a system. For example,

it can be used to explain the predictionsmade by anArtificial Intelligence (AI)

system.

In order to study computational attention, we looked at the task of sequence

classification. Given an image showing a sequence of digits, the sequence classi-

fication task attempts to read out the digits in the correct order. Unlike the digit

classification task where the number of classes are fixed a priori, the number of

classes are unknown (and often very large, possibly infinite) for sequence classi-

fication tasks. One way to solve this task is to “attend” to each digit one after the

other. This requires a model that learns to localize (and classify) one digit at a time

in a sequential manner.

In a typical setup, a Convolutional Neural Network (CNN), often termed en-

coder, constructs image features. These features are subsequently used for the task

2

Chapter 1. Introduction

at hand. Features at different spatial locations encode information present at differ-

ent regions of the image. Xu et al. [12] propose an attention mechanism that learns

to sequentially look at different locations in the image features in order to generate

an image caption. Their work learns to attend to different regions using a (task) loss

that captures network performance at the task at hand. In this work, we combine

their model with attention regularization. We show that it is advantageous to use

an attention loss in addition to a task loss when training such networks. For our

application, the attention loss measures the error between the predicted bounding

boxes and the ground truth bounding boxes for each character in the sequence.

We evaluate the proposed approach on two datasets: 1) The Street View House

Numbers (SVHN) dataset and 2) a Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA) dataset that we constructed (see Fig-

ure 1.1). Previously, Goodfellow et al. [13] studied the problem of digit sequence

prediction using SVHN dataset. Their approach assumes that the length of the se-

quence is known a priori. Specifically, they propose a deep network with N predic-

tion branches. The first branch predicts the number of digits found in the sequence,

and the subsequent branches predict the digits themselves. Their network can pre-

dict sequences of length less than N . In their set up N is a hyper-parameter, and

the network needs to be re-trained to deal with sequences longer than N − 1.

Ba et al. [14] have also studied the digit sequence classification problem using

SVHN dataset. They proposed a deep Recurrent Neural Network (RNN), where at

each step, the network processes a multi-resolution crop of the input image, called

a glimpse. The network then uses the information from the glimpse to update its

internal representation and outputs the next glimpse location and possibly the next

object in the sequence. The process continues until the model decides that there are

nomore objects to process [14]. This approach is trainedusing theREINFORCE [15]

algorithm.

3

Chapter 1. Introduction 1.1. Contributions

Ourmethod too uses an RNN to sequentially attend to characters in a sequence.

Specifically, at each RNN step, soft attention mechanism proposed in [12] is used

to focus on a single character in the sequence. Since the soft attention mechanism

is differentiable, our model is end-to-end trainable, meaning we are able to train

our model using standard gradient descent techniques. Our model also includes a

start and a stop state. The start state sets up the sequence reading task; whereas,

the stop state indicates that there are no more characters left to be read. The use of

start/stop states suggests that our method can classify sequences of any length.1

1.1 Contributions

This work makes the following contributions.

I. We present a new end-to-end trainable network for sequence classification us-

ing attention mechanism. Unlike existing approaches [12–14, 16–18], we pro-

pose to use attention loss in addition to task loss to train the network.We expect

that the proposed model can deal with sequences of any length.

II. We evaluate our approach on SVHN, a standard benchmark for multi-digit

classification tasks.

III. In addition, we created a new CAPTCHA dataset, and we evaluated the pro-

posed method on this dataset.

1.2 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 briefly discusses deep learn-

ing background. The following chapter discusses related work. Chapter 4 includes
1Due to time constraints, we did not manage to study this in depth, but we plan to apply our

approach on longer sequences in the future.

4

Chapter 1. Introduction 1.2. Thesis Outline

details about the proposed network architecture. An overview of the datasets is

provided in Chapter 5. Finally, we end the thesis with a summary and a discussion

of possible directions for future work.

5

chapter 2
Background

This chapter provides a brief introduction to deep learing. For amore in depth treat-

ment of deep learning, we refer the reader to the excellent book on deep learning

by Goodfellow et al. [19].

2.1 Machine Learning

Machine Learning (ML) is a field in computer science that encompasses algorithms

that learn from data. Broadly speaking, we can divide ML algorithms into three

categories: 1) supervised learning; 2) unsupervised learning; and 3) reinforcement

learning [19,20]. This work deals with supervised learning and we will restrict the

rest of the discussion to this branch ofML. Supervised learning deals with learning

a mapping from inputs to outputs based on input-output examples. Consequently,

supervised learning requires access to labelled data.

6

Chapter 2. Background 2.2. Neural Networks

2.1.1 Supervised Learning

The goal of supervised learning is to learn a model y = f(x; θ) given a set of sam-

ples {x1,x2, · · · ,xN} and their associated labels {y1, y2, · · · , yN}. If y takes on dis-

crete values, we refer to the problem as a classification problem. When y takes on

continuous values, we refer to this problem as a regression problem. Here θ refers to

model parameters. The goal of learning is then to estimate parameter values that

minimize the error between the predicted values and the ground truth.

Consider, for example, the problem of 2D line fitting.We are given a set of points

{(x1, y1), (x2, y2), · · · , (xN , yn)} and our goal is to fit a line y = θ1 + θ2x to this set

of points. In this case, we can estimate the model parameters θ1 and θ2 by mini-

mizing E = ∑N
i=1(yi − ŷi)2 with respect to the model parameters. Here ŷi is the

model prediction for xi and yi is the corresponding ground truth value. While in

this toy example, it is possible to estimate model parameters that minimize E us-

ing a closed-form analytical expression. This does not hold for more complex mod-

els, which do not lend themselves to closed form analytical solutions. An iterative

scheme forminimizingE with respect model parameters requires that we compute

derivatives ofE with respect to thesemodel parameters. Wewill soon see that such

an approach works well for models that are many orders of magnitude more com-

plex than our toy example.

2.2 Neural Networks

Neural Networks (NN) are a class of machine learning algorithms that are able to

learn powerful mappings from inputs to outputs given a set of input-output pairs.

In its simplest form NN comprise of artificial neurons stacked vertically and hori-

zontally. An artificial neuron is a computational unit inspired by our understanding

7

Chapter 2. Background 2.2. Neural Networks

xiwi b

		x1

		x2

		xn

f
		Y

i	=	1

N

w1

w2

wn

Figure 2.1: An artificial neuron.

of biological neurons. Mathematically,

y = f(w>x + b), (2.1)

where x is the input signal, b is the bias, w are the connection weights applied to

the input signal, f is the activation function, and y is the output of this neuron. See

Figure 2.1 for an illustration of the artificial neuron.

2.2.1 Activation Functions

ML researchers have proposed different types of activation functions. We briefly

discuss following four activations functions that have seenwide-spread use inNNs

(see Figure 2.2): sigmoid, tanh,ReLU, andLeakyReLU. In thiswork,weuseLeakyReLU

activation function.

8

Chapter 2. Background 2.2. Neural Networks

5 0 5
x

0.0

0.5

1.0
f(x

) 0.5

(a)

5 0 5
x

1

0

1

f(x
) 0.0

(b)

5 0 5
x

0
2
4
6

f(x
)

0.0

(c)

5 0 5
x

0.0

2.5

5.0

f(x
)

0.0

(d)

Figure 2.2: Different activation functions used in neural networks. (a) illustrates
sigmoid activation function, (b) illustrates tanh activation function, (c) illustrates
ReLU activation function, and (d) illustrates Leaky − ReLU activation function.
Courtesy ([21])

Sigmoid

Asigmoid is a bounded, differentiable, real-valued function that has a non-negative

derivative at each point. It is defined as follows:

f(x) = 1
1 + e(−x) (2.2)

An illustration of sigmoid is shown in Figure 2.2-a

Tanh

This function is defined as the ratio between the hyperbolic sine and the cosine

functions (or expanded, as the ratio of the half difference and half sum of two ex-

9

Chapter 2. Background 2.3. Convolutional Neural Networks

ponential functions on x and −x). It is defined as follows:

f(x) = ex − e−x

ex + e−x
. (2.3)

An illustration of Tanh is shown in Figure 2.2-b

ReLU

This is a unary real valued function,whose graph is shaped like a ramp. It is defined

as follows:

f(x) = max(0, x). (2.4)

An illustration of ReLU is shown in Figure 2.2-c. For activation in regions for x < 0,

the gradient will be 0 and those neuron weights will not get updated during SGD.

This results in dead neurons. This is known as the dying ReLU problem.

Leaky ReLU

Leaky ReLU function has a small negative slope for x < 0. It is defined as follows:

f(x) =


αx x ≤ 0

x x > 0,
(2.5)

where α� 1 is a hyper-parameter. Leaky-ReLU is an attempt to mitigate the dying

ReLU problem by having a small negative slope. An illustration of Leaky ReLU is

shown in Figure 2.2-d

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a subset of neural networks that op-

erate on multi-dimensional data such as images and videos. The first few layers of

10

Chapter 2. Background 2.3. Convolutional Neural Networks

224

224
220

220

3

5
5

3

Input: I * k
Output

Figure 2.3: Convolution operation on Image I ∈ R224×224×3 with kernel k ∈ R5×5×3

(padding (P) = 0, stride (s) = 1). Based on Equation ??, the resulting output tensor
is R220×220. (Courtesy [22])

CNNs comprise of convolutional layers, and these are capable of learning powerful

image representations that are generally useful at many subsequent computer vi-

sion tasks, such as object detection, classification, and recognition. CNNs underpin

the recent success of deep learning approaches in a variety of domains [19].

2.3.1 Convolution

In signal processing, convolution is often employed to obtain the overall average of

several measurements to get a less noisy signal. Lets consider 1-D example shown

below. Given a continuous signal, x, and a filter, w, we define the convolution op-

erator (∗) as follows:

(x ∗w)(t) =
∫ +∞

a=−∞
x(t)w(t− a)dt. (2.6)

11

Chapter 2. Background 2.3. Convolutional Neural Networks

Figure 2.4: VGG-16 convolutional neural networks is a commonly used deep net-
work. It accepts 224× 224 RGB images as input. (From [23])

Similarly, for discrete signals, we define convolution as

(x ∗w)[i] =
∑
m

x[i]w[i−m]. (2.7)

It is easy to extend convolution to more than one dimension. We are interested

in images. In the case of a grayscale image, we define 2D convolution operator as

follows:

(I ∗ k)[i, j] =
∑
m

∑
n

I[m,n]k[i−m, j − n]. (2.8)

It isworth remembering that deep learning frameworks actually employ cross-correlation

as opposed to convolutions.

(I ∗ k)[i, j] =
∑
m

∑
n

I[m,n]k[i+m, j + n]. (2.9)

In CNNs, filter (or kernel) parameters are learned from data. If deemed neces-

sary, the network can learn the appropriate values for the flipped kernel that will

12

Chapter 2. Background 2.4. Batch-Normalization

result in flipping operation, thereby resulting in a convolutional operation. CNN is

made of multiple convolutional layers. Each convolutional layer consists of K fil-

ters. Each of these filters is convolved along the input to generate an output. Let the

filter height and width be hK and width wK , respectively. Let stride s be amount to

shift the filter and the amount of padding P on the borders of the input. The input

to the convolutional layer is a feature map with a spatial height hi, and width wi.

Therefore the spatial output size is given as follows (Figure 2.3 shows an illustra-

tion):

ho = hi − hK + 2P
s

+ 1, and

wo = wi −wK + 2P
s

+ 1.

2.3.2 Pooling Layer

The pooling layer is used to spatially reduce the size (downsample) the input fea-

ture map. There are two types of pooling: (1) max-pooling and (2) average pooling.

Like convolution, the pooling operation is done by sliding a fixed window (ker-

nel) over the input. Max pooling takes the maximum of all the input values inside

the kernel. The average pooling takes the average of all the input values inside the

kernel. Pooling is performed spatially and independently for each featuremap. Fig-

ure 2.5 shows an illustration of both pooling mechanisms.

2.4 Batch-Normalization

Batch-Normalization, also known as Batch-Norm,was introduced by Ioffe et al. [24]

to reduce the training time for deep neural networks. During training, it increases

the stability of a neural network by normalizing the outputs of the activations by

subtracting the batch mean and dividing by the batch standard deviation. Batch-

13

Chapter 2. Background 2.5. Recurrent Neural Networks

Max-Pooling

Average-Pooling

4 6 5 2
1 9 6 3
1 2 5 4
0 5 3 0

9 6
5 5

5 4
2 3

Figure 2.5: Max-pooling and average pooling mechanism. Courtesy ([21])

Norm has two parameters which are trainable if the outputs have to be denormal-

ized. Having these free parameters enables the optimization to change them if it

will minimize the loss function. For more information, see to [24].

2.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks used

for sequence processing. RNNs deal with sequences of inputs vectors and can pro-

duce sequences of outputs vectors. The structure of an RNN shown in Figure 2.6.

This thesis investigates RNN models for sequential processing and detection, for

instance in the case of multi-digit classification using attention, RNN provides a

convenient way to transfer relevant information from attention at the present step

to the next step. In our case, the input is an image which may consist of multiple

digits, and the output can also be sequence numbers predicted from a single image.

Therefore, we use RNN to model the sequence processing in this work.

2.5.1 RNNModels for Sequence-to-Sequence prediction

RNNs can deal with input and output sequences of arbitrary lengths, and these

have found wide-spread use in sequence-to-sequence translation tasks. Figure 2.6

14

Chapter 2. Background 2.5. Recurrent Neural Networks

R R R R

s1 s2 s3 st

y1

h0 h1 h2 ht-1

y2 y3 yt

Figure 2.6: Recurrent neural networks. (Courtesy [22])

shows an example of an RNN structure. The input to an RNN is a sequence of

vectors s = (s1, s2, ..., sn). At each step in the hidden state is updated as follows:

ht = Rw,b(ht−1, st) (2.10)

whereR indicates RNN model and w and b are the shared weights and biases, re-

spectively. TrainingRNNmodels is challenging due to the exploding and vanishing

gradient problems. Exploding gradient problem is typically solved using gradient

clipping and a variation of the RNNmodel proposed byHochreiter et al. [25] called

Long Short-Term Memory Networks (LSTMs) addresses the problem of vanishing

gradients.

2.5.2 Long Short-TermMemory Networks

LSTMs consist of a gating mechanism, which enable these to accumulate or for-

get information conditioned on the task (see Equation 2.11). Specifically, an LSTM

consists of three gates: 1) input, 2) forget, and 3) output. In addition to the hidden

state, LSTMs also include a cell state. The input and forget gates control cell state

15

Chapter 2. Background 2.5. Recurrent Neural Networks

fw

ft

iw

tanh

c't

c'w

tanh

ow

it
ot

ct­1

ht­1

ct

ht

ct

xt­1

Figure 2.7: Long Short-Term Memory Module. (Courtesy [22])

updates; whereas, the output gate updates the hidden state. If the inputs to the

LSTM at each time step are xt ∈ Rd, previous hidden state ht−1 ∈ Rh, and previous

cell state ct−1 ∈ Rh, then LSTM is implemented as follows:

ft = σg(Wfxt + Ufht−1 + bf),

it = σg(Wixt + Uiht−1 + bi),

ot = σg(Woxt + Uoht−1 + bo), (2.11)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), and

ht = ot ◦ σh(ct).

Here ◦ denotes the Hadamard product, ft is the forget gate, it is the input gate, ot is

the output gate, and ct andht are the updated cell and hidden states. An illustration

of the LSTM is shown in Figure 2.7.

16

Chapter 2. Background 2.6. Training Neural Networks

2.6 Training Neural Networks

In this work, we are concerned with supervised learning. In this setting, we have n

data points sampled in an I.I.D. fashion. Each data point i is an (xi, yi)pair, such that

xi is the input and yi is the corresponding label (or output). Given a training set, the

goal is to learn network parameters (i.e., weights and biases) so as to make a correct

prediction y given a previously unseen input x. This is achieved by minimizing

some loss function that captures the deviations between network predictions and

the ground truth. We discuss the loss functions used in this work in Section 4.5.

2.6.1 Optimization

Neural networks can consist of millions of parameters and directly computing the

gradient of the loss with respect to these parameters is generally infeasible. Instead,

networkparameters are updatedusing amethod called backpropagation, which com-

putes the gradients of the loss function with respect to network weights [26].

Given gradient of the loss functionwith respect to networkparameters (orweights),

it is possible to update the weights in a manner that would decrease the loss func-

tion. The gradient descent method does just that. It uses the first order gradients to

update the weights in order to minimize the loss function. Modern datasets are of-

ten too large, and it is not possible to compute the gradient of the loss function over

the entire dataset. This has led stochastic gradient descent (SGD) methods, where

gradient of the losswith respect to the networkparameters is computed over a small

subset (or batch) of the entire training data [27]. Network parameters are updated

independently (one after the other) for each batch. In practice SGD is shown to

work really well. Batches are shuffled and randomly selected between each epoch.

Epoch here refers to a single iteration of the network parameters update, such that

the entire training dataset has been shown to the network.

17

Chapter 2. Background 2.6. Training Neural Networks

In this work, we use Adam for optimizing network weights. Adam, proposed in

[28], is a variant of SGD. Adam uses the following relationship to update network

weights given the gradient of the loss with respect to these weights.

w̃ = w + β1vt−1

g = ∇wL(w̃; ŷi, yi)

rt = β2rt−1 + (1− β2)g � g (2.12)

vt = β1vt−1 −
α
√
rt

� g

w = w + vt.

Here, α is the learning rate which controls the size of the step taken in the direc-

tion of the negative gradient. Also, in practice learning rate is decayed after a fixed

number of epochs to prevent over-shooting in low-error regions.

As suggested in the literature, we randomly initialize the network weights be-

fore training. Specifically, we used Xavier initialization [29], which has shown to

help networks converge faster. Neural networks often have thousands (and if not

millions) of parameters. Consequently, neural networks are heavily over-parameterized

models, and these tend to overfit, i.e., the neural networks will achieve near perfect

scores on test data, but do poorly on previously unseen test data. Common tech-

niques to avoid overfitting are regularization and dropout. In this work, we use L2

regularization [30] and dropout [31] to prevent overfitting.

2.6.2 Training Procedure

The training procedure is described below.

18

Chapter 2. Background 2.6. Training Neural Networks

Algorithm 1 Neural network Training Procedure
1: Require:
2: Define the neural network architecture, along with the loss function.
3: Select an SGD optimizer i.e. Adam and define it’s hyperparameters:
4: learning rate, decay rate and momentum coefficients.
5: Generate the forward propogation computational graph.
6: Generate the gradient computational graph using backprop.
7: Initialize network parameters w using some intialization scheme.
8: Initialize training parameters such as: epochs, batch size n, error margin ε.
9: Begin:
10: for epoch in epochs
11: Initialize accumlation of epoch loss variable, alv = 0
12: for batch in batches
13: Sample n data pairs from training set.
14: Obtain predictions ŷn through forward propogation of input xn.
15: Compute gradients, ∇wJ(w; ŷn, yn), using backprop.
16: Compute and update the SGD coefficients.
17: Use the updated SGD coefficients to compute gradient direction ∆w.
18: Apply update to the parameters: w = w + ∆w.
19: Increment alv: alv +L(ŷn, yn)
20: end
21: if (alv ÷ total training samples) < ε then
22: break
23: end
24: end

19

Chapter 2. Background 2.7. Summary

2.7 Summary

In this chapter, we have identified and discussed the relevant machinery for deep

neural networks. We now turn our attention to the problem at hand.

20

chapter 3
Related Works

This chapter briefly discusses related work in attention and sequence prediction.

This discussion is by no means complete. Our goal is simply to highlight the novel

aspects of the work presented here.

3.1 Feature Extraction

In computer vision, we don’t directly work with raw pixels, but rather extract some

useful representations from images termed features, which are then used for fur-

ther processing. In this work, we use Convolutional Neural Networks (CNNs) as

our feature extractor. In this section, we motivate the use of CNNs as our feature

extractor.

Hand-crafted techniques for constructing image features predate deep learning

approaches. These older techniques often rely upon local information present in

the image, such as edges, blobs, color, etc., to construct features that are useful for

a variety of computer vision tasks. Examples of hand-crafted techniques for image

21

Chapter 3. Related Works 3.2. Attention

feature construction are: Scale-Invariant Feature Transform (SIFT) [32], Speeded-Up

Robust Features (SURF) [33], and Binary Robust Independent Elementary Features

(BRIEF) [34].

Convolutional Neural Networks (CNN) have found unprecedented success at

many computer vision tasks, such as object detection, semantic segmentation, video

tracking, etc. [13, 35–38]. Given a training set, CNNs are able to learn how to con-

struct powerful image representations (or features). To a large extent, CNNs have

replaced classical hand-crafted image feature construction techniques.

Previous works such as [39], and its successors YOLO [5], Fast/Faster/Mask R-

CNN [6, 7, 40] have been shown to detect and segment objects in an image using

a single feed-forward pass. These methods, first, obtain features using a CNN and

then uses two techniques: (1) region proposals from features using RPN (Region

Proposal Network) and (2) Region of Interest (RoI) pooling to reshape the relevant

proposals into a fixed size. Next, the reshaped features are passed onto another

fully connected layer to predict the class of the proposed region as well to regress

the bounding box coordinates for the region.

In this work, we too use a CNN to construct image features. However, instead

of region proposals, we directly attend to the relevant features to localize (detect)

and classify digits in a sequential manner.

3.2 Attention

Attention has been gaining significant research interest recently for various ma-

chine learning and computer vision tasks [12, 14, 16–18]. Attention mechanisms

learn to probe the input spatially in a sequential fashion, attending to relevant re-

gions to make predictions. There are two types of attention mechanisms: (1) soft

attention and (2) hard attention. In practice, these mechanisms are learnable neu-

22

Chapter 3. Related Works 3.2. Attention

ral networks which are embedded into the overall network. Soft attention assigns

weights to the inputs (features), giving a higher weight to relevant regions and

lower weights to non-relevant regions. Whereas, hard attention involves selecting a

single region or a featurewhich is deemedmost important. The soft attentionmech-

anism is differentiable with respect to its parameters allowing gradients to be com-

puted using backpropagation. This allows for an end-to-end trainable network. The

hard attentionmechanism, on the other hand, involves a discrete selection, which is

not differentiable. In this case, the network is trained using reinforcement learning

techniques, such as REINFORCE [15]. Recently, reparameterization tricks [41, 42]

are used to enable backpropagation through the hard selection mechanism. This

makes it is possible to achieve end-to-end training for hard attention. In this work,

we use soft-attention mechanism (from now on referred to as attention) for digit

and character localization.

3.2.1 Sequential Attention Models

An illustration of the image captioning using attention is shown in Figure 3.1. The

attention module needs to attend to different regions in the image in a sequential

manner to construct an appropriate caption for the image. Such sequential deci-

sion making process are modelled using a class of neural networks called Recur-

rent Neural Networks (RNNs) [43–45]. In this work, we use an LSTM [25] network

to attend to different regions in the image in order to perform digit sequence clas-

sification and to find CAPTCHA solution.

Ba et al. [14] investigates an attention based model, which is able to localize and

predictmultiple objects in an image sequentially using RNN. Their attentionmodel

is termed the glimpse network. If there are multiple objects in the input image, each

object gets a fixed number of glimpses (each glimpse is a recurrent step) before a

prediction is made. Suppose there are five objects in an image, and three glimpses

23

Chapter 3. Related Works 3.2. Attention

Figure 3.1: Illustration of the soft attentionmechanism applied to image captioning.
White regions roughly indicates where the model attends spatially. (Courtesy [12])

per object, a total of 15 glimpses/recurrent steps are needed. Their model uses hard

selection and is trained using the REINFORCE method. This work is similar to our

work, except in our case, we use a soft attentionmechanism. In addition, our system

localize and predict at each recurrent step. Therefore, only a total of seven (start-

state + five steps + stop-state) recurrent steps are needed.

Meng et al. [46] utilized an attention mechanism for action recognition in video.

They proposed an attention mechanism termed Where and When to look. Their at-

tentionmechanism attends to themost important parts in the video, and they apply

soft attention. To obtain a better performance in their models, they present various

regularizers in their models which are spatial attention and temporal attention.

24

Chapter 3. Related Works 3.3. Multi-Digit classification

(a) (b) (c)

(d) (e)

Figure 3.2: Sample images of SVHN dataset.

3.3 Multi-Digit classification

For multi-digit classification task, we want to identify multiple digits appearing as

a sequence in a single image. Ian et al. [13] proposed a model for multiple digit

recognition in a single image. Their model consists of feature extractor and fully

connected layers. The feature extractor is a CNN consisting of eight convolutional

hidden layers. It is followed by two fully connected hidden layers, which consists of

3, 072 neurons each. Finally, the model consists of six prediction branches. The first

branch predicts the sequence length and the other five, the digits (the evaluation

dataset SVHN [47] has a maximum of five digits in an image). The major limita-

tion of this approach is that the maximum digits it can recognize is fixed (in this

case five). If more digits are needed to be recognised then a new model has to be

re-trained with more prediction branches added to account for the extra digits. In

our work, we have a start and stop state that enables ourmodel to sequentially keep

detecting digits (beyond the maximum recurrent steps our model was trained for),

until the stop-state is reached. Ba et al. [14] and Mnih et al. [48] proposed a similar

model for amultiple object recognition in a single input image.At each time step the

model probes through the input image to effectively classifymultiple objects. Espe-

cially, Ba et al. [14] trained a model to classify all the digits in an image sequentially.

25

Chapter 3. Related Works 3.4. CAPTCHA

Figure 3.3: Samples of CAPTCHA images. This is used for providing a visual tur-
ing test. This dataset is not publicaly available, therefore we generated our own
CAPTCHA dataset (more details in Section ??) for conducting experiments. (Cour-
tesy [13])

The label sequence order is chosen to go from left to right as the natural ordering of

the house number. Both [13, 14] evaluate their approach using Street View House

Number (SVHN) [47]. The highest sequence accuracy, 96.1%, is obtained by [14].

3.4 CAPTCHA

CAPTCHA is a common challenge-response Turing test, often used to determine

whether or not the user on the other side is human. It consists of an image showing a

sequence of letters or numbers distorted tomake it difficult for a human to read. It is

assumed that CAPTCHA text would be difficult to “read” for an automated optical

character recognition algorithm. To evaluate our approach on this task effectively,

we trained a baseline model of [13] on our generated CAPTCHA dataset.

3.5 Summary

In this chapter, we briefly discussed the relevant work. Our focus has been on at-

tention based approaches for sequence prediction/classification tasks.

26

chapter 4
Methodology

We now describe our approach to digit sequence classification. The proposed ap-

proach both localizes and classifies the digits (or characters, in case of CAPTCHA)

seen in the image. Specifically, at each time step t, the localization module outputs

the bounding-box, b ∈ R4 (top-left, top-right, height, and width), and the clas-

sification module outputs the associated category, o ∈ RC . In case of multi-digit

classifications C is 12 (0− 9 + start state + stop state).

In Section 4.1, we describe our overall network architecture. Sections 4.3 and 4.4

provide a detailed description of localization and classification modules respec-

tively.

4.1 Network Architecture

We train our model in an end-to-end fashion to detect and classify multiple digit

in a sequence seen in a single image. The input to our network is an RGB image,

I ∈ RH×W×3. The network consists of three sub-networks: (1) Feature extractor, (2)

27

Chapter 4. Methodology 4.1. Network Architecture

Attention LSTM

STN

Localization
network

Classification	
network

y

h

w

x

Concat

CNN

p1

p2

pn

Input	Image

Figure 4.1: Our model takes an RGB image as the input and sequentially predicts
the bounding boxes and character predictions until a stop state is reached. The lo-
calization network regresses top-left (x), top-right (y), height (h), and width (w)
of the bounding box, and the classification network predicts class scores p ∈ RC ,
where C is the number of classes.

Localization network, and (3) Classification network (see Figure 4.1).

4.1.1 Feature extractor

The feature extractor used in this work is a eight layers convolutional network,

which extract features, f ∈ Rhf×wf×128, from the input image, I. These features are

then passed onto a localization network.

4.1.2 Localization network

The localization network consists of an attention mechanism and an LSTM net-

work. At each recurrent step, the attention mechanism attends to a feature loca-

tion corresponding to a single digit/character in the image. The attended features,

fa ∈ Rhfa×wfa×128, are then used to predict the corresponding bounding box loca-

tion. In addition, the attended features are used as input to the classification net-

work.

The attention mechanism then jumps to the location corresponding to the adja-

cent digit (or character). This process continues until no more digits (or characters

28

Chapter 4. Methodology 4.2. Feature Extraction

are found). Or in other others, until the stop state is reached.

4.1.3 Classification network

The output of the attention mechanism along with the output from the fourth con-

volutional layer of the CNN is used to predict the category. The fourth layer out-

put, f4 ∈ Rhf4×wf4×128, is passed through a Spatial Transformer Network (STN).

f4 and then average pooled to match the spatial size of fa. After which both fea-

tures (f4avg , fa) are concatenated along the depth dimension and further average

pooled. They are then flattened and fed to two fully-connected layers: ffc1 ∈ RD

and ffc2 ∈ RC to make the final prediction

4.2 Feature Extraction

C
on
v-
1

K
=5
,	S
=1
,	D

=6
4

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
2

K
=5
,	S
=1
,	D

=9
6

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
3

K
=5
,	S
=2
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
4

K
=5
,	S
=1
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
5

K
=5
,	S
=1
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
6

K
=5
,	S
=2
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
7

K
=5
,	S
=1
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

C
on
v-
8

K
=3
,	S
=1
,	D

=1
28

B
at
ch
-N
or
m

Le
ak
y-
R
eL
U

Figure 4.2: This figure illustrates the network architecture. K stands for the kernel
size, S stands for the stride, and D stands for the number of kernels in the layer.

We employ a CNN as our feature extractor. It consists of eight convolutional

layers. The CNN architecture is shown in Figure 4.2. For each layer, the number of

kernels are fixed to 128. The first seven layers use 5×5 kernels. The last layer uses a

3×3 kernel. Batch-norm is added after each convolutional layer, followed by Leaky-

ReLUactivation function. For reference,we include TensorFlow implementation for

our feature extractor in the Appendix B.1.

29

Chapter 4. Methodology 4.3. Localization Module

14 x 14 x 128

28 x 28 x 128

56 x 56 x 96
60 x 60 x 64

64 x 64 x 3

RGB image

Convolutional Neural Network

Convolutional
Layer

Leaky-ReLU

Figure 4.3: This figure shows the output of each CNN layer described in Figure 4.2,
when the input is a RGB image of size, 64×64×128. The final feature output of the
CNN in this case is of size, 14× 14× 128.

4.3 Localization Module

We use a soft attention mechanism to learn to focus on single digits (characters) in

turn. Attention provides a glimpse into the inner workings of the network. The soft

attention mechanism is adapted from Xu et al. [12]. At each time step t, the input

to the attention network is the final features extracted by the CNN along with the

previous LSTM hidden state.

4.3.1 Attention Mechanism.

The attention mechanism is implemented as follows:

30

Chapter 4. Methodology 4.3. Localization Module

FC1 FC2

softmaxht

f0

ReLU

hatt fatt Aatt Ot

Figure 4.4: Block illustratation of the soft attentionmodel described in Equation 4.1.

hatt = FC1(ht)

fatt = ReLU(hatt + f)

Aatt = FC2(fatt) (4.1)

Aatt = softmax(Aatt)

Ot = Aatt ◦ f .

Here, FC1 and FC2 are fully-connected neural networks. The attention module

consists of two FC layers. The first fully connected layer, FC1, is used to transform

the hidden stateht, size to bring it equal to the input feature f size. The second layer,

FC2, computes the unscaled attention mask. The final attention mask is computed

by taking the softmax of the unscaled attention mask. The output of the attention

layer Ot is obtained by taking an element-wise multiplication (Hadamard product)

between the input features and attention mask. The TensorFlow implementation of

the attention module is shown in code listing B.3.

31

Chapter 4. Methodology 4.4. Detection Module

4.4 Detection Module

At each time step, the attended features are concatenated (along the channel di-

mension) with the output from STN, averaged pooled, and passed through a fully-

connected layer for prediction.

4.4.1 Spatial Transformer Network (STN)

STN was first introduced by Jaderberg et al. [49] for models to learn invariance

to translation, scale, rotation, and more generic wrappings. STN is a differentiable

module which can be inserted into convolutional layers, and it applies a spatial

transformation to input feature map. The STN network consists of three compo-

nents: (1) Localisation network, (2) Grid generator, and (3) Sampler. An illustration

of STN is shown in Figure 4.5.

Localisation network

It is a neural network that is part of STN, which outputs the transformation param-

eters θ. The input to the localization network is a featuremap f , and it outputs affine

transformation parameters, θ ∈ R6. The input feature map is flattened and passed

on to a fully-connected layer in order to regress the parameters. The Tensorflow

implementation of the STN localization network is shown in code listing B.2.

Grid generator

The grid generator generates a normalized sampling grid such that it is spatially

bounded between −1 ≤ (xi, yj) ≤ 1, where i ∈ [0,,W] and j ∈ [0,, H]. W

is the width, and H is the height, which are the same size as the input feature

map size. The normalized grid is then transformed using the transformation ma-

trix whose parameters are obtained from the localization network. This generates

32

Chapter 4. Methodology 4.5. Loss Functions

]

]]

]

U V

Localisation net

Sampler

Spatial Transformer

Grid !
generator

]
T✓(G)✓

Figure 4.5: Spatial Transformer Network. Figure obtained from [49].

a transformed sampling grid, S. The Tensorflow implementation of the STN grid

generator is shown in code listing B.4.

Sampler

It takes the sampling coordinates, S, and samples from an input feature map. The

same sampling coordinates,S, are used to perform sampling for each channel of the

input feature map. In this work, a bilinear sampling is used. The bilinear sampling

is defined as follows:

f ′ =
H∑
y

W∑
x

fx,ymax(0, 1− |S0
(x,y) − x|)max(0, 1− |S1

(x,y) − y|), (4.2)

where f is the input feature map. This sampling mechanism is (sub-)differentiable,

enabling an end-to-end system [49]. The tensorflow implementation of the STN

sampler is shown in code listing B.5.

4.5 Loss Functions

Our final loss function is given as follows:

33

Chapter 4. Methodology 4.5. Loss Functions

Ltotal = Lbbox + Lclassify + Lmask (4.3)

Each of the losses are described below.

Localization loss

Lbbox = ‖yb − ŷb‖2 (4.4)

This is the regression loss—themean-squared error between the expected value

yb and the predicted value ŷb.

Classification loss

Lclassify = −y>c log(ŷc) (4.5)

This is the classification loss—the cross-entropy loss between the expected value

yc and the predicted value ŷc, which is a one-hot vector.

Attention regularization

This loss penalizes the predicted attention mask as follows:

Lmask = α ∗ log
(α
α̂

)
, (4.6)

where α is the ground truth attention mask and α̂ is the predicted attention mask.

WeuseKullback–Leibler (KL) divergence tominimize the information loss between

the ground truth and predicted attention masks (both are probability distribu-

tions). Recall that KL divergence is a way of measuring the distance between two

probability distributions.

34

Chapter 4. Methodology 4.6. Summary

4.6 Summary

This chapter discusses the proposed network architecture.We discuss results in the

next chapter.

35

chapter 5
Experimental Results

We now discuss the experimental setup. Our models are implemented in Tensor-

Flow (version 1.4) deep learning framework [50]. All models were trained in an

end-to-end fashion using ADAM optimizer [28].

5.1 Datasets

5.1.1 Street View House Numbers Dataset (SVHN)

SVHN is a real-world image dataset for multiple digit recognition [47]. It is sim-

ilar in flavour to MNIST [51] (e.g., the images contain small cropped digits), but

incorporates an order of magnitude more labelled data (over 600,000 images). The

data comes from a significantly harder, unsolved, real-world problem (recogniz-

ing numbers in natural scene images). SVHN is obtained from house numbers in

Google Street View images. We used the standard train/test split for training and

inference on SVHNdataset. Figures 5.1 and 5.2 show samples from the training and

36

Chapter 5. Experimental Results 5.1. Datasets

test sets, respectively. 10% of the training data was used as a validation set.

The CAPTCHA dataset used by Ian et al. in [13] is not publicly available; there-

fore, we generated our own dataset. We modified the open-sourced CAPTCHA

library to generate random CAPTCHA characters of length six.1 We also store the

ground truth bounding boxes for each character. The CAPTCHA characters can

consist of both letters and numbers. For generating a single sample, we first sample

six characters (letters and numbers) and generate the image. We then apply ran-

dom rotations to each character. The rotation angle is randomly sampled between

−30 and +30 degrees. We then paste these images to a blank image canvas from

left to right fashion. We also record the (x, y) position where we paste each image

along with its corresponding height and width. Thus, we also get the ground truth

bounding boxes for each character. Our code for CAPTCHA generation is included

in the appendix B.6. Figures 5.3 and 5.4 show training and test samples, respectively,

from our dataset. We generated 40, 000 images for training purposes. In addition,

we generated 15, 000 images for validation set and another 15, 000 images for test

set.

5.1.2 Data-Preprocessing

Street View House Numbers Dataset

We follow the regime used in [13] and [14] to preprocess SVHN dataset. First, a

rectangular bounding box is computed for the digit sequence. Next, this box is ex-

panded by 30% along x and y directions, and the image is cropped using this ex-

panded bounding box. The cropped image is resized to 64× 64. The ground truth

bounding boxes are also re-scaled to match the new image dimensions. We also

normalize the pixel intensities between 0 and 1. For training, a batch size of 64 is

used.
1https://github.com/lepture/captcha

37

Chapter 5. Experimental Results 5.1. Datasets

Figure 5.1: Samples from SVHN training set.

38

Chapter 5. Experimental Results 5.1. Datasets

Figure 5.2: Samples from SVHN test set.

39

Chapter 5. Experimental Results 5.1. Datasets

Figure 5.3: Samples from CAPTCHA training set.

40

Chapter 5. Experimental Results 5.1. Datasets

Figure 5.4: Samples from CAPTCHA test set.

41

Chapter 5. Experimental Results 5.2. Discussion

CAPTCHA Dataset

For our CAPTCHA dataset, the height of each image is fixed to 64 pixels and the

width of each image is fixed to 200. The ground truth bounding boxes are re-scaled

to account for the new image dimensions. The pixels intensities are normalized

between 0 and 1. For training, a batch size of 64 is used.

5.2 Discussion

Table 5.2 compares our approach against other baseline methods. The scores show

the sequence accuracy results. We compute accuracy as follows. Say the image

shows digit sequence: 3, 4, and 5. If the model predicts 3, 4, and 9 then the accuracy

is

1 + 1 + 0
3 = 0.67.

Table 5.1 shows a comparison between our method and other approaches. The

baseline consists of six CNN layers followed by two 1024 fully-connected layers. It

assumes that the ground-truth bounding boxes are known, i.e. the network doesn’t

need to first localize a digit before classifying it. It is important to remember that

our network both localizes and classifies the sequence. The high baseline scores

suggest that localization accuracy effects classification scores.

The results suggest that the proposed method performs worse than previous

approaches by Goodfellow et al. [13] and Ba et al. [14]. However, one advantage

of our approach over the method by Goodfellow et al. is that our method can deal

with digit sequences of arbitrary length. We make this assertion due to presence of

start and stop states. Specifically, unlike their method our method does not need to

be re-trained to work with sequences of different maximum length.

42

Chapter 5. Experimental Results 5.3. Summary

(a) Poor (b) Good (c) Excellent

Figure 5.5: Intersection-Over-Union (IOU) computes the area of overlap (intersec-
tion) divided by area of union between the ground-truth bounding box (shown in
green) and the predicted bounding box (shown in red). IOU takes into account how
closely the predicted box and ground-truth boxes match.

Table 5.3 lists Intersection-Over-Union (IOU) scores for our method for the two

datasets. IOU score is the overlap area of the two bounding boxes divided by the

total area of these bounding boxes. IOU scores capture how closely the predicted

bounding box matches the ground truth bounding box (see Figure 5.5).

Figures 5.6 and 5.7 show the qualitative results of our method on SVHN and

CAPTCHA datasets, respectively.

5.3 Summary

While our method is unable to match the performance of existing methods, the

proposed method does boast the following advantages: 1) the proposed method

combines localization and detection to achieve digit sequence prediction; 2) the

proposed method does not need to be re-trained to deal with sequences of longer

lengths due to the use of start and stop states; and 3) the proposed method can be

trained in an end-to-end fashion.

43

Chapter 5. Experimental Results 5.3. Summary

Ta
bl
e
5.
1:

C
om

pa
ri
so
n
be

tw
ee
n
ou

ra
pp

ro
ac
h
an

d
ot
he

re
xi
st
in
g
ap

pr
oa

ch
es
.

G
oo

df
el
lo
w

et
al
.

[1
3]

Ba
et

al
.

[1
4]

Ba
se
lin

e
O
ur

s

Ei
gh

tc
on

vo
lu
tio

na
ll
ay
er
sw

ith

tw
o
fu
lly

-c
on

ne
ct
ed

la
ye

rs
,

fo
llo

w
ed

by
pr
ed

ic
tio

n
br
an

ch
es
.

D
ee
p,
re
cu

rr
en

tn
eu

ra
ln

et
w
or
k
th
at

at
ea
ch

st
ep

pr
oc
es
sa

m
ul
ti-
re
so
lu
tio

n

cr
op

of
th
e
in
pu

ti
m
ag

e
ca
lle

d
a,
gl
im

ps
e.

Si
x
co
nv

ol
ut
io
na

ll
ay
er
sw

ith

on
e
fu
lly

-c
on

ne
ct
ed

la
ye

r,

fo
llo

w
ed

by
pr
ed

ic
tio

n
br
an

ch
.

Ei
gh

tc
on

vo
lu
tio

na
ll
ay
er
s

fo
llo

w
ed

by
at
te
nt
io
n

m
ec
ha

ni
sm

.

D
ir
ec
tp

re
di
ct
io
n

H
ar
d
at
te
nt
io
n
[T
ra
in
ed

us
in
g

RE
IN

FO
RC

E
al
go

ri
th
m
]w

ith

en
d-
st
at
e

In
pu

ti
st

he
ch

ar
ac
te
re

xt
ra
ct
ed

us
in
g
gr
ou

nd
-tr

ut
h
bo

un
di
ng

bo
x.

So
ft
at
te
nt
io
n
w
ith

St
op

an
d
st
ar
ts
ta
te

Fu
lly

D
iff
er
en

tia
bl
e

N
ot

Fu
lly

D
iff
er
en

tia
bl
e

Fu
lly

D
iff
er
en

tia
bl
e

Fu
lly

D
iff
er
en

tia
bl
e

Fi
xe
d
st
ep

s
N
ot
-F
ix
ed

st
ep

s
N
ot
-F
ix
ed

st
ep

s
N
ot
-F
ix
ed

st
ep

s

W
ha

to
nl
y

W
ha

ta
nd

W
he

re
W

ha
to

nl
y

W
ha

ta
nd

W
he

re

44

Chapter 5. Experimental Results 5.3. Summary

Dataset Ours Baseline-CNN GoodFellow et al. [13] Ba et al. [14]

SVHN 91.0% 94.3% 96.0% 96.1%

CAPTCHA 86.0% 99.8% 99.9% -

Table 5.2: Mean sequence accuracy results on multi-digit classification and
CAPTCHA tasks.

Dataset IOU-Score

SVHN 81.0 %

CAPTCHA 90.0 %

Table 5.3: The sequence IOU score for the predicted bounding boxes with respect
to the ground-truth bounding boxes.

45

Chapter 5. Experimental Results 5.3. Summary

Figure 5.6: Qualitative results for our method on SVHN Dataset

46

Chapter 5. Experimental Results 5.3. Summary

Figure 5.7: Qualitative results for our method on CAPTCHA Dataset

47

Chapter 5. Experimental Results 5.3. Summary

T = 1 T = 2 T = 3

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4 T = 5

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3

Figure 5.8: Soft attention mechanism on SVHN test dataset. Our model attends to
different spatial locations in the image. The white regions correspond to the at-
tended regions. The small white rectangle in the bottom right corner on the last
image indicates a stop state.

48

Chapter 5. Experimental Results 5.3. Summary

Figure 5.9: Soft attentionmechanism onCAPTCHA test dataset. Ourmodel attends
to different spatial locations in the image. The white regions correspond to the at-
tended regions. The small white rectangle in the bottom right corner on the last
image indicates a stop state.

49

chapter 6
Conclusion

The thesis studies an attention approach to character (digits+letters) sequence pre-

diction. The model uses attention to focus on relevant locations in the image and

then uses the features extracted from these regions for digit classification. The im-

age is passed through a CNN. Next, at each recurrent step the attention module

attends to one character, starting with the left most character. The process contin-

ues until no more characters are left to read and the attention module reaches the

stop state. In this work, we use attention loss to train the network to attend to the

relevant regions in the image in a left-to-right fashion.

We have evaluated this approach on two digit (letter) sequence classification

problems. First, we study the performance of this approach on the SVHN dataset.

While our results are inferior to other techniques, the proposedmethod has the po-

tential to do better. Next, we study the performance of our approach on CAPTCHA

dataset. We end up creating our own CAPTCHAdataset for this work, since we did

not have access to the CAPTCHA dataset used in previous approaches. Our results

on CAPTCHA dataset are also not as good as those achieved by an existing tech-

50

Chapter 6. Conclusion

nique. We suspect that this is due to the fact that classification module used for

CAPTCHA letter classification is sensitive to rotations and deformations. In the fu-

ture, we plan to address this issue. One idea is to use STN network to improve letter

classification accuracy.

This work presented in this thesis supports our hypothesis that attention itself

can play a powerful role in creating neural network models that can attend to rele-

vant regions in the image to carry out useful work. In the future, we plan to apply

this technique on other computer vision problems, such as pose estimation and

action recognition.

51

Bibliography

[1] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, Third In-

ternational Edition. Pearson Education, 2010.

[2] Y. Zhong, R. Arandjelovic, and A. Zisserman, “Ghostvlad for set-based face

recognition,” in Proc. Asian Conference on Computer Vision (ACCV), Perth, De-

cember 2018, pp. 35–50.

[3] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling, “M2det:

A single-shot object detector based on multi-level feature pyramid network,”

in Proc. Conference on Artificial Intelligence (AAAI), Honolulu, January 2019, pp.

9259–9266.

[4] Y. Xue and N. Ray, “Cell detection in microscopy images with deep

convolutional neural network and compressed sensing,” arXiv preprint

arXiv:1708.03307, 2017.

[5] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proc. Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, June 2016, pp. 779–788.

52

Bibliography Bibliography

[6] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time

object detection with region proposal networks,” in Proc. Advances in Neural

Information Processing Systems (NeurIPS), Montreal, December 2015, pp. 91–99.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc. IEEE

Conference on International Conference on Computer Vision (ICCV), Venice, Octo-

ber 2017, pp. 2980–2988.

[8] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy, “Track-

ing emerges by colorizing videos,” in Proc. European Conference on Computer

Vision (ECCV), Munich, September 2018, pp. 391–408.

[9] R. R. Hoy, “Startle, categorical response, and attention in acoustic behavior of

insects,” Annual review of neuroscience, vol. 12, no. 1, pp. 355–375, 1989.

[10] T. R. Zentall, “Selective and divided attention in animals,” Behavioural Pro-

cesses, vol. 69, no. 1, pp. 1–15, 2005.

[11] F. Wang and D. M. Tax, “Survey on the attention based rnn model and its

applications in computer vision,” arXiv preprint, 2016.

[12] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio, “Show, attend and tell: Neural image caption generation with

visual attention,” in Proc. International Conference on Machine Learning, (ICML),

Lille, July 2015, pp. 2048–2057.

[13] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit num-

ber recognition from street view imagery using deep convolutional neural net-

works,” arXiv preprint arXiv:1312.6082, 2013.

53

Bibliography Bibliography

[14] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple Object Recognition with Visual

Attention,” in Proc. International Conference on Robotics and Automation (ICRA),

San Diego, May 2015.

[15] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,”Machine Learning, vol. 8, pp. 229–256, Novem-

ber 1992.

[16] T. Joseph, K. G. Derpanis, and F. Z. Qureshi, “Joint spatial and layer attention

for convolutional networks,” inProc. BritishMachineVisionAssociation (BMVC),

Cardiff, September 2019, pp. 1–14.

[17] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang,

“Residual Attention Network for Image Classification,” in Proc. IEEE Confer-

ence onConference onComputer Vision and PatternRecognition (CVPR), Honolulu,

July 2017, pp. 6450–6458.

[18] R. Ghaeini, X. Z. Fern,H. Shahbazi, and P. Tadepalli, “Saliency learning: Teach-

ing the model where to pay attention,” in Proc. 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL-HLT), Minneapolis, June 2019, pp. 4016–4025.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[20] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT press

Cambridge, 1998.

[21] F.-F. Li, J. Justin, and S. Yeung. (2018) Course notes of cs231n: Convolutional

neural networks for visual recognition. [Online]. Available: http://cs231n.

stanford.edu/

54

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

Bibliography Bibliography

[22] T. Joseph, “Joint spatial and layer attention for convolutional networks,” Mas-

ter’s thesis, University of Ontario Institute of Technology, 2018.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” in Proc. Conference on Learning Representations (ICLR),

San Diego, 2015.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in Proc. Conference on onMachine

Learning (ICML), Lille, 2015, pp. 448–456.

[25] S. Hochreiter and J. Schmidhuber, “Long Short-TermMemory,”Neural Compu-

tation, pp. 1735–1780, November 1997.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[27] S. Amari, “Backpropagation and stochastic gradient descent method,” Neuro-

computing, vol. 5, no. 3, pp. 185–196, 1993.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

Proc. International Conference on Learning Representations (ICLR), San Diego,

May 2015.

[29] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in Proc. Artificial Intelligence and Statistics (AIS-

TATS), Sardinia, May 2010, pp. 249–256.

[30] J. E. Moody, S. J. Hanson, and R. Lippmann, “Advances in Neural Informa-

tion Processing Systems 4,” in Proc. Advances in Neural Information Processing

Systems (NeurIPS), Denver, December 1992.

55

http://www.deeplearningbook.org

Bibliography Bibliography

[31] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” J. Mach.

Learn. Res., pp. 1929–1958, Mach 2014.

[32] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, November 2004.

[33] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359,

July 2008.

[34] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: binary robust indepen-

dent elementary features,” in Proc. 11th European Conference on Computer Vision

(ECCV), Heraklion, September 2010, pp. 778–792.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Proc. Advances in Neural Information

Processing Systems (NeurIPS), Lake Tahoe, December 2012, pp. 1097–1105.

[36] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-

mantic segmentation,” in Proc. IEEE conference on computer vision and pattern

recognition (CVPR), Boston, June 2015, pp. 3431–3440.

[37] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep struc-

tured output learning for unconstrained text recognition,” arXiv preprint

arXiv:1412.5903, 2014.

[38] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural im-

age caption generator,” in Proc. IEEE conference on computer vision and pattern

recognition (CVPR), Boston, June 2015, pp. 3156–3164.

56

Bibliography Bibliography

[39] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proc. Computer

Vision and Pattern Recognition (CVPR), Columbus, June 2014, pp. 580–587.

[40] R. B. Girshick, “Fast R-CNN,” in Proc. IEEE international conference on computer

vision (ICCV), Santiago, December 2015, pp. 1440–1448.

[41] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. In-

ternational Conference on Learning Representations (ICLR), Banff, April 2014.

[42] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-

softmax,” in Proc. of the International Conference on Learning Representations

(CLR), Toulon, April 2017.

[43] J. Kim, S. Lee, D. Kwak, M. Heo, J. Kim, J. Ha, and B. Zhang, “Multimodal

residual learning for visual QA,” in Proc. Advances in Neural Information Pro-

cessing Systems (NeurIPS), Barcelona, December 2016, pp. 361–369.

[44] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep networks,”

in Proc. Advances in Neural Information Processing Systems (NeurIPS), Montreal,

December 2015, pp. 2377–2385.

[45] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses with a

third-order boltzmann machine,” in Proc. Advances in Neural Information Pro-

cessing Systems (NeurIPS), Vancouver, December 2010, pp. 1243–1251.

[46] L.Meng, B. Zhao, B. Chang, G.Huang, F. Tung, and L. Sigal, “Where andwhen

to look? spatio-temporal attention for action recognition in videos,” CoRR,

2018.

57

Bibliography Bibliography

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits

in natural images with unsupervised feature learning,” in Proc. Advances in

Neural Information Processing Systems (NeurIPS), 01 2011.

[48] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models of

Visual Attention,” in Proc. Advances in Neural Information Processing Systems

(NeurIPS), Montreal, December 2014, pp. 2204–2212.

[49] M. Jaderberg, K. Simonyan,A. Zisserman, andK.Kavukcuoglu, “Spatial trans-

former networks,” in Proc. Advances in Neural Information Processing Systems

(NeurIPS), Montreal, December 2015, pp. 2017–2025.

[50] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P.Warden,M.Wattenberg,M.Wicke, Y. Yu, and X. Zheng, “Tensor-

Flow: A System For Large-ScaleMachine Learning,” in Proc. Operating Systems:

Design and Implementation (OSDI), vol. 16, November 2016, pp. 265–283.

[51] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

58

Appendices

59

appendix A
Qualitative Results

T = 1

I

I

T = 2

1

1

T = 3

t

t

T = 4

r

r

T = 5

K

K

T = 6

c

c

T = 1

i

i

T = 2

P

P

T = 3

5

5

T = 4

q

q

T = 5

1

1

T = 6

V

V

T = 1

I

I

T = 2

i

i

T = 3

b

b

T = 4

C

C

T = 5

8

8

T = 6

v

v

Figure A.1: Qualitative results on CAPTCHA Dataset. Ground truth bounding box
is shown in green and the prediction bounding box is shown in red.

60

Appendix A. Qualitative Results

T = 1

I

I

T = 2

V

V

T = 3

p

p

T = 4

5

5

T = 5

X

X

T = 6

U

U

T = 1

g

g

T = 2

7

7

T = 3

H

H

T = 4

7

7

T = 5

r

r

T = 6

Z

Z

T = 1

J

J

T = 2

f

f

T = 3

S

S

T = 4

D

D

T = 5

6

6

T = 6

n

n

T = 1

1

1

T = 2

d

d

T = 3

g

e

T = 4

S

u

T = 5

u

S

T = 6

s

s

T = 1

1

1

T = 2

d

d

T = 3

g

e

T = 4

S

u

T = 5

u

S

T = 6

s

s

T = 1

8

8

T = 2

o

o

T = 3

m

m

T = 4

y

y

T = 5

p

p

T = 6

6

6

Figure A.2: Qualitative results on CAPTCHA Dataset. Ground truth bounding box
is shown in green and the prediction bounding box is shown in red.

61

Appendix A. Qualitative Results

T = 1

2
2

T = 2

3
3

T = 3

5
5

T = 1

4
4

T = 2

5
5

T = 1

3
3

T = 2

9
9

T = 3

4
4

T = 1

2
2

T = 2

3
3

T = 3

5
5

T = 1

6
4

T = 2

9
9

T = 1

9
9

T = 1

1
1

T = 2

10
10

T = 1

7
7

T = 1

7
7

T = 1

3
2

T = 2

9
9

Figure A.3: Qualitative results on SVHN Dataset. Ground truth bounding box is
shown in green and the prediction bounding box is shown in red.

62

Appendix A. Qualitative Results

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4

T = 1 T = 2 T = 3 T = 4 T = 5

T = 1 T = 2 T = 3 T = 4 T = 5

Figure A.4: Soft attentionmechanism on SVHN test dataset. White regions indicate
attended regions.

63

Appendix A. Qualitative Results

(a)

(b)

(c)

Figure A.5: Soft attention mechanism on CAPTCHA test dataset. White regions
indicate attended regions.

64

appendix B
Code Listings

B.1 Feature Extractor (TensorFlow Implementation)

1 # !/ usr/bin/env python

2 # Import necessary packages

3 import tensorf low as t f

4

5 def cnn (images , mode=True) :

6 with t f . var iab le_scope (’CNN’) :

7 l ayer_1 = sl im . conv2d (images , 64 , [5 , 5] ,

8 a c t i v a t i on_ fn=None ,

9 padding= ’VALID ’ ,

10 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

11 s t r i d e =1 , scope= ’ layer_1 ’)

12 l ayer_1 = _batch_norm (layer_1 , mode=mode , name= ’ layer_1 ’)

13 l ayer_1 = t f . nn . leaky_re lu (layer_1 , name= ’ re lu_ layer_1 ’)

14

15 l ayer_2 = sl im . conv2d (layer_1 , 96 , [5 , 5] ,

65

Appendix B. Code Listings B.1. Feature Extractor (TensorFlow Implementation)

16 a c t i v a t i on_ fn=None ,

17 padding= ’VALID ’ ,

18 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

19 s t r i d e =1 , scope= ’ layer_2 ’)

20 l ayer_2 = _batch_norm (layer_2 , mode=mode , name= ’ layer_2 ’)

21 l ayer_2 = t f . nn . leaky_re lu (layer_2 , name= ’ re lu_ layer_2 ’)

22

23 l ayer_3 = sl im . conv2d (layer_2 , 128 , [5 , 5] ,

24 a c t i v a t i on_ fn=None ,

25 padding= ’SAME’ ,

26 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

27 s t r i d e =2 , scope= ’ layer_3 ’)

28 l ayer_3 = _batch_norm (layer_3 , mode=mode , name= ’ layer_3 ’)

29 l ayer_3 = t f . nn . leaky_re lu (layer_3 , name= ’ re lu_ layer_3 ’)

30

31 l ayer_4 = sl im . conv2d (layer_3 , 128 , [5 , 5] ,

32 a c t i v a t i on_ fn=None ,

33 padding= ’SAME’ ,

34 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

35 s t r i d e =1 , scope= ’ layer_4 ’)

36 l ayer_4 = _batch_norm (layer_4 , mode=mode , name= ’ layer_4 ’)

37 l ayer_4 = t f . nn . leaky_re lu (layer_4 , name= ’ re lu_ layer_4 ’)

38

39 l ayer_5 = sl im . conv2d (layer_4 , 128 , [5 , 5] ,

40 a c t i v a t i on_ fn=None ,

41 padding= ’SAME’ ,

42 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

43 s t r i d e =1 , scope= ’ layer_5 ’)

66

Appendix B. Code Listings B.1. Feature Extractor (TensorFlow Implementation)

44 l ayer_5 = _batch_norm (layer_5 , mode=mode , name= ’ layer_5 ’)

45 l ayer_5 = t f . nn . leaky_re lu (layer_5 , name= ’ re lu_ layer_5 ’)

46

47 l ayer_6 = sl im . conv2d (layer_5 , 128 , [5 , 5] ,

48 a c t i v a t i on_ fn=None ,

49 padding= ’SAME’ ,

50 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

51 s t r i d e =2 , scope= ’ layer_6 ’)

52 l ayer_6 = _batch_norm (layer_6 , mode=mode , name= ’ layer_6 ’)

53 l ayer_6 = t f . nn . leaky_re lu (layer_6 , name= ’ re lu_ layer_6 ’)

54

55 l ayer_7 = sl im . conv2d (layer_6 , 128 , [5 , 5] ,

56 a c t i v a t i on_ fn=None ,

57 padding= ’SAME’ ,

58 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

59 s t r i d e =1 , scope= ’ layer_7 ’)

60 l ayer_7 = _batch_norm (layer_7 , mode=mode , name= ’ layer_7 ’)

61 l ayer_7 = t f . nn . leaky_re lu (layer_7 , name= ’ re lu_ layer_7 ’)

62

63 l ayer_8 = sl im . conv2d (layer_7 , 128 , [3 , 3] ,

64 a c t i v a t i on_ fn=None ,

65 padding= ’SAME’ ,

66 we i gh t s _ i n i t i a l i z e r = t f . con t r ib . l aye r s .

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r (mode= ’

FAN_IN ’) ,

67 s t r i d e =1 , scope= ’ layer_8 ’)

68 l ayer_8 = _batch_norm (layer_8 , mode=mode , name= ’ layer_8 ’)

69

70 re turn layer_8 , layer_4

Listing B.1: TensorFlow implementation of the feature extractor (convolutional

network) in python

67

Appendix B. Code ListingsB.2. Spatial Transformer Network (TensorFlow Implementation)

B.2 Spatial Transformer Network (TensorFlow Imple-

mentation)

1 # !/ usr/bin/env python

2 with t f . var iab le_scope (’ Loca l i s a t i on network ’) :

3 B1 , H1, W1, C1 = inputs . get_shape () . a s _ l i s t ()

4 f ln_ input s = t f . reshape (inputs , [−1 , H1∗W1∗C1])
5 _ , D = f ln_ input s . get_shape () . a s _ l i s t ()

6 with t f . var iab le_scope (name_scope , reuse=reuse) :

7 w = t f . ge t _va r i ab l e (shape=[D, 6] , i n i t i a l i z e r = s e l f . c o n s t _ i n i t i a l i z e r

, name= ’ weights ’)

8 b = t f . ge t _va r i ab l e (shape = [6] , i n i t i a l i z e r = s e l f . i d e n t _ i n i t i a l i z e r

, name= ’ b ia ses ’)

9 the ta = t f . nn . tanh (t f . matmul (f ln_ inputs , w) + b)

Listing B.2: Tensorflow implementation of the localisation network of the STN in

python

B.3 Attention Module (TensorFlow Implementation)

1 # !/ usr/bin/env python

2 def a t t en t i on_ l aye r (s e l f , f ea tures , h , reuse=Fa l se) :

3 with t f . var iab le_scope (’ a t t en t i on_ l aye r ’ , reuse=reuse) :

4 w = t f . ge t _va r i ab l e (shape=[s e l f .H, s e l f .D] , i n i t i a l i z e r = s e l f .

we i gh t _ i n i t i a l i z e r , name= ’ weights ’)

5 b = t f . ge t _va r i ab l e (shape=[s e l f .D] , i n i t i a l i z e r = s e l f .

c o n s t _ i n i t i a l i z e r , name= ’ b ia ses ’)

6 w_att = t f . ge t _va r i ab l e (shape=[s e l f .D, 1] , i n i t i a l i z e r = s e l f .

we i gh t _ i n i t i a l i z e r , name= ’w_weights ’)

7

8 h_a t t = t f . nn . re lu (f e a tu r e s + t f . expand_dims (t f . matmul (h , w) ,

1) + b) # (N, L , D)

68

Appendix B. Code ListingsB.4. Grid Generation for STN (TensorFlow Implementation)

9 out_a t t = t f . reshape (t f . matmul (t f . reshape (h_att , [−1 , s e l f .D]) ,

w_att) , [−1 , s e l f . L]) # (N, L)

10 alpha = t f . nn . softmax (ou t_a t t)

11 ou t_ f t = f ea tu r e s ∗ t f . expand_dims (alpha , 2)

12 contex t = t f . reduce_sum (out_f t , 1 , name= ’ contex t ’) # (N, D)

13

14 re turn contex t

Listing B.3: Tensorflow implementation of the attention module in python

B.4 Grid Generation for STN (TensorFlow Implemen-

tation)

1 # !/ usr/bin/env python

2 def meshgrid (height , width) :

3 with t f . var iab le_scope (’ gr id ’) :

4 x_t = t f . matmul (t f . ones (shape= t f . s tack ([height , 1])) ,

5 t f . t ranspose (t f . expand_dims (t f . l i n space (−1.0 ,

1 . 0 , width) , 1) , [1 , 0]))

6 y_t = t f . matmul (t f . expand_dims (t f . l i n space (−1.0 , 1 . 0 , height) ,

1) ,

7 t f . ones (shape= t f . s tack ([1 , width])))

8

9 x _ t _ f l a t = t f . reshape (x_t , (1 , −1))

10 y _ t _ f l a t = t f . reshape (y_t , (1 , −1))

11

12 ones = t f . ones_ l ike (x _ t _ f l a t)

13 grid = t f . concat (ax i s =0 , values =[x _ t _ f l a t , y _ t _ f l a t , ones])

14 re turn grid

15

16 def transform (theta , input_dim , out_s ize) :

17 with t f . var iab le_scope (’ _transform ’) :

18 num_batch = t f . shape (input_dim) [0]

69

Appendix B. Code Listings B.5. Sampler for STN (TensorFlow Implementation)

19 height = t f . shape (input_dim) [1]

20 width = t f . shape (input_dim) [2]

21 num_channels = t f . shape (input_dim) [3]

22 the ta = t f . reshape (theta , (−1 , 2 , 3))

23 the ta = t f . c a s t (theta , ’ f l o a t 3 2 ’)

24 # grid of (x_t , y_t , 1) ,

25 he ight_ f = t f . c a s t (height , ’ f l o a t 3 2 ’)

26 width_f = t f . c a s t (width , ’ f l o a t 3 2 ’)

27 out_height = out_s ize [0]

28 out_width = out_s ize [1]

29 grid = _meshgrid (out_height , out_width)

30 grid = t f . expand_dims (grid , 0)

31 grid = t f . reshape (grid , [−1])

32 grid = t f . t i l e (grid , t f . s tack ([num_batch]))

33 grid = t f . reshape (grid , t f . s tack ([num_batch , 3 , −1]))

34

35 # Transform grid using the predic ted the ta :

36 # Theta x (x_t , y_t , 1)^T −> (x_s , y_s)

37 T_g = t f . matmul (theta , gr id)

38 x_s = t f . s l i c e (T_g , [0 , 0 , 0] , [−1 , 1 , −1])

39 y_s = t f . s l i c e (T_g , [0 , 1 , 0] , [−1 , 1 , −1])

40 x _ s _ f l a t = t f . reshape (x_s , [−1])

41 y_ s _ f l a t = t f . reshape (y_s , [−1])

42

43 re turn x_ s_ f l a t , y _ s _ f l a t

Listing B.4: Tensorflow implementation of the grid generator of the STN in python

B.5 Sampler for STN (TensorFlow Implementation)

1 # !/ usr/bin/env python

2 def sampler (im , x , y , out_s ize) :

3 with t f . var iab le_scope (’ sampler ’) :

4 # cons tants

70

Appendix B. Code Listings B.5. Sampler for STN (TensorFlow Implementation)

5 num_batch = t f . shape (im) [0]

6 height = t f . shape (im) [1]

7 width = t f . shape (im) [2]

8 channels = t f . shape (im) [3]

9

10 x = t f . c a s t (x , ’ f l o a t 3 2 ’)

11 y = t f . c a s t (y , ’ f l o a t 3 2 ’)

12 he ight_ f = t f . c a s t (height , ’ f l o a t 3 2 ’)

13 width_f = t f . c a s t (width , ’ f l o a t 3 2 ’)

14 out_height = out_s ize [0]

15 out_width = out_s ize [1]

16 zero = t f . zeros ([] , dtype= ’ in t32 ’)

17 max_y = t f . c a s t (t f . shape (im) [1] − 1 , ’ i n t 32 ’)

18 max_x = t f . c a s t (t f . shape (im) [2] − 1 , ’ i n t 32 ’)

19

20 # s c a l e ind i ce s from [−1 , 1] to [0 , width/height]

21 x = (x + 1 . 0) ∗ (width_f) / 2 . 0

22 y = (y + 1 . 0) ∗ (he igh t_ f) / 2 . 0

23

24 # do sampling

25 x0 = t f . c a s t (t f . f l o o r (x) , ’ i n t 32 ’)

26 x1 = x0 + 1

27 y0 = t f . c a s t (t f . f l o o r (y) , ’ i n t 32 ’)

28 y1 = y0 + 1

29

30 x0 = t f . c l ip_by_value (x0 , zero , max_x)

31 x1 = t f . c l ip_by_value (x1 , zero , max_x)

32 y0 = t f . c l ip_by_value (y0 , zero , max_y)

33 y1 = t f . c l ip_by_value (y1 , zero , max_y)

34 dim2 = width

35 dim1 = width∗height
36 base = _repeat (t f . range (num_batch) ∗dim1 , out_height ∗out_width)

37 base_y0 = base + y0∗dim2

38 base_y1 = base + y1∗dim2

39 idx_a = base_y0 + x0

40 idx_b = base_y1 + x0

71

Appendix B. Code Listings B.6. CAPTCHA Generation

41 idx_c = base_y0 + x1

42 idx_d = base_y1 + x1

43

44 # use ind i ce s to lookup p ixe l s in the f l a t image and re s t o r e

45 # channels dim

46 im_ f l a t = t f . reshape (im , t f . s tack ([−1 , channels]))

47 im_ f l a t = t f . c a s t (im_f la t , ’ f l o a t 3 2 ’)

48 Ia = t f . gather (im_f la t , idx_a)

49 Ib = t f . gather (im_f la t , idx_b)

50 I c = t f . gather (im_f la t , idx_c)

51 Id = t f . gather (im_f la t , idx_d)

52

53 # and f i n a l l y c a l cu l a t e in t e rpo l a t ed values

54 x0_f = t f . c a s t (x0 , ’ f l o a t 3 2 ’)

55 x1_f = t f . c a s t (x1 , ’ f l o a t 3 2 ’)

56 y0_f = t f . c a s t (y0 , ’ f l o a t 3 2 ’)

57 y1_f = t f . c a s t (y1 , ’ f l o a t 3 2 ’)

58 wa = t f . expand_dims (((x1_f−x) ∗ (y1_f−y)) , 1)

59 wb = t f . expand_dims (((x1_f−x) ∗ (y−y0_f)) , 1)

60 wc = t f . expand_dims (((x−x0_f) ∗ (y1_f−y)) , 1)

61 wd = t f . expand_dims (((x−x0_f) ∗ (y−y0_f)) , 1)

62 output = t f . add_n ([wa∗ Ia , wb∗ Ib , wc∗ Ic , wd∗ Id])

63

64 re turn output

Listing B.5: Tensorflow implementation of the sampler of the STN in python

B.6 CAPTCHA Generation

1 import cv2

2 import s t r i ng

3 import random

4 import numpy as np

5 from PIL import Image

72

Appendix B. Code Listings B.6. CAPTCHA Generation

6 from PIL . ImageDraw import Draw

7 from captcha import ImageCaptcha

8 from captcha import random_color

9 # Seed

10 #np . random . seed (8964)

11 #−−−−−−−−−Functions−−−−−−−−−−

12 # Random dots generator

13 def c rea te_no i se_dot s (image , color , width=2 , number=125) :

14 draw = Draw(image)

15 w, h = image . s i z e

16 while number :

17 x1 = random . randint (0 , w)

18 y1 = random . randint (0 , h)

19 draw . l i n e (((x1 , y1) , (x1 − 1 , y1 − 1)) , f i l l =color , width=width)

20 number −= 1

21 re turn image

22 # Random curve generator

23 def crea te_no ise_curve (image , co lor) :

24 w, h = image . s i z e

25 x1 = random . randint (10 , 15)

26 x2 = random . randint (w − 10 , w)

27 y1 = random . randint (20 , 35)

28 y2 = random . randint (y1 , 60)

29 points = [x1 , y1 , x2 , y2]

30 end = random . randint (180 , 200)

31 s t a r t = random . randint (0 , 20)

32 Draw(image) . arc (points , s t a r t , end , f i l l =co lor)

33 re turn image

34 # Caption generator

35 image = ImageCaptcha (width=64 , height =64 , f on t _ s i z e s =(64 , 64 , 64))

36 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 # Get cha rac t e r s

38 az = s t r i ng . a s c i i _ l owercase

39 AZ = s t r i ng . asc i i _uppercase

40 nm = s t r i ng . d i g i t s

41 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73

Appendix B. Code Listings B.6. CAPTCHA Generation

42 # Append a l l cha rac t e r s

43 a l l _ s e l e c t i o n s = []

44 f o r i in range (len (az)) :

45 a l l _ s e l e c t i o n s . append (az [i])

46 f o r i in range (len (AZ)) :

47 a l l _ s e l e c t i o n s . append (AZ[i])

48 f o r i in range (len (nm)) :

49 a l l _ s e l e c t i o n s . append (nm[i])

50 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−

51

52 #−−−−−−−−−−−−MAIN−−−−−−−−−−−−

53 count = 0

54 max_chars = 6

55 t r a i n _ s e t = []

56 dump_file = ’ ./ da tase t/captcha/captcha . t x t ’

57

58 # At l ea s t have a l l cha rac t e r s appear once in t r a i n s e t−− generate 100 for

each

59 f o r s e l e c t in a l l _ s e l e c t i o n s :

60 counter1 = 0

61 while counter1 < 500 :

62 a l l _da t a = []

63 a l l _ l b l s = []

64 # Randomly generate a placeholder to put in the char

65 i n s e r t _ i d = random . randint (0 , max_chars)

66 # Generate numbers

67 max_steps = random . randint (4 , max_chars)

68 f o r t in range (max_steps) :

69 i f t == i n s e r t _ i d :

70 l b l = s e l e c t

71 data = image . generate_image (s e l e c t)

72 e l s e :

73 idx = random . randint (0 , len (a l l _ s e l e c t i o n s)−1)

74 l b l = a l l _ s e l e c t i o n s [idx]

75 data = image . generate_image (l b l)

76 # Append

74

Appendix B. Code Listings B.6. CAPTCHA Generation

77 a l l _ l b l s . append (l b l)

78 a l l _da t a . append (data)

79 # Get max width

80 tota l_w = 0

81 f o r i in a l l _da t a :

82 pix = np . array (i)

83 h , w, _ = pix . shape

84 tota l_w += w

85 # Get max height

86 highest_h = 50

87 f o r i in a l l _da t a :

88 pix = np . array (i)

89 h , w, _ = pix . shape

90 i f h < highest_h :

91 highest_h = h

92 # Begin paint ing

93 canvas = np . ones ((highest_h + 35 , total_w + 35 , 3)) . astype (np .

uint8) ∗ 255

94 prev_w = 10

95 al l_bbox = []

96 t ry :

97 fo r i in a l l _da t a :

98 pix = np . array (i)

99 h , w, _ = pix . shape

100 # pr in t (pix . shape)

101 # Get BBox ’ s

102 h1 = random . randint (8 , 20)

103 w1 = prev_w

104 h2 = h

105 w2 = w

106 al l_bbox . append ([w1, h1 , w2, h2])

107 # Paint Canvas

108 canvas [h1 : h1+h , prev_w+2:prev_w+2+w, :] = pix

109 prev_w += w

110 # Append to t r a in ing s e t

111 t r a i n _ s e t . append ([a l l _ l b l s , a l l_bbox])

75

Appendix B. Code Listings B.6. CAPTCHA Generation

112 # Convert to PIL Image

113 im = Image . fromarray (canvas)

114 # Generate d i f f e r e n t colored dots

115 co lo r = random_color (10 , 200 , random . randint (220 , 255))

116 im = crea te_no i se_do t s (im , co lo r)

117 co lo r = random_color (10 , 200 , random . randint (220 , 255))

118 im = crea te_no i se_do t s (im , co lo r)

119 co lo r = random_color (10 , 200 , random . randint (220 , 255))

120 im = crea te_noise_curve (im , co lo r)

121 # Convert to numpy array

122 canvas = np . array (im)

123 # Save image

124 cv2 . imwrite (’ ./ da tase t/captcha/datase t/%d . png ’ % count ,

canvas)

125 # Increment

126 count += 1

127 # Progress

128 i f count%500 == 0 :

129 pr in t (’ Creat ing da tase t −−Progress : ’ , count)

130 counter1 += 1

131 except ValueError :

132 pr in t (’ Skipping ’)

133 continue

Listing B.6: Python implementation of the CAPTCHA generation code

76

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgments
	Contents
	Introduction
	Contributions
	Thesis Outline

	Background
	Machine Learning
	Supervised Learning

	Neural Networks
	Activation Functions

	Convolutional Neural Networks
	Convolution
	Pooling Layer

	Batch-Normalization
	Recurrent Neural Networks
	RNN Models for Sequence-to-Sequence prediction
	Long Short-Term Memory Networks

	Training Neural Networks
	Optimization
	Training Procedure

	Summary

	Related Works
	Feature Extraction
	Attention
	Sequential Attention Models

	Multi-Digit classification
	CAPTCHA
	Summary

	Methodology
	Network Architecture
	Feature extractor
	Localization network
	Classification network

	Feature Extraction
	Localization Module
	Attention Mechanism.

	Detection Module
	Spatial Transformer Network (STN)

	Loss Functions
	Summary

	Experimental Results
	Datasets
	Street View House Numbers Dataset (SVHN)
	Data-Preprocessing

	Discussion
	Summary

	Conclusion
	Bibliography
	Appendices
	Qualitative Results
	Code Listings
	Feature Extractor (TensorFlow Implementation)
	Spatial Transformer Network (TensorFlow Implementation)
	Attention Module (TensorFlow Implementation)
	Grid Generation for STN (TensorFlow Implementation)
	Sampler for STN (TensorFlow Implementation)
	CAPTCHA Generation

