
Joint Spatial and
Layer Attention for

Convolutional
Networks

by

Tony Joseph

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science
University of Ontario Institute of Technology.

Oshawa, Ontario, Canada
May 2019

c© Tony Joseph 2019

This page is intentionally left blank.

ii

Thesis Examination Information
Submitted by: Tony Joseph

Master of Science in Computer Science

Thesis Title:

Joint Spatial and Layer Attention for Convolutional Networks.

An oral defense of this thesis took place on May 30, 2019 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Shahram Heydari

Research Supervisor Dr. Faisal Qureshi

Research Co-supervisor Dr. Kosta Derpanis, Ryerson University

Examining Committee Member Dr. Ken Pu

Thesis Examiner Dr. Mark Green,

University of Ontario Institute of Technology

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demon-

strated by the candidate during an oral examination. A signed copy of the Certifi-

cate of Approval is available from the School of Graduate and Postdoctoral Studies.

iii

Abstract
Joint Spatial and Layer Attention for Convolutional Networks

Tony Joseph

Faculty of Science (Computer Science)

University of Ontario Institute of Technology.

2019

In this work, we propose a novel approach that learns to sequentially attend to dif-

ferent Convolutional Neural Networks (CNN) layers (i.e., “what” feature abstrac-

tion to attend to) and different spatial locations of the selected feature map (i.e.,

“where”) to perform the task at hand. Specifically, at each Recurrent Neural Net-

work (RNN) step, both a CNN layer and localized spatial region within it are se-

lected for further processing. We demonstrate the effectiveness of this approach

on two computer vision tasks: (i) image-based six degree of freedom camera pose

regression and (ii) indoor scene classification. Empirically, we show that combin-

ing the “what” and “where” aspects of attention improves network performance

on both tasks. We evaluate our method on standard benchmarks for camera local-

ization (Cambridge, 7-Scenes, and TUM-LSI) and for scene classification (MIT-67

Indoor Scenes). For camera localization our approach reduces the median error by

18.8% for position and 8.2% for orientation (averaged over all scenes), and for scene

classification it improves the mean accuracy by 3.4% over previous methods.

Keywords: Computational Attention; Convolutional Neural Networks; Reccurent Neural

Networks; Neural Networks; Image-Based Camera Localization

iv

Author’s Declaration

I hereby declare that this thesis consists of originalwork

of which I have authored. This is a true copy of the the-

sis, including any required final revisions, as accepted

by my examiners. I authorize the University of Ontario

Institute of Technology to lend this thesis to other insti-

tutions or individuals for the purpose of scholarly re-

search. I further authorize theUniversity of Ontario Insti-

tute of Technology to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request

of other institutions or individuals for the purpose of

scholarly research. I understand that my thesis will be

made electronically available to the public.

Tony Joseph
(author)

v

Statement Of Contributions

Part of the work described in Chapter 4 and Chapter 5 has been published as:

T. Joseph, K. Derpanis, and F. Qureshi. (2019) "Joint spatial and

layer attention for convolutional networks", arXiv preprint, [Online].

Available: https://arxiv.org/abs/1901.05376.

I was responsible for performing all the experiments andwriting of themanuscript.

I have used standard referencing practices to acknowledge ideas, research tech-

niques, or other materials that belong to others.

vi

Acknowledgments

First I thank my advisor Faisal Qureshi who gave me this incredible opportunity to

be part of his lab as a masters student. He always encouraged me to pursue what I

was interested in, never heldme back. He introducedme to Konstantinos G. Derpa-

nis (my co-advisor) who further pushedme to do great work, as well as makingme

part of his lab. Their constant guidance and support were very crucial in complet-

ing this work. They transformed both my thinking and research abilities, making

me more ambitious to pursue even harder problems.

I would like to thank my parents Joseph Kuriakose and Jessyamma Joseph, who

are always very supportive and have sacrificed a lot to move our family to Canada.

They taught me the value of hard work and to be fearless to pursue my dreams.

Andmy close friendsMurtaza Jawed andMohammed Baneeh for encouraging and

supporting me through hard times. I would also like to thank my close collabora-

tor Kamyar Nazeri (Imaging lab, University of Ontario Institute of Technology) for

providing support on figures presented in this work and for having intellectual

discussions.

vii

Contents

Thesis Examination Information iii

Abstract iv

Author’s Declaration v

Statement of Contributions vi

Acknowledgments vii

Contents viii

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Outline . 5

2 Background 6

2.1 Neural Networks . 6

2.1.1 Convolutional Neural Networks 8

2.1.2 Recurrent Neural Networks . 13

2.2 Training Neural Networks . 18

2.2.1 Optimization . 21

viii

2.2.2 Backpropagation . 24

2.2.3 Training Procedure . 27

2.3 CNN models . 27

3 Related Works 33

3.1 Attention . 33

3.2 Image-based camera pose regression 34

3.3 Indoor scene classification . 35

4 Methodology 36

4.1 Where: Spatial attention . 36

4.2 Soft Attention implementation. 37

4.2.1 Multi-Convolutional Soft Attention mechanism. 38

4.3 What: Layer attention . 39

4.3.1 Layer selection mechanism architecture. 41

4.4 Joint Spatial and Layer Attention Architecture 42

4.5 Tasks . 43

4.5.1 Camera Pose Estimation . 43

4.5.2 Indoor Scene Classification . 44

5 Results 45

5.1 Experimental Setup . 45

5.2 Datasets . 47

5.2.1 Cambridge Landmarks . 47

5.2.2 7-Scenes . 47

5.2.3 TU Munich Large-Scale Indoor (TUM-LSI) 48

5.2.4 MIT-67 . 48

5.3 Experimental Results and Discussion 49

5.3.1 Camera localization . 49

ix

5.3.2 Indoor scene classification . 51

5.3.3 Results for more Conv-LSTM steps 51

5.4 Multi-Convolutional Approach . 52

5.5 Ablation Study . 57

6 Conclusion 59

6.1 Future Work . 60

Bibliography 61

x

List of Tables

5.1 Image-based camera localization results 50

5.2 Indoor scene classification results . 51

5.3 Median localization error achieved by our proposed attentionmodel

over five-time steps on subset of Cambridge Landmarks, subset of 7-

Scenes, and TUM-LSI. Bold values indicate the lowest error achieved

for each row. Improvement is reportedwith respect to LSTM-PoseNet

[2]. 52

5.4 Mean accuracy results for indoor scene classification onMIT-67. The

proposedmethod achieves the highest accuracy (shown in boldface).

Improvement is reported with respect to the GoogLeNet [3] baseline. 52

5.5 Median localization error achieved by the convolutional attention

model on a subset of camera pose estimation datasets: Cambridge

Landmarks, 7-Scenes, and TUM-LSI dataset. Bold values indicate the

lowest error achieved for each row. 53

5.6 Median localization error achieved by themulti-convolutional atten-

tion model on a subset of camera pose estimation datasets: Cam-

bridge Landmarks, 7-Scenes, and TUM-LSI dataset. Bold values in-

dicate the lowest error achieved for each row. 53

xi

5.7 Ablation study on layer-spatial attention. In all cases, GoogLeNet [3]

Conv-{3B, 4E, 5B} layers are used. Bold values indicate the best result

achieved for each row. 57

xii

List of Figures

1.1 Overview of our approach . 3

2.1 Block diagram illustrating an artificial neuron 7

2.2 Two-layer neural network . 8

2.3 Block diagram illustrating a convolution on Image 10

2.4 Illustration of pooling mechanisms . 12

2.5 Block diagram of a RNN . 14

2.6 Block diagram of different RNN models 15

2.7 Block diagram of LSTM model . 17

2.8 Illustration of dropout . 19

2.9 Computational graph of an artificial neuron 25

2.10 Symbol-to-symbol approach . 26

2.11 Block diagram of Inception Module 28

2.12 Block diagram of GoogleNet architecture 32

4.1 Multi-Convolutional Soft Attention Mechanism. 37

4.2 Gumbel-softmax trick for hard selection 39

4.3 Layer Selection Mechanism. 40

4.4 Illustration of layer-spatial attention 42

xiii

5.1 Camera Localization dataset . 47

5.2 MIT-67 Indoor Scene dataset . 48

5.3 Layer Selection Frequencies . 55

5.4 Layer Selection Frequencies . 56

xiv

chapter 1
Introduction

Since 2012, deep learning based approaches have seen unprecedented success in

many computer vision tasks, such as object detection [4], semantic segmentation [5],

video tracking [6], motion estimation [7], image generation [8], etc. Convolutional

Neural Networks (CNNs) [9] are central models in a broad range of computer vi-

sion tasks, e.g., [4,5,7,8,10]. Generally, the processing of input imagery consists of a

series of convolutional layers interwoven with non-linearities (and possibly down-

sampling) that yield a hierarchical image representation. The image representation

constructed by CNNs are sometimes called deep features. These deep features, to a

large extent, have displaced the hand-crafted features of old, which pre-date the

wide-spread use of deep learning in computer vision by at least two decades.

As deterministic processing proceeds in a CNN, both the spatial scope (i.e., the

effective receptive field) and the level of feature abstraction [11,12] of the represen-

tation gradually increase. Motivated by our understanding of human visual pro-

cessing [13,14] and initial success in natural language processing [15], an emerging

thread in computer vision research consists of augmenting CNNs with an atten-

1

Chapter 1. Introduction

tional mechanism. Generally speaking, the goal of attention is to dynamically focus

computational resources on the most salient features of the input image as dictated

by the task.

Deep features, especially those that are constructed by convolutional layers, en-

code spatial information, i.e, a given deep feature layer that picks a cat will also

encode the location of this cat. When one is searching for a cat, knowing “where”

to look can help. [16] developed an attention mechanism that focuses on different

locations in the deep feature (or onemight say that it selects features within the fea-

ture map that forms the deep feature) over successive steps. This attention mecha-

nism, which we henceforth refer to as soft attention, has been applied successfully

to the problem of image captioning [16].

It is straightforward to designate the image representations at a particular CNN

layer as the deep feature that will be used during subsequent processing. It is also

possible to combine image representations at multiple convolutional layers to con-

struct the deep feature. It has been observed that different CNN layers capture in-

formation at different levels of abstraction [12]. Layers that are closer to the input

capture fine-grained spatially localized structures, say edges and blobs; whereas,

layers that are further away from the input capture more abstract information, such

as existence of a cat or a dog. To the best of our knowledge, the decision aboutwhich

CNN layer(s) provide the deep features is made at design time.

In this work, we present an approach that incorporates attention into a standard

CNN in two ways: (i) a layer attention mechanism (i.e., “what” layer to consider)

selects a CNN layer, and (ii) a spatial attention mechanism selects a spatial region

within the selected layer (i.e., “where”) for subsequent processing. Layer and spa-

tial attention work in conjunction with a Recurrent Neural Network (RNN).

2

Chapter 1. Introduction

LS
TM
 S
te
p
1

LS
TM
 S
te
p
2

LS
TM
 S
te
p
3

LS
TM
 S
te
p
4

Es
ti
m
at
e

G
ro
un
d
Tr
ut
h

Es
ti
m
at
e

Es
ti
m
at
e

Es
ti
m
at
e

5B
4E

4C

5B
4E

4C

5B
4E

4C

5B
4E

4C

Fi
gu

re
1.
1:

O
ve

rv
ie
w

of
ou

r
ap

pr
oa

ch
to

6-
D
oF

ca
m
er
a
lo
ca
liz

at
io
n.

G
iv
en

a
se
t
of

C
N
N

fe
at
ur
e
la
ye

rs
(G

oo
gL

eN
et

[3
]

C
on

v-
{3
B,

4C
,4

E,
5B

}
la
ye

rs
sh

ow
n)

ou
r
ap

pr
oa

ch
to

at
te
nt
io
n
us

es
an

RN
N

to
se
qu

en
tia

lly
se
le
ct

a
se
to

f
fe
at
ur
e
la
ye

rs
(h
ig
hl
ig
ht
ed

by
th
e
no

n-
gr
ey

im
ag

es
)a

nd
co
rr
es
po

nd
in
g
lo
ca
tio

ns
in

th
e
la
ye

rs
(h
ig
hl
ig
ht
ed

by
th
e
he

at
m
ap

s)
.F

in
al
ly
,t
he

pr
oc
es
se
d
at
te
nd

ed
fe
at
ur
es

ar
e
us

ed
fo
rr

eg
re
ss
in
g
th
e
ca
m
er
a
po

si
tio

n
an

d
or
ie
nt
at
io
n.

3

Chapter 1. Introduction 1.1. Contributions

At each time step, first a layer is selected and next spatial attention is applied

to it. The RNN progressively aggregates the information from the attended spatial

locations in the selected layers. The aggregated information is subsequently used

for regression or classification. Our model is trained end-to-end, without requir-

ing additional supervisory labels. Empirically, we consider both regression (i.e., six

degree of freedom, 6-DoF, camera localization) and classification (i.e., scene clas-

sification) tasks. Figure 1.1 presents an overview of our approach to layer-spatial

attention for 6-DoF camera localization.

1.1 Contributions

This work makes the following contributions:

I. We propose an attention model that learns to sequentially attend to different

CNN layers (i.e., different levels of abstraction) and different spatial locations

(i.e., specific regions within the selected feature map) to perform the task at

hand.

II. We augment a standard CNN architecture, GoogLeNet [3], with our attention

model and empirically demonstrate its efficacy on both regression and classi-

fication tasks: 6-DoF camera localization regression and indoor scene classi-

fication. We evaluate the proposed architecture on standard benchmarks: (a)

Cambridge Landmarks, 7 Scenes, and TUMunich Large-Scale Indoor (TUM-

LSI) for camera pose estimation; and (b) MIT-67 Indoor Scenes for scene clas-

sification. For camera localization our approach reduced the overall median

error by 12.3% for position and 13.9% for orientation on Cambridge Land-

marks, 19.3% for position and 8.83% for orientation on 7-Scenes, and 25.1%

for position and 1.79% for orientation on TUM-LSI over the baseline [2]. For

indoor scene classification on MIT-67 [17] our approach improves the mean

4

Chapter 1. Introduction 1.2. Thesis Outline

accuracy by 3.4% over the baseline [18]. In both tasks, the baseline methods

use the same base convolutional network.

1.2 Thesis Outline

Rest of the thesis is organized as follows. Chapter 2 provides some background on

deep learning specifically CNN’s, LSTM networks, and backpropagation for train-

ing these networks. Chapter 3 covers the literature review on the existing works

in attention, camera pose estimation and indoor scene localization. Chapter 4 de-

scribes ourmethodology. Chapter 5provides an overviewof the experimental setup

along with datasets used in this work along with both the quantitative and qualita-

tive results. It also provides empirical motivation through an ablation study. Chap-

ter 6 provides a conclusion and some potential suggestions for future work.

5

chapter 2
Background

This chapter presents an overview of CNNs andLSTMs. For amore detailed discus-

sion onmentioned conceptswe recommend the deep learning book fromGoodfellow

et al. [19].

2.1 Neural Networks

Neural networks can be considered as functions that map an input space X to an-

other space Y, i.e. in the task of pose estimation, X could be the space of input

images and Y represents the camera pose [x, q]>, here x ∈ R3 represents 3-D cam-

era position and q ∈ R4 camera orientation.

Neural networks are composed of individual neurons stacked together horizon-

tally or vertically. Each neuron is a basic computational unit that is loosely based

on biological neurons. An artificial neuron performs a weighted sum of the inputs

x, followed by applying a non-linearity σ. The implementation of a neuron is for-

6

Chapter 2. Background 2.1. Neural Networks

w0

w1

wn

 x0

 x1

 xn

wixi
i = 0

n

b

Input

Activation

Output

Weighted
Sum

Figure 2.1: Block diagram illustrating an artificial neuron described in Equation 2.1.
An input x ∈ Rn+1. It then computes a weighted sum of the inputs, followed by
applying an element-wise non-linearity, σ.

mulated as follows:

n(x) = σ(w>x + b) (2.1)

where,w is the neuronweights andb is the bias term. Figure 2.1 shows an illustration

of a neuron.

Further a network layer is formed by stacking m such neurons (m is a hyperpa-

rameter). The weights w from each m neuron together form a weight matrix, W.

The weighted sum vector of the layer is followed by applying an element-wise

non-linearity, σ. Standard σ’s used are sigmoid
(

1
1+e(−n)

)
, tanh

(
en−e−n
en+e−n

)
, and ReLU

(max(0, n)). By stacking such layers in a cascade setting, we get a feed-forward multi-

layer neural network. An illustration of a two layer neural network model is shown

in Figure 2.2. A two layered network is implemented as follows:

l(x) = W2σ(W>
1 x + b1) + b2 (2.2)

7

Chapter 2. Background 2.1. Neural Networks

 x0

 x1

 xn

 h0

 hm

 h1

W1 W2
input
layer

hidden
layer

output
layer

 O0

 O1

 Ok

Figure 2.2: An example of two layer feed-forward multi-layer neural network as
described in Equation 2.2. An input x ∈ Rn, which gets transformed to hidden
layer using weight matrix W1 ∈ Rm×n and into output by W2 ∈ Rk×m.

where [W1,b1] is the weights and bias of layer-1. Similarly, [W2,b2], is weights and

bias of layer-2. Note that the final layer (output layer), in this case, layer-2 does not

contain the non-linearity.

Summary and implementation details.We have discussed how to build neural

network, using fully connected layers. When implementing a fully connected layer

there is only one hyperparameter that is of concern: number of neurons m in the

layer. Now let’s show a general formulation of a fully connected layer:

I. Input. The input to the fully connected layer is a vector of size: xi

II. Parameter Estimation. Since we havem neurons in a layer, the total learnable

parameters are: xi .m + 1 (include bias).

III. Output. The output of a fully connected layer is a vector of size:m.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are neural networks that use convolutions

instead of a general matrix multiply [19]. Compared to the standard neural net-

work (fully-connected) which operates on vector inputs, x ∈ Rd, CNN can operate

8

Chapter 2. Background 2.1. Neural Networks

onmulti-dimensional inputs. This makes CNN architecture able to handle high di-

mensional data such as images, videos, etc. A color image I ∈ Rh×w×c is a tensor1

of height h, width w and channel c. For example let, I ∈ R224×224×3 be a RGB image.

When using a fully-connected neural network, the image I, has to be converted to a

vector, Ivec ∈ R150528 (flatten the I tensor). This input vector Ivec has high dimension-

ality, which in turn requires a large number of network parameters and increases

the processing time. Assuming layer-1 has 100 neurons, the total weights in layer-1

alone will be approximately 1.50× 107.

In practice, this can become computationally intractable due to memory con-

straints. Such constraints practically hinders in buildingdeepneural networks.Also,

having such large parameters can result in network over-fitting on the training data

and result in poor generalization, which is explained more in Section 2.2. This is

where CNNs shines, with its ability to preserve spatial information and reduce

network parameters through weight sharing.

Convolution.Assuming we have a 1-D input I′ and 1-D filter k, the convolution

operation (∗) is defined as:

(I′ ∗ k)[n] =
+∞∑
i=−∞

I′ [n]k[n− i] (2.3)

note that in CNN convolution is implemented as shown in Equation 2.4, which is

correlation. This operation extends to 2-D input as well, which is used in CNN. In

deep learning context, it is referred to as "convolution", because the filter weights

are learned and if needed the network can learn to flip the filter weights, thereby

resulting in convolution operation. Therefore, when we say "convolution" in CNN,
1tensors are generalizations of matrices with arbitary number of indices. Each index of a tensor

can range over arbitary number of dimensions.

9

Chapter 2. Background 2.1. Neural Networks

224

224
220

220

3

5
5

3

Input: I * k
Output

Figure 2.3: Block diagram illustrating a convolution on Image I ∈ R224×224×3 with
kernel k ∈ R5×5×3 (padding (P) = 0, stride (s) = 1). Based on Equation 2.5, the
resulting output tensor is R220×220.

we are using Equation 2.4.

(I′ ∗ k)[n] =
+∞∑
i=−∞

I′ [n]k[n+ i] (2.4)

Convolutional Layer. The core building block of CNN is the Convolutional

Layer. It takes in a tensor as input and outputs a tensor by convolving the inputs

with a set of filters. This is well explained through an example. Let the input tensor

be RGB image I ∈ R224×224×3, which is to be convolved with a filter k ∈ R5×5×3 (also

referred to as kernel). The filter k has total of 75 learnable parameters (5 . 5 . 3). We

perform convolution by sliding the kernel across all spatial positions of the input

image. At each position we compute a dot product between block (5 by 5 by 3) of I

and k. This will result in producing an output tensor (typically called an activation

map) of o ∈ R220×220. An illustration of the convolutional layer operation is shown

in Figure 2.3. Note that this is generalizable to any 3-D tensor.

10

Chapter 2. Background 2.1. Neural Networks

Often, a convolutional layer will have multiple k such filters. Working with the

same example of RGB image I ∈ R224×224×3, which is to be convolved with m such

k ∈ R5×5×3 filters. The resulting output is a tensor of o ∈ R220×220×m. Assum-

ing, we have 100 such k filters in a convolutional layer, activation maps will be

o ∈ R220×220×100. After convolution, we applying an element-wise non-linearity, σ

(typically ReLU), to the activation maps.

An activation map is computed from local responses of the same filter over the

entire spatial locations. In otherwords,we use the samefilterweights over the input

tensor, which results in a large decrease in learnable parameters. This phenomenon

is referred to asweight sharing in the context of CNN. Coming back to our example,

the total learnable parameters in the convolutional layer with 100 filters would be

approximately 7500 (= 5 . 5 . 3 . 100). Which is much smaller (≈ 2000 times less) than

using a fully connected layer with 100 neurons, which has approximately 1.50×107

learnable parameters. That said, it is within the capacity of a fully connected neural

network layer to learn convolution by tyingweights of all neurons in an appropriate

structure. This, in turn, results inmost parameters being zerowhich is a hugewaste

of computation, and as mentioned previously training such a network would be

memory intensive, even computationally intractable.

Summary and implementation details. We have so far discussed the mech-

anism behind the convolutional layer. By stacking such convolutional layers in a

cascade setting, we get a convolutional neural network. When implementing a con-

volutional layer, there are four hyperparameters that we need to specify. The height

kh and width kw of the filter, number of filters m, stride s (amount to shift the fil-

ter), and the amount of padding P (typically add zeros) on the borders of the input

tensor. Now let’s show a general formulation of a convolutional layer:

I. Input. The input to the convolutional layer is a 3-D tensor ∈ Rhi×wi×di

II. Parameter Estimation. Since we havem filters in the layer, the total learnable

11

Chapter 2. Background 2.1. Neural Networks

Figure 2.4: Left. Illustration of max-pooling with kernel k ∈ R2×2 (P = 0, s = 2).
Right. Illustration of average-pooling with kernel k ∈ R2×2 (P = 0, s = 2). Both
pooling mechanisms are performed independently for each activation map di in
the input tensor. Figure courtesy [20].

parameters are:m. (kh . kw . di) +m (include biases).

III. Output. The output of a convolutional layer is also a 3-D tensor of size: ho ×

wo ×m, where [20]:

ho = hi − kh + 2P
s

+ 1 ; wo = wi − kw + 2P
s

+ 1 (2.5)

Pooling layer. Pooling is used to downsample the activationmaps. Often, a con-

volutional layer is followed by a pooling layer, but not always. To an extent applying

pooling introduces translation-invariance into the network, meaning the pooling

layer output does not change if the input values are shifted spatially by a small

amount. Downsampling the activation maps further reduces the computational

complexity of the network, as subsequent layers operate on smaller input tensor

[19]. That said, it is possible to downsample in the convolutional layer itself by in-

creasing the stride of the convolution. Currently, this method of downsampling is

favored over pooling, especially when training good generative models, such as

variational autoencoders (VAEs) or generative adversarial networks (GANs) [20].

Like convolution, we have a fixed window (filter) size that is slide across the in-

12

Chapter 2. Background 2.1. Neural Networks

put tensor. Pooling is a 2-D operation, performed independently for each activation

map (depth slice) in the input tensor. For example, let I ∈ R220×220×100 be an input ac-

tivationmap to the pooling layer. Assuming our filter size is k ∈ R2×2 and is shifted

spatially (stride) of 2. After pooling our output tensor will be o ∈ R110×110×100, dis-

carding around 50% of the activations. There are two kinds of pooling:max-pooling

and average-pooling. In max-pooling, we take the maximum value from the input

tensor filter block, whereas in average-pooling, the average of all values is com-

puted. An illustration of both pooling mechanisms is shown in Figure 2.4.

Summary and implementation details. When implementing a pooling layer,

there are two hyperparameters that we need to specify. The height ph and width

pw of the filter, and stride s (amount to shift the filter). Note that one should be

careful when deciding the filter size. Larger filter sizes are too destructive since we

are discarding activations. The general formulation of a pooling layer:

I. Input. The input to the pooling layer is either a 3-D tensor ∈ Rhi×wi×di or 2-D

tensor ∈ Rhi×wi .

II. Parameter Estimation. There are no parameters in the pooling layer.

III. Output.The output of a pooling layer is a downsampled 3-D tensor∈ Rho×wo×di ,

where [20]:

ho = hi − ph
s

+ 1 ; wo = wi − pw
s

+ 1 (2.6)

2.1.2 Recurrent Neural Networks

So far we have discussed neural networks that follow a feed-forward approach.

There is no feedback that allows the network to make predictions based on pre-

vious inputs. Recurrent Neural Networks (RNNs) are a class of neural networks

used to process sequential data. Input to a RNN is typically a sequence of length

l containing vectors, expressed as {x>1 ,x>2 , ...,x>l }. Unlike previous neural network

13

Chapter 2. Background 2.1. Neural Networks

F

xt

Ot

ht1

F FF
h1 hl1h0

x1 x2 xl

O2O1 Ol

Figure 2.5: Block diagram of a RNN. It shows the RNN computation unfolded in
time. Output at time t, Ot depends on the input xt and previous state ht−1.

architectures, RNNs have a hidden state ht that gets updated during each input of

the sequence. The hidden state of the RNN can be interpreted as neural networks

achieving a very primitive form ofmemory capability. The hidden state at each step

is updated using the following recurrence formula:

ht = FW(ht−1,xt) (2.7)

where F is some RNN model and W are the shared weights and biases for every

time step t. At time step t1 the hidden state h0 is either initialized to 0 or treated as

a learnable parameter [16]. An illustration of RNN is shown in Figure 2.5.

RNN implementation. Let the input to the RNN at each time step be xt ∈ Rd,

and the hidden state ht ∈ Rh, then RNN is implemented as follows:

ht = σ(Whhht−1 + Wxhxt + b) (2.8)

where, Whh ∈ Rh×h and Wxh ∈ Rh×d are weight matrices used to transform pre-

vious hidden state ht−1 and input xt, b ∈ Rh is the bias vector, and σ is some

14

Chapter 2. Background 2.1. Neural Networks

Figure 2.6: Block diagram of different RNN models. RNN’s allows for sequential
processing of vectors. This makes it useful for tasks that require sequential or time.
a. Shows one input and many output model. b. Shows many input and one output
model. c. This model maps many inputs to many outputs in a serial fashion. d. This
model maps many inputs to many outputs in parallel fashion. Figure is based on
[20].

non-linearity typically used are tanh or ReLU. Different RNN models are shown

in Figure 2.6. The total learnable parameters in RNN are: h . h+ h . d+ h.

A major challenge with RNN is, it can be very challenging to learn long-term

dependencies. Two key challenges are the exploding-gradient and vanishing-gradient

problems. Exploding-gradients occurs when the gradients become too large. This

can be often mitigated by clipping the gradients to be at a certain range. Unlike

Exploding-gradients, Vanishing-gradients are challenging to rectify. Let’s demostrate

vanishing-gradient problemwith a simplified recurrence relation of theRNN, given

as:

ht = W>ht−1 (2.9)

where W are the weights of the RNN. Note that there is no non-linear activation

function or an input xt [19]. Such repetitive multiplication of the weights is anal-

ogous to the power method algorithm used to find the largest eigenvalue and its

corresponding eigenvector of amatrix [21]. Using this principle, Equation 2.9 can be

re-written as: ht = W>h0. Assuming W has an eigendecomposition, W = QΛQ−1,

15

Chapter 2. Background 2.1. Neural Networks

the reccurance formulation is given as:

ht = Q>ΛtQ−1h0 (2.10)

Since the principal eigenvalues are raised to the power of t, eigenvalueswhosemag-

nitude is less than one will vanish [19]. In practice for RNN’s we use non-linear ac-

tivation functions such as tanh, which places all values between 1 or -1. The deriva-

tive of tanh is zero at both ends (saturation region), so if the weights have small

values, from Equation 2.10 we can see that the gradients will shrink exponentially.

Long-Short TermMemory Networks

Long-Short Term Memory Networks (LSTMs) is a variant of RNN, used in deep

architectures specifically used to address the vanishing-gradient problem. Unlike

RNN, rather than applying an element-wise nonlinearity to the affine transforma-

tion of inputs and recurrent units, LSTM consists of gates that have an internal re-

currence (a self-loop), in addition to the outer recurrence of the RNN [19]. These

gates enable LSTM’s to both accumulate and forget states conditioned on the con-

text. LSTM block diagram is shown in Figure 2.7.

LSTMmechanism. There are two states in LSTM, cell-state ct and hidden-state

ht. LSTM consists of three gates called the forget gate, the input gate, and the output

gate. The forget gate decides what information is going to be kept in the cell-state

and the input gate decides on which values to update in the cell-state. Outputs

from both forget gate and input gate are used to update the cell-state. After which

the output from the output gate and the updated cell-state are used to update the

hidden-state ht.

LSTM implementation. Let inputs to the LSTM at each time step be xt ∈ Rd,

previous hidden state ht−1 ∈ Rh, and previous cell state ct−1 ∈ Rh, then LSTM is

16

Chapter 2. Background 2.1. Neural Networks

fw

ft

iw

tanh

c't

c'w

tanh

ow

it
ot

ct1

ht1

ct

ht

ct

xt1

Figure 2.7: Block diagram of LSTM model. Figure is adapted from [22].

implemented as follows:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo) (2.11)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

where operator ◦ denotes the Hadamard product, ft is the forget gate, it is the input

gate, ot is the output gate, and ct and ht are the updated cell states. W(f,i,o,c) ∈ Rh×d

and U(f,i,o,c) ∈ Rh×h are the associated weight matrices. b(f,i,o,c) ∈ Rh is the bias

vector. The non-linearities used are: σg is sigmoid, σc and σh is typically tanh but can

be replacedwithReLU. The total learnable parameters in LSTM is: 4 . (h . d+h . h+h).

Convolutional LSTM. In this work we used a variant of LSTM called convo-

lutional LSTM (ConvLSTM)) proposed by Shi et al. [23]. An advantage of using

17

Chapter 2. Background 2.2. Training Neural Networks

ConvLSTM is that the network captures spatiotemporal correlations better, at the

same time reduce the number of parameters. This is similar to using CNN over the

fully-connected network. In ConvLSTM, the fully connected layers in the LSTM, are

converted into fully convolutional layers.

Convolutional LSTM implementation. Let inputs to the ConvLSTM at each

time step be Xt ∈ Rhi×wi×di , previous hidden state Ht−1 ∈ Rhh×wh×dh , and previous

cell state Ct−1 ∈ Rhc×wc×dc , then ConvLSTM is implemented as follows:

it = σ(Wxi ∗Xt + Whi ∗Ht−1 + Wci ◦Ct−1 + bi)

ft = σ(Wxf ∗Xt + Whf ∗Ht−1 + Wcf ◦Ct−1 + bf)

Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt + Whc ∗Ht−1 + bc) (2.12)

ot = σ(Wxo ∗Xt + Who ∗Ht−1 + Wco ◦Ct + bo)

Ht = ot ◦ tanh(Ct)

where the operator ◦ denote the Hadamard product and ∗ denotes the convolution

operator. ft is the forget gate, it is the input gate, ot is the output gate, and Ct and

Ht are the updated cell states.

2.2 Training Neural Networks

Having established neural network models, the question still remains how do we

get the weights W (neural network weights include bias too, for brevity we write

both weights w and bias b together as W). These weights are either learned from

scratch or fine-tune (transfer learning) to perform the task at hand. In this work,

we are concerned with supervised learning. In supervised learning, we have train-

ing dataset of samples which are assumed to be independent and identically dis-

tributed (i.i.d.) coming from a same distribution F . Each sample n has an input xn,

18

Chapter 2. Background 2.2. Training Neural Networks

o1

o2

o3

o4

h1

h3

x1

x2

x4

x1

x2

x3

x4

h1

h2

h3

h4

o1

o2

o3

o4

W1 W2

x3

W1 W2

Figure 2.8: Illustration of dropout technique applied to a two-layer neural network.
Left. Neural network without dropout applied. Each input is connected to every
neuron in each layer. Right. Dropout applied to the hidden layer of the neural net-
work. The connections to and from the dropped neurons are disabled. Figure is
adapted from [24].

along with an associated ground truth, yn. The primary objective in learning the

weights of the neural network model is to minimize some loss L, between model

prediction ŷn and ground truth yn as shown in Equation 2.13. Therefore, the final

objective is shown in Equation 2.14,which states thatwe estimateW thatminimizes

the expected loss between ŷn and yn.

L = L(ŷn, yn) (2.13)

J = arg min
W

E[L] (2.14)

Equation 2.14 holds when we have access to all possible samples from the given

distribution F . This is almost never the case, therefore finding an optimal f is in-

tractable. Given that we only have finite samplesN , under the i.i.d. assumption we

can approximate the expected loss in Equation 2.14 as the average of the loss over

19

Chapter 2. Background 2.2. Training Neural Networks

N such samples:

J ≈ arg min
W

1
N

N∑
n=0

L(ŷn, yn) (2.15)

In practice, once we have found a function f that has optimal weights W of

our network, we can discard the training data and only keep the learned weights.

Depending on the task, the loss function in Equation 2.13 used, is described in Sec-

tion 4.5.

Often neural network weights W can be much larger compared to the training

samples N available. This can result in the network memorizing the training sam-

ples and performing poorly on previously unseen data. This problem is referred to

as over-fitting. To address this problem, we add a regularization R to the weights

of the network. The objective loss function is shown in Equation 2.16. We discuss

two common techniques used in regularization of network weights: (1) L2 regular-

ization and (2) Dropout.

J ≈ arg min
W

1
N

N∑
n=0

L(ŷn, yn) +R(W) (2.16)

L2 regularization. This technique is used by neural networks and non-neural

network machine learning models. It prevents the parameters from being too large

by adding a penalty to the parameters. This helps in preventing someweights from

having an excessive effect on predictions, thereby providing better generalization.

The objective loss function with regularization function is:

J ≈ arg min
w,b

1
N

N∑
n=0

L(ŷn, yn) + λ‖w‖2
2 (2.17)

where λ is a hyperparameter specifying the strength of the regularization. In Equa-

tion 2.17,weights closer to zerowill have little impact on loss,whereas largeweights

(outliers) can have a huge (squared) impact. In practice we tend to exclude the bias

20

Chapter 2. Background 2.2. Training Neural Networks

terms from regularization, since they are only responsible for offsetting the model,

and do not interact multiplicatively with inputs [20].

Dropout. This method was introduced by Srivastava et al. [24]. It reduces over-

fitting by randomly turning off neurons in a layer. When dropout is applied to a

particular layer it independently turns off each neuron in that layer with a proba-

bility between 0 and 1. Such an approach prevents the network from co-adapting.

The Figure 2.8 shows the visualization of dropout applied to a two-layer neural net-

work. In practice, we apply this technique only to the fully connected layers of the

neural network model and not to convolutional layers. The weights of the convo-

lutional layer are highly correlated due to weight sharing, and randomly dropping

them provides little to no effect on the overall model performance.

2.2.1 Optimization

In this section, we look at how to solve the optimization problem:

arg min
W

J(W; ŷn, yn) (2.18)

in other words, we are minimizing some loss function with respect to the network

weights. Before going more into optimization, it is worth-while to look at some

prelimanaries. In supervised training, we typically learn the network weights from

some dataset (depending on the task), where each input has an associated ground

truth. A typical dataset is divided into training set, validation set, and testing set (in

some cases there is no explicit validation set, typically a small percent taken from

training set is used as the validation set). Note that when using SGDwe require the

gradient of a function. All the neural network models discussed in this work are

end-to-end differentiable.

Coming back, in this section we will discuss the most common and so far an

21

Chapter 2. Background 2.2. Training Neural Networks

effective technique used to train neural networks, the Gradient Descent (GD). This

method belongs to the class of optimization algorithms known as first order methods.

These methods use first order derivatives (or gradients), which shows the direction

to move along in the search space.

In order to optimize using GD, we first need to obtain the gradients of the func-

tion with respect to it’s weights:∇WJ(W; ŷn, yn). This gradient gives the direction

to step in order to achieve a lower L(ŷn, yn). Therefore the network weights are up-

dated as follows:

W = W− α∇WJ(W; ŷn, yn) (2.19)

whereα is the learning ratewhich controls the amount of step taken in the direction

of the gradient. This procedure is repeated until convergence (when L(ŷn, yn) on

validation/testing set is less than some error margin, ε).

The gradients in Equation 2.19 are computed using the entire training samples.

In practice, training samples in a dataset can be very large i.e. Places dataset [25] has

≈ 9 million images and ImageNet dataset [26] has ≈ 1.2 million training images.

Fitting all the data in a single step is not practical, hence we estimate the gradients

using only a small subset of the samples. We split the training data into n subsets

called batches. We obtain n by dividing total training samples by batch-size. This

version of GD is called Stochastic Gradient Descent (SGD). Typically batch size is de-

termined based on available memory, which means to do a single pass through the

whole dataset will require n steps. Performing this single pass is called an epoch. It

usually takes multiple such epochs for a model to converge.

Note that neural networks are highly non-convex functions, therefore before we

begin training, it is important to initialize network weights (W). As a first thought,

it would be tempting to initialize all the weights to zero. This is a mistake as the

network ends up computing the same output, the same gradients and undergo

sameweights update at every neuron. This is useless as we are not learning distinct

22

Chapter 2. Background 2.2. Training Neural Networks

high-level features in every layer. Therefore, it is common to initialize the weights

randomly, typically from a Gaussian with zero mean and small standard deviation

(≤ 1.0) [20]. Such initializations help break the symmetry, which in turn allows

the network to learn distinct features at different layers. There are also advanced

initialization schemes such as He initialization [27], and Xavier initialization [28]

which help networks converge faster.

Having discussed the optimization strategy, an important question arises, if we

are able to reach an optimal minimum? (in other words, can we learn an optimal set

of weights that will achieve the lowest L(ŷn, yn) on the testing set). There is no guar-

antee that an optimal minimumwill be reached, and in some case even get stuck at

a local minima such as saddle points. These saddle points are surrounded by high

error plateaus that make it hard for the SGD to move out off, making learning slow

down drastically [29]. Therefore, more advanced versions of SGD is employed in

order to further improve the convergence speed, as discussed below.

The first version to SGD is the addition ofmomentum. Momentum helps acceler-

ate SGD in the direction of the gradient, by accumulating an exponentially decaying

moving average of past gradients. SGD with momentum is formulated as follows:

vt = γvt−1 − α∇WJ(W; ŷn, yn) (2.20)

W = W + vt

where vt is the velocity of the system, and γ ∈ [0, 1) is the momentum term. The

hyperparameter γ determines how rapidly the contributions from the previously

accumulated gradients exponentially decay. In other words, it dampens velocity of

the systems as it reaches a minimia, otherwise it would not stop. Note that com-

pared to SGD, in SGD-momentum step size is the largest when gradients point in

the same direction. There are also more incremental methods that have been intro-

23

Chapter 2. Background 2.2. Training Neural Networks

duced recently, which adapts the learning rates of the network parameters. These

include the AdaGrad [30], RMSProp [31], and Adam [32]. For more information on

optimizers refer to [19]. In this work, we used Adam optimizer to train our neural

network models.

In Adam, momentum is integrated directly into the first-order moments (the

mean) of the gradient. Another key difference in Adam compared to other ad-

vanced first order optimizers is the inclusion of bias corrections to both the first-

order and the second-order running moments. The final formulation of Adam is

shown below:

W̃ = W + β1vt−1

g = ∇WJ(W̃; ŷn, yn)

rt = β2rt−1 + (1− β2)g � g (2.21)

vt = β1vt−1 −
α
√
rt
� g

W = W + vt

where, the hyperparameters, β1 is the momentum coefficient, β2 is the decay rate,

and α is the learning rate. Adam is largely regarded as robust to the selection of

hyperparameters (recommended to set β1 = 0.9 and β2 = 0.999 as their default

values), with the exception of learning rate which needs to be adjusted [19].

2.2.2 Backpropagation

In order to use SGD we require the gradient∇WJ(W; ŷn, yn). Computing this gra-

dient expression can be computationally intractable, since we are dealingwith neu-

ral networks with a very large number of parameters. Alternatively, this gradient

can be obtained numerically using the backpropagation algorithm, often referred

24

Chapter 2. Background 2.2. Training Neural Networks

dy
dy

matmul

X

W

b

dy
dy

dy
dy

dy
db

dy
dy

dy
dW

dy
dX

y

..

.

Intermediate
Node

Variable Node

Operation

Figure 2.9: Artificial neuron expressed as computational graph and gradients com-
puted using backprop.

to as backprop in deep learning. Backprop is a dynamic-programming algorithm

which computes the gradient using simple and inexpensive procedure [19]. Before

we dwell into the details of the backprop, let’s introduce two more concepts: chain

rule and computational graph.

Chain Rule. The chain rule of calculus is used to compute derivaties of func-

tions by decomposing them into other functions whose derivatives are known [19].

Example, let x ∈ R and let f and g be two functions such that f : R 7→ R and

g : R 7→ R. Suppose u = g(x) and v = f(u), by chain rule:

∂v

∂x
= ∂v

∂u

∂u

∂x
(2.22)

Note that chain rule can generalize to vectors as well. Example, let x ∈ Rm, y ∈ Rn

and let f and g be two functions such that f : Rm 7→ Rn and g : Rn 7→ R. Suppose

25

Chapter 2. Background 2.2. Training Neural Networks

u = g(x) and v = f(u), by chain rule:

∇xv = (∇uv)>∇xu (2.23)

where∇xu isn×m Jacobianmatrix of g. Likewise for each operation in the graph the

backprop algorithm computes the Jacobian-gradient product. Note that in practice

we apply backprop to tensors of arbitary dimensions.

w

x

y

z

dz
dy

dy
dx

dz
dx

dz
dw

dx
dw

z

y

x

w

Figure 2.10: An example of symbol-to-symbol approach to computing derivatives
using backprop. In this approach backprop adds notes to the computational graph
onhow to compute the derivatives. In this example, the graph is constructed by run-
ning backprop to compute dz

dw
expression. This figure is adapted directly from[19].

Computational Graph. Neural networks can be formally represented as a di-

rected computational graph. Expressing neural networks as computational graphs

help describe backpropagation algorithm more precisely [19]. Each node in the

graph represents a variable which could be scalar, matrix, tensor, etc. Also, the

graph consists of set of allowable operations. An operation will return the output

26

Chapter 2. Background 2.3. CNN models

variable. An example of neuron expressed as a computational graph is shown in

Figure 2.9. Modern deep learning frameworks, like TensorFlow [33], use symbol-

to-symbol differentiation, where it creates additional nodes to the computational

graph which provides a symbolic representation of required gradient operations.

An advantage of casting the gradients itself as a computational graphmakes it con-

venient to obtain higher order derivatives by backprop. An illustration of a sym-

bolic approach is shown in Figure 2.10.

2.2.3 Training Procedure

Now that we have described neural networks and optimization techniques, let’s

apply these to formulate a training procedure that is typically used while training

neural networks. A sample classification code in Tensorflow framework is shown

in Listing 2.1.

2.3 CNN models

Deep convolutional network require large amounts of training data. This can be bot-

tleneck inmany tasks which have only limited training data. An example would be,

in the ImageNet image classification task which has at least 1000 training images

per class, whereas in MIT-67 indoor-scene classification which consists of 80 train-

ing images per scene. In practice, we typically train on a large dataset and fine-tune

on the smaller dataset. This approach is called transfer learning.

There are a number of standard CNN models primarily trained on ImageNet

such as AlexNet, VGG-16/19, GoogleNet, ResNet, etc. These can be used as an off-

the-shelf feature extractor, or a starting point to fine-tune on the task dataset. In

this work, we primarily used GoogleNet [3]. The key innovation in the GoogleNet

architecture compared to previous incarnations such as AlexNet or VGG is the in-

27

Chapter 2. Background 2.3. CNN models

troduction of inception module.

Output from
Previous Layer

1x1
convolutions

1x1
convolutions

3x3
convolutions

5x5
convolutions

3x3
MaxPooling

1x1
convolutions

1x1
convolutions

Depthwise
Concatenate all
 Filter outputs

Figure 2.11: Block diagram of a Inception Module. Figure is adapted from [3]

The main motivation behind Inception architecture is to use filter-level sparsity

at the same timemaintaining translation invariance. Inception architecture achieves

this by using convolutional layers as building blocks [3]. Inception module consists

of multiple convolution layers operating on the same input tensor. Then the output

of all these individual layers is concatenated along the depth dimension to form

a single output tensor. The block diagram of the inception block is shown in Fig-

ure 2.11.

The GoogleNet architecture consists of fivemajor convolutional blocks. The first

two blocks are a single convolutional layer followed by the last three blocks which

are inception modules. Counting individual layers in each block of GoogleNet to-

28

Chapter 2. Background 2.3. CNN models

tals to 22 layers. All the outputs after convolutions, including those inside the In-

ception modules an element-wise non-linearity of ReLU is applied. Note that even

the lower layers in the GoogleNet can be converted into inceptionmodules. In prac-

tice, due to memory constraints, it was convenient to use Inception modules only

at higher layers while the lower layers were kept in traditional convolutional form

[3].

GoogleNet is a relatively deep network, therefore due to vanishing gradient

problem discussed in Section 2.1.2 could affect the propagation of gradients. There-

fore two auxiliary classifiers are connected to intermediate layers as shown in Fig-

ure 2.12 to combat the vanishing gradient problem while providing regularization

[3]. During training, the auxiliary classifiers loss is added to the total loss of the net-

work with a discount factor (the auxiliary classifiers losses were weighted by 0.3)

[3]. At inference, the auxiliary networks are discarded and only the output from the

final layer is used.

29

Chapter 2. Background 2.3. CNN models

1 # !/ usr/bin/env python
2 # Import necessary packages
3 import tensorf low as t f
4 from googlenet import GoogleNet
5 from da ta se t s import imagenet
6

7 c l a s s ImageNet_Class i f i ca t ion (ob j e c t) :
8 def _ _ i n i t _ _ (s e l f , data , input_data , labe l_data , ∗∗kwargs) :
9 s e l f . data = data

10 s e l f . images = input_data
11 s e l f . l a b e l s = labe l_da ta
12 s e l f . n_epochs = kwargs . pop (’ n_epochs ’ , 20)
13 s e l f . ba t ch_s ize = kwargs . pop (’ ba t ch_s ize ’ , 64)
14 s e l f . l _ r a t e = kwargs . pop (’ l _ r a t e ’ , 0 . 0 001)
15

16 # Setup model
17 s e l f . model
18

19 def model (s e l f) :
20 " " "
21 This funct ion def ines the network along with the l o s s funct ion
22 " " "
23 # GoogleNet Model
24 net = GoogLeNet ({ ’ data ’ : input_data })
25 # Get output from l a s t l ayer
26 net_output = net . l aye r s [’ FC_1000 ’]
27 # Loss
28 s e l f . l o s s = t f . nn . sof tmax_cross_entropy_with_ logi t s (l a b e l s=

labe l_data , l o g i t s =net_output)
29

30 def t r a i n (s e l f , model , l _ r a t e , n_epochs) :
31 " " "
32 This funct ion t r a i n e s the network using SGD.
33 " " "
34 ## S e l e c t an SGD optimizer
35 optimizer = t f . t r a i n . AdamOptimizer (l e a rn ing_ ra t e= s e l f . l _ r a t e)
36

37 ## Generate the gradient computational graph using backprop .
38 grads = t f . gradients (s e l f . loss , t f . t r a i n ab l e _va r i a b l e s ())
39

40 ## Generate the gradient computational graph with parameter
update .

41 grads_and_vars = l i s t (zip (grads , t f . t r a i n ab l e _va r i a b l e s ()))
42 t ra in_op = optimizer . apply_gradients (grads_and_vars=

grads_and_vars)
43

44 # Train Data Loader
45 t r a in_ loade r = s e l f . data . gen_data_batch (s e l f . ba t ch_s ize)
46

47 # Compute s teps
48 n_examples = s e l f . data . max_steps
49 n_i ters_per_epoch = in t (np . c e i l (f l o a t (n_examples)/ s e l f .

ba t ch_s ize))

30

Chapter 2. Background 2.3. CNN models

50

51 # S t a r t a tensorf low sess ion
52 with t f . Sess ion () as ses s :
53 ## I n t i a l i z e the t r a in ing graph
54 sess . run (t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ())
55

56 ## Begin t r a in ing
57 # fo r epoch in epochs
58 fo r e in range (s e l f . n_epochs) :
59 # epoch lo s s va r i ab l e
60 alv = 0
61 # fo r batch in batches
62 f o r i in range (n_i ters_per_epoch) :
63 # Sample n data pa i r s from t ra in ing s e t
64 image_batch , l abe l_ba t ch = next (t r a in_ loade r)
65 f eed_d i c t = { s e l f . images : image_batch ,
66 s e l f . l a b e l s : l abe l_ba t ch }
67 _ , in term_loss = sess . run ([train_op , l o s s] ,

f eed_d i c t)
68 alv += interm_loss
69

70 i f (a lv/n_examples) < eps i lon :
71 break
72 #−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 def main () :
74 # Training parameters
75 eps i lon = 0 .01
76 epochs = 1000
77 ba tch_s ize = 128
78 l e a rn ing_ ra t e = 0 .0001
79

80 # Place−Holders to feed data in to graph
81 images = t f . p laceholder (t f . f l oa t32 , [None , 224 , 224 , 3] , name= ’ imgs ’)
82 l a b e l s = t f . p laceholder (t f . f l oa t32 , [None , 1000] ,name= ’ l a b e l s ’)
83

84 # Load Model
85 ImgClsfy = ImageNet_Class i f i ca t ion (data=imagenet , input_data=images ,

l abe l_da ta= labe l s , n_epochs=epochs , ba tch_s ize=batch_s ize ,
l _ r a t e = l ea rn ing_ ra t e)

86

87 # Begin Training
88 ImgClsfy . t r a i n ()
89 #−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 i f __name__ == " __main__ " :
91 main ()

Listing 2.1: Sample tensorflow classification code illustratingAlgorithm 1 in python

31

Chapter 2. Background 2.3. CNN models

Input

7x7 Conv.

3x3 MaxPool

LRU

Inception

1x1 Conv.

7x7 Conv.

LRU

3x3 MaxPool

Inception.

3x3 MaxPool

Inception.

Inception.

Inception.

Inception.

Inception.

3x3 MaxPool

Inception.

Inception.

7x7 AvgPool

1000 FC

Softmax

1x1 Conv.

1024 FC

5x5 MaxPool

1000 FC

Softmax
1x1 Conv.

1024 FC

5x5 MaxPool

1000 FC

Softmax

Output

Figure 2.12: Block diagram of a GoogleNet architecture. The inception block referes
to the inception module shown in Figure 2.11. Figure is adapted from [3]

32

chapter 3
Related Works

In this chapter we will look at the related works on attention and two tasks that we

apply attention too: Image-based camera pose regression and indoor scene classifi-

cation. These two problems, we believe, provide ideal test cases to study the model

of attention presented in this paper. Consider, for example, the problem of camera

pose estimation. It is conceivable that the system first focuses on the overall scene,

which is captured by higher levels of abstraction, and next attends to fine details

captured by lower levels of abstraction, such as existence of a window.

3.1 Attention

Attention is a mechanism that dynamically allocates computational resources to

the most salient features of the input signal. Attention has appeared in a variety of

recent architectures [34–40]. A natural way to implement a sequential attentional

probing mechanism is with a Recurrent Neural Network (RNN) or variant (e.g.,

Long Short-Term Memory, LSTM [35, 41]) in conjunction with a gating function

33

Chapter 3. Related Works 3.2. Image-based camera pose regression

[23, 42, 43] that yields a soft (e.g., softmax or sigmoid) or hard attention [16, 44].

The attentional policy is learned without an explicit training signal, rather the task-

related loss alone provides the training signal for the attention-related weights. In

this work, we incorporate both soft (spatial selection) and hard (layer selection) at-

tention in an end-to-end trainable architecture. Most closely related to the current

work are the soft and hard selectionmechanisms proposed by Xu et al. [16] and Veit

and Belongie [40], respectively. Xu et al. [16] proposed an end-to-end trainable soft

spatial attention architecture for image captioning. We adapt this soft attention ar-

chitecture for our purposes and further extend it to include hard attention. Veit and

Belongie [40] proposed a dynamic convolutional architecture that selects whether

or not information propagates through a given CNN layer during a forward pass.

Similar to Veit and Belongie [40], we use the recently proposed Gumbel-Softmax to

realize our discrete (hard) selection of layers.

3.2 Image-based camera pose regression

Low-level features (e.g., SIFT [45]) have dominated the camera pose localization lit-

erature, e.g., [46–49]. An early example of using high-level features for camera local-

ization appeared in Anati et al. [46], where heatmaps from object detections were

used for localization. More recently, high-level CNN features have garnered atten-

tion. These features can be considered as soft proxies to object detections. Kendall

et al. [50,51] proposed PoseNet, an image-based 6-DoF camera localizationmethod.

PoseNet regresses the camera position and orientation based on input provided by

a CNN layer. Kendall and Cipolla [52] reconsidered the loss used in PoseNet to

integrate additional geometric information. Walch et al. [2] extended the PoseNet

approach by introducing an LSTM-based dimensionality reduction step prior to

regression to avoid overfitting. In each case, the networks rely on features from a

34

Chapter 3. Related Works 3.3. Indoor scene classification

manually selected layer, located relatively high in the feature hierarchy. In contrast,

we propose an attentional network that is capable of dynamically integrating the

most salient features across the spectrum of feature abstractions (capturing poten-

tially texture-like and object-related features as necessary).

3.3 Indoor scene classification

Todemonstrate the generality of our approachwe also consider a classification task,

indoor scene classification. Here, a wealth of research has considered both hand-

crafted (e.g., [53,54]) and learned deep features, e.g., [18,55]. In this work, we com-

pare our approach using a standard deep architecture, GoogLeNet [3], which we

also use as the base network for our layer-spatial attention method.

35

chapter 4
Methodology

The proposed layer-spatial attention network sequentially probes the input signal

over a fixed number of steps. It is comprised of a hard selection mechanism that

selects a CNN layer (Sec. 4.3) and soft attention that selects a spatial location within

the selected layer (Sec.4.1). The attention network is realized using a convolutional

LSTM (Conv-LSTM)[23]. Figure 4.4 provides an overview of our architecture. At

each Conv-LSTM step, the layer attention selects a CNN layer and spatial attention

localizes a region within it. After N recurrent steps, the Conv-LSTM hidden states

for all steps are concatenated and used for classification or regression.

4.1 Where: Spatial attention

We adapt the soft attention mechanism from Xu et al. [16] as the foundation of our

method, with a key difference that is, we used convolutional layers instead of fully-

connected. At each time step t, the input to the attention layer consists of deep fea-

ture (specifically, the feature map) from (the currently selected) CNN layer plus the

36

Chapter 4. Methodology 4.2. Soft Attention implementation.

so
ft
m
ax

H x W x C

ReLU

H x W x C

H x W x C

1x1
3x3
5x5

1x1
3x3
5x5

H x W x C

3x3

H x W x 1

*

* *

Figure 4.1: Multi-Convolutional Soft Attention Mechanism.

LSTM hidden state from the previous time step. At each time step, the attention

mechanism selects a feature it deems most likely to improve task performance.

4.2 Soft Attention implementation.

At each time step t, the spatial attention mechanism receives as input the selected

layer f ∈ Rhf×wf×df (see Section 4.3) and the recurrent hidden state ht ∈ Rhh×wh×dh

from the previous step. The soft attention module is implemented as follows:

hatt = ht ∗Ch

fatt = ReLU(hatt + f)

A = fatt ∗CA (4.1)

Amask = softmax(A)

Oatt = Amask � f

where ∗ denotes the convolutional operator and � is element-wise multiplication.

Eh and CA are two convolutional layers, which compute an embedding and (un-

37

Chapter 4. Methodology 4.2. Soft Attention implementation.

scaled) attention mask, respectively. The embedding layer Eh is used to transform

the hidden state ht, channel dimension to equal to the input layer’s channel di-

mension. The CA layer computes the unscaled attention mask with dimensions

hf ×wf × 1. The final attention mask is computed by taking the softmax of the un-

scaled attention mask. The output of the attention layer Oatt is obtained by taking

an element-wise multiplication between the features in each channel and attention

map.

During training, we also add an additional attention penality loss adapted from

[16]. The penality loss is implemented as follows:

Lmask = α
hfwf∑
i=1

(1−
N∑
t=1

Amaskt) (4.2)

whereα determines theweight of the regularizer. SinceAmask = 1, as it is an output

from softmax. This loss penalizes the model if only one region in the image is only

selected for N steps.

4.2.1 Multi-Convolutional Soft Attention mechanism.

Unlike the soft attention mechanism proposed in Xu et al. [16] our’s replace fully-

connected layerswith convolutional layers. Specifically,weusedmulti-convolutional

layers that uses different kernel sizes similar to an inception module.

At each time step t, the module receives ht from ConvLSTM and the selected

feature layer Ft. The ConvLSTMs hidden state ht is first converted to the appropri-

ate channel size of the feature map. We add the embedding ht and feature layer Ft.

Thenwe apply a non-linearity (Leaky ReLU). Afterwhichwe compute the attention

weights and apply softmax to get the attention map. Then an element-wise multi-

plication is performed between features and attentionmap to get the final output of

the soft attention module. The Multi-ConvLSTM is applied to attention output. At

38

Chapter 4. Methodology 4.3. What: Layer attention

softmax

argmax

Pt

Gumbel	(0,	1)
i.i.d	samples

Backward

Inference

Figure 4.2: Gumbel-softmax represented as computation graph. Figure adapted
from[40].

each time step the LSTMoutput is used for prediction. In Section 5.4 we experimen-

tally show the perfomance again obtained using Multi-Convolutional approach.

Figure 4.1, illustrates the multi-convolutional soft attention mechanism.

4.3 What: Layer attention

In layer attention (i.e., “what” features to attend) a CNN layer is selectedwhose fea-

ture map is deemed to contain the most salient information at the current recurrent

step. Our layer attention involves a discrete (hard) selection of a CNN layer. Here,

we use the recently proposed continuous relaxation of the Gumbel-Max trick [56],

the Gumbel-Softmax [57,58], to realize the discrete selection of layers.

Gumbel-Max provides a simple and efficient way to draw samples from a cate-

gorical (discrete) distribution:

z = one_hot(arg max[gi + log πi]), (4.3)

where, g1, ..., gk are i.i.d. samples drawn from the Gumbel(0, 1) distribution, and πi

are unnormalized probabilities. Samples g are drawn using the following proce-

39

Chapter 4. Methodology 4.3. What: Layer attention

FlattenAverage
pooling

Gate Embedding ar
gm
ax

Gumble Sampler

H x W x C
1 x 1 x C

C x 1

E x 1

3 x 1
3 x 1

3 x 1

Figure 4.3: Layer Selection Mechanism.

dure: (i) draw sample u ∼ Uniform(0, 1); and (ii) set g = − log(− log(u)). In the

forward pass (and during testing), we compute the arg max of the unnormalized

log probabilities. In contrast, in the backward pass the arg max is approximated

with a softmax function:

yi =
exp

(
log(πi)+gi

τ

)
∑k
j=1 exp

(
log(πj)+gj

τ

) , (4.4)

where k is the number of CNN layers that are considered for selection, i ∈ [1, k],

and τ represents temperature. (This approach is the straight-through version of the

Gumbel-Softmax estimator proposed in [58].) During training the temperature, τ ,

is progressively lowered. As the temperature approaches zero, samples from the

Gumbel-Softmax distribution closely approximate those drawn from a categorical

distribution. An illustration of gumbel-softmax method is shown in Figure 4.2.

For layer attention, we realize the (layer) selection scores (i.e., unnormalized

probabilities) at each recurrent step as the output of a fully connected layer com-

puted using the previous hidden state. During the forward pass we perform layer

selection using Equation 4.3 and in the backward pass gradients are computed us-

ing Equation 4.4 to keep our architecture end-to-end trainable.

40

Chapter 4. Methodology 4.3. What: Layer attention

4.3.1 Layer selection mechanism architecture.

The mechanism receives input ht from ConvLSTM. It then performs an average

pool and an intermediate gate embedding before prediction. We add the Gum-

bel samples to the predicted logits and perform an argmax to select the optimal

layer. The gate embedding layer dimension E is much smaller than C. This gate

embedding layer helps build a possible representation of incoming features at ev-

ery LSTM steps, without significantly increasing the network parameters. Figure

4.3, illustrates the layer selection mechanism.

41

Chapter 4. Methodology 4.4. Joint Spatial and Layer Attention Architecture

4.4 Joint Spatial and Layer Attention Architecture

Fi
gu

re
4.
4:
O
ve

rv
ie
w

of
ou

rl
ay
er
-s
pa

tia
la
tte

nt
io
n
ar
ch

ite
ct
ur
e.
La

ye
r-
sp

at
ia
la
tte

nt
io
n
is
re
al
iz
ed

w
ith

in
a
C
on

v-
LS

TM
fr
am

ew
or
k,

w
he

re
th
e
la
ye

ra
tte

nt
io
n
us

es
th
e
pr
ev

io
us

hi
dd

en
st
at
e,
an

d
sp

at
ia
la

tte
nt
io
n
us

es
bo

th
th
e

se
le
ct
ed

la
ye

r
an

d
th
e
pr
ev

io
us

hi
dd

en
st
at
e.

A
fte

r
N

C
on

v-
LS

TM
st
ep

s,
th
e
hi
dd

en
st
at
es

fr
om

al
ls

te
ps

ar
e

co
nc

at
en

at
ed

an
d
us

ed
fo
rr

eg
re
ss
io
n
or

cl
as
si
fic

at
io
n.

42

Chapter 4. Methodology 4.5. Tasks

4.5 Tasks

In our approach, after N Conv-LSTM steps, the hidden states are concatenated,

average pooled, and passed onto a fully connected layer for (regression/classifi-

cation) prediction. To ensure that our comparisons are meaningful, and that any

differences in the performance of our method to those posted by previous methods

are due to our attention mechanism, we use the exact same losses as those used by

our baselines.

4.5.1 Camera Pose Estimation

The proposed camera localization network takes an RGB image as input and out-

puts camera position and orientation [x̂, q̂]>. Camera pose is defined relative to an

arbitrary reference frame.We use the same regression loss as our baselines [2,50,59]

to facilitate direct empirical comparison:

L = ‖x− x̂‖2 + β‖q − q̂
‖q̂‖2

‖2, (4.5)

where [x, q]> represent ground truth position x and orientation q, and [x̂, q̂]>

denote predicted position x̂ and orientation q̂. Orientations are represented using

quaternions. β is a scalar hyperparameter that determines the relative weighting

between the positional and orientation errors. We use the same β value as our base-

lines, PoseNet [50] and LSTM-PoseNet [2].

43

Chapter 4. Methodology 4.5. Tasks

4.5.2 Indoor Scene Classification

Consistent with our scene classification baseline [3], we use the standard cross-

entropy classification loss:

L = −y>c log(ŷc), (4.6)

where yc is a one-hot encoded class label for class c, and ŷc is the output of the

softmax classifier.

44

chapter 5
Results

In this chapter we report and discuss the experimental results. In Section 5.1 we

detail the experimental setup which includes the hyper-parameters. Section 5.2 we

discuss the datasets used in this work. Section 5.3 shows results on the layer-spatial

attention applied to camera pose estimation and indoor scene classification tasks.

Finally, in Section 5.5 shows an ablation study using layer-spatial attention.

5.1 Experimental Setup

To realize our layer-spatial attention model we use the same basic architecture as

Xu et al. [16] for sequential spatial attention. We augment this network with hard

attention for layer selection. To avoid overfitting, we replace the LSTM layers with

ConvLSTM [23] layers that reduce the network weight parameterization.

We used TensorFlow framework [33] to implement and train our models. Every

model was trained end-to-end using ADAM [32] optimizer with the parameters:

β1 = 0.9, β2 = 0.999, and ε = 1×10−8. We used a learning rate equal to 1×10−4. The

45

Chapter 5. Results 5.2. Datasets

regularization parameter, λ = 2 × 10−4, was added to weights, but not to biases.

The dropout probability was set to 0.5 for all the experiments. The LSTM hidden

size was set to 96 for all experiments as well.

Camera Pose Estimation. Images were resized to 256 × 455 pixels. During train-

ing, we performed random crops of 224 × 224 pixels. At test time, we performed

center crop of 224× 224 pixels. The batch size was set to 40. Similar to [50] and [2],

separate mean images were computed for each channel and the images were mean

subtracted per channel. From the loss function in Equation 4.5, a balance β has to

be used between the orientation and translation because they are regressed from

the same model weights. Experimentally it was found that β is greater for outdoor

scenes as position errors tended to be relatively greater. For Cambridge Landmarks

dataset β value was set between 250 to 2000. For 7-Scenes dataset β value was set

between 120 to 750, and for TUM-LSI dataset β value was set to 1000.

Indoor scene classification. We resized the images to 256 × 256. During training,

we performed random crops of 224 × 224 pixels. At test time, we performed cen-

tered crop of 224× 224 pixels. The batch size was set to 40. The images were mean

subtracted per channel.

For both camera pose estimation and indoor scene classification, we used the

same pre-trained CNN layers as used by previous methods. Specifically, we used

the original GoogLeNet weights trained on Places1 [25]. By necessity, we converted

these provided trained network weights to be able to use these in TensorFlow.

46

Chapter 5. Results 5.2. Datasets

Figure 5.1: (a) Top row: Cambridge Landmarks Dataset. King’s College, Old Hospi-
tal, Shop Facade and St. Mary’s Church. (b) Middle row: 7-Scenes (subset). Chess,
Fire, Office and Pumpkin. (c) Bottom row: TUM-LSI.

5.2 Datasets

5.2.1 Cambridge Landmarks

Cambridge Landmarks [50] is a large scale outdoor dataset, containing five outdoor

datasets. For our experiments, we only use the four datasets that were used by [50]

and [2]. The dataset consists of RGB images. Six degrees-of-freedom camera poses

are provided for each image. The dataset was collected using a smart phone, and

structure from motion was employed to label each image with its corresponding

camera pose.

5.2.2 7-Scenes

7-Scenes [60] is a small scale indoor dataset,which consists of sevendifferent scenes.

These sceneswere obtained using Kinect RGB-D camera, andKinectFusion[61] was
1http://places.csail.mit.edu/downloadCNN.html

47

http://places.csail.mit.edu/downloadCNN.html

Chapter 5. Results 5.2. Datasets

Figure 5.2:MIT-67 Indoor Scene Dataset. (a) Top row: Airport, Auditorium, Concert
Hall and Classroom. A network can have a hard time classifying them by just focus-
ing on specific properties, since all of them contain large hallways with chairs. (b)
Bottom row: Bookstore, Library, Video Store and Library. This set of images have
almost the same structure and objects which makes these scenes very ambiguous.

used to obtain the ground truth. We use the train/test split used by [50] and [2].

Scene contain ambiguous regions, which makes camera localization difficult.

5.2.3 TU Munich Large-Scale Indoor (TUM-LSI)

TUM-LSI [2] is an indoor dataset, which covers an area of two orders of magnitude

larger than that covered by the 7Scenes dataset. It consists of 875 training images

and 220 testing images. We use the train/test split used by [2]. This is a challenging

dataset to localize due to repeated structural elements with nearly identical appear-

ance.

5.2.4 MIT-67

MIT-67 [17] is an indoor scene dataset. Images taken primarily in four different

indoor environments— store, home, public spaces, leisure andworking places. The

dataset contains 67 categories in total. We used the official train/test split provided

by [17]. Each category has 80 training images and 20 testing images.

48

Chapter 5. Results 5.3. Experimental Results and Discussion

5.3 Experimental Results and Discussion

Figure 5.3 shows the frequencies of the GoogLeNet feature layers selected for each

dataset on the respective test sets. As can be seen, the datasets predominately utilize

more than one layer. Furthermore, the layers most frequently selected differ widely

amongst the datasets.

We found that for image-based camera localization using three Conv-LSTM

steps worked best, after which the performance decreases, the error increases. In

the case of indoor scene classification two Conv-LSTM steps performed best..

5.3.1 Camera localization

Table 5.1 compares our proposedmethod against image-based camera pose regres-

sion methods [2, 50, 51]. All the compared methods use GoogLeNet as the source

of features for regression, with the baselines limiting features to layer Conv-5B.

In terms of the individual scenes, our method achieves the least error in both

translation and rotation in the majority of cases at three steps. Considering the ag-

gregate results over the respective datasets, we see our method yields significant

improvements over the previous methods, ranging between 12.3 and 25.1 percent

for translation and 1.79 and 13.9 percent for rotation.

The TUM-LSI dataset contains large textureless surfaces and repetitive scene

elements covering over 5, 575m2. Active search or SIFT-based approaches have been

previously shown to perform poorly on this dataset [2]. Ourmethod achieves state-

of-the-art performance, suggesting that the ability to attend to different CNN layers

over successive LSTM steps helps.

Figure 5.4 (top row) shows qualitative results for camera localization. For out-

door scenes, it appears our attention mechanism captures both low-level (e.g., cor-

ners) and high-level structures (e.g., rooftops and windows).

49

Chapter 5. Results 5.3. Experimental Results and Discussion

Ta
bl
e
5.
1:

C
am

er
a
lo
ca
liz

at
io
n
re
su

lts
.M

ed
ia
n
lo
ca
liz

at
io
n
er
ro
ra

ch
ie
ve

d
by

th
e
pr
op

os
ed

at
te
nt
io
n
m
od

el
ov

er
th
re
e
st
ep

s
on

C
am

br
id
ge

La
nd

m
ar
ks
,7
-S
ce
ne

s,
an

d
TU

M
-L
SI
.B

ol
d
va

lu
es

in
di
ca
te
th
el
ow

es
te
rr
or

ac
hi
ev
ed

fo
re

ac
h
ro
w
.I
m
pr
ov

em
en

t
is
re
po

rt
ed

w
ith

re
sp

ec
tt
o
LS

TM
-P
os
eN

et
[2
].
A

da
sh

(-)
in
di
ca
te
st

ha
tn

o
re
su

lt
is
re
po

rt
ed

.

D
at
as
et

A
re
a
or

Vo
lu
m
e

Po
se
N
et

[5
0]

Ba
ye

si
an

Po
se
N
et

[5
9]

LS
TM

Po
se
N
et

[2
]

O
ur
s

C
on

v-
LS

TM

St
ep

-1

C
on

v-
LS

TM

St
ep

-2

C
on

v-
LS

TM

St
ep

-3

Im
pr
ov

em
en

t

(m
et
er
,d

eg
re
e)

G
re
at

C
ou

rt
80

00
m

2
-

-
-

-
-

-
-

K
in
gs

C
ol
le
ge

56
00
m

2
1.
66

m
,4

.8
6◦

1.
74

m
,4

.0
6◦

0.
99

m
,3

.6
5◦

1.
02

m
,4

.2
2◦

1.
00

m
,4

.5
1◦

0.
90

m
,3

.7
0◦

+9
.0
9,

-1
.3
6

O
ld

H
os
pi
ta
l

20
00
m

2
2.
62

m
,4

.9
0◦

2.
57

m
,5

.1
4◦

1.
51

m
,4

.2
9◦

1.
62

m
,4

.1
1◦

1.
51

m
,4

.0
2◦

1.
36

m
,3

.9
5◦

+9
.9
3,
+7

.9
2

Sh
op

Fa
ca
de

87
5
m

2
1.
41

m
,7

.1
8◦

1.
25

m
,7

.5
4◦

1.
18

m
,7

.4
4◦

1.
15

m
,5

.4
5◦

0.
95

m
,6

.4
4◦

0.
91

m
,5

.2
9◦

+2
2.
8,
+2

8.
8

St
.M

ar
ys

C
hu

rc
h

48
00
m

2
2.
45

m
,7

.9
6◦

2.
11

m
,8

.3
8◦

1.
52

m
,6

.6
8◦

1.
62

m
,7

.2
2◦

1.
59

m
,5

.9
4◦

1.
42

m
,6

.0
7◦

+6
.5
7,
+1

.6
4

St
re
et

50
00

0
m

2
-

-
-

18
.7
m
,3

4.
1◦

15
.0

m
,3

0.
3◦

13
.9

m
,3

0.
0◦

-

A
ve

ra
ge

[2
]

33
19
m

2
2.
08

m
,6

.8
3◦

1.
92

m
,6

.2
8◦

1.
30

m
,5

.5
2◦

1.
35

m
,5

.2
5◦

1.
26

m
,5

.2
2◦

1.
14

m
,4

.7
5◦

+1
2.
3,
+1

3.
9

C
he

ss
6.
0
m

3
0.
32

m
,6

.0
8◦

0.
37

m
,7

.2
4◦

0.
24

m
,5

.7
7◦

0.
17

m
,5

.5
8◦

0.
16

m
,5

.2
7◦

0.
15

m
,4

.7
9◦

+3
7.
5,
+1

6.
9

Fi
re

2.
5
m

3
0.
47

m
,1

4.
0◦

0.
43

m
,1

3.
7◦

0.
34

m
,1

1.
9◦

0.
32

m
,1

2.
6◦

0.
31

m
,1

1.
7◦

0.
23

m
,1

0.
0◦

+3
2.
3,
+1

5.
9

H
ea
ds

1.
0
m

3
0.
30

m
,1

2.
2◦

0.
31

m
,1

2.
0◦

0.
21

m
,1

3.
7◦

0.
18

m
,1

3.
8◦

0.
18

m
,1

4.
1◦

0.
18

m
,1

3.
7◦

+1
4.
2,
+0

.0
0

O
ffi
ce

7.
5
m

3
0.
48

m
,7

.2
4◦

0.
48

m
,8

.0
4◦

0.
30

m
,8

.0
8◦

0.
29

m
,7

.6
3◦

0.
29

m
,7

.2
3◦

0.
29

m
,8

.0
2◦

+3
.3
3,
+0

.7
4

Pu
m
pk

in
5.
0
m

3
0.
49

m
,8

.1
2◦

0.
61

m
,7

.0
8◦

0.
33

m
,7

.0
0◦

0.
25

m
,5

.4
6◦

0.
25

m
,5

.7
6◦

0.
26

m
,6

.1
6◦

+2
1.
2,
+1

2.
0

Re
d
K
itc

he
n

18
m

3
0.
58

m
,8

.3
1◦

0.
58

m
,7

.5
1◦

0.
37

m
,8

.8
3◦

0.
43

m
,8

.0
3◦

0.
37

m
,7

.4
9◦

0.
39

m
,8

.2
0◦

-2
.0
0,

+5
.7
7

St
ai
rs

7.
5
m

3
0.
48

m
,1

3.
1◦

0.
48

m
,1

3.
1◦

0.
40

m
,1

3.
7◦

0.
32

m
,9

.9
8◦

0.
31

m
,1

0.
5◦

0.
29

m
,1

2.
0◦

+2
7.
5,
+1

2.
4

A
ve

ra
ge

A
ll

6.
9
m

3
0.
44

m
,9

.0
1◦

0.
46

m
,9

.8
1◦

0.
31

m
,9

.8
5◦

0.
28

m
,9

.0
1◦

0.
26

m
,8

.8
6◦

0.
25

m
,8

.9
8◦

+1
9.
1,
+9

.1
0

TU
M
-L
SI

55
75
m

2
1.
87

m
,6

.1
4◦

-
1.
31

m
,2

.7
9◦

1.
32

m
,3

.8
2◦

1.
26

m
,3

.6
9◦

0.
98

m
,2

.7
4◦

+2
5.
1,
+1

.7
9

50

Chapter 5. Results 5.3. Experimental Results and Discussion

CNNaug-SVM [55] S2ICA [18] GoogLeNet [3]

Ours

Conv-LSTM

Step-1

Conv-LSTM

Step-2

Conv-LSTM

Step-3
Improvement (%)

69.0 % 71.2 % 73.7 % 74.5 % 77.1% 76.0 % +3.4

Table 5.2: Mean accuracy results for indoor scene classification onMIT-67. The pro-
posed method achieves the highest accuracy (shown in boldface). Improvement is
reported with respect to the GoogLeNet [3] baseline.

5.3.2 Indoor scene classification

Table 5.2 compares our proposed layer-spatial attentionmethod against three base-

lines [3,18,55]. The proposedmethod achieves best performance after two recurrent

steps.

Figure 5.4 (bottom row) shows several qualitative results for indoor scene clas-

sification. The layer-spatial attention seems to capture objects and physical scene

structures present in the scene. For the Concert Hall image, the attention mecha-

nism appears to focus on the entire image, perhaps focusing on the scene architec-

ture. For the Dental Office image, spatial attention picks out the dental equipment

(a permanent fixture) and correctly ignores the person (a transient entity). For the

Closet image, clothes and cabinetry are selected. Finally, for the Gym image, the

proposed attention mechanism selects the exercise equipment.

5.3.3 Results for more Conv-LSTM steps

Camera localization. We did an experimental study for a subset of scenes from

camera localization dataset shown in Table 5.3. We concluded that for the camera

position estimation Conv-LSTM step three on average provides the best result.

Indoor SceneClassification.Wedid an experimental study onMIT-67 indoor scene,

shown in Table 5.4. We concluded that for the Indoor Scene Conv-LSTM step two

51

Chapter 5. Results 5.4. Multi-Convolutional Approach

Dataset
Area or

Volume

PoseNet

[50]

Bayesian

PoseNet [59]

LSTM

PoseNet [2]

Ours

Conv-LSTM

Step-1

Conv-LSTM

Step-2

Conv-LSTM

Step-3

Conv-LSTM

Step-4

Conv-LSTM

Step-5

Improvement

(meter, degree)

Old Hospital 2000m2 2.62 m, 4.90◦ 2.57 m, 5.14◦ 1.51 m, 4.29◦ 1.62 m, 4.11◦ 1.51 m, 4.02◦ 1.36m, 3.95◦ 1.55 m, 4.46◦ 1.64 m, 4.20◦ +9.93, +7.92

St. Marys Church 4800m2 2.45 m, 7.96◦ 2.11 m, 8.38◦ 1.52 m, 6.68◦ 1.62 m, 7.22◦ 1.59 m, 5.94◦ 1.42m, 6.07◦ 1.49 m, 5.87◦ 1.58 m, 6.51 ◦ +6.57, +1.64

Office 7.5m3 0.48 m, 7.24◦ 0.48 m, 8.04◦ 0.30 m, 8.08◦ 0.29 m, 7.63◦ 0.29 m, 7.23◦ 0.29m, 8.02◦ 0.29 m, 8.07◦ 0.30 m, 8.12 ◦ +3.33, +0.74

Stairs 7.5m3 0.48 m, 13.1◦ 0.48 m, 13.1◦ 0.40 m, 13.7◦ 0.32 m, 9.98◦ 0.31 m, 10.5◦ 0.29m, 12.0◦ 0.31 m, 12.0◦ 0.33 m, 10.9 ◦ +27.5, +12.4

TUM-LSI 5575m2 1.87 m, 6.14◦ - 1.31 m, 2.79◦ 1.32 m, 3.82◦ 1.26 m, 3.69◦ 0.98m, 2.74◦ 1.14 m, 3.33◦ 1.18 m, 3.68 ◦ +25.1, +1.79

Table 5.3: Median localization error achieved by our proposed attentionmodel over
five-time steps on subset of Cambridge Landmarks, subset of 7-Scenes, and TUM-
LSI. Bold values indicate the lowest error achieved for each row. Improvement is
reported with respect to LSTM-PoseNet [2].

CNNaug-SVM [55] S2ICA [18] GoogLeNet [3]

Ours

Conv-LSTM

Step-1

Conv-LSTM

Step-2

Conv-LSTM

Step-3

Conv-LSTM

Step-4

Conv-LSTM

Step-5
Improvement (%)

69.0 % 71.2 % 73.7 % 74.5 % 77.1% 76.0 % 75.4 74.8 +3.4

Table 5.4: Mean accuracy results for indoor scene classification onMIT-67. The pro-
posed method achieves the highest accuracy (shown in boldface). Improvement is
reported with respect to the GoogLeNet [3] baseline.

on average provides the best result.

5.4 Multi-Convolutional Approach

In this section, we describe our motivation for using the multi-convolutional ap-

proach. To showcase how we arrived at the proposed approach, we provide evalu-

ation on all three datasets for the pose estimation.We initially startedwith the same

implementation as Xu et al. [16] for soft attention, by using fully connected layers.

The model ended up overfitting the data and showed poor performance on the test

set. Also, the network converged to select only a single spatial feature instead of

probing through the other spatial features at different LSTM time-steps. Our first

solution was converting fully connected layers into fully convolutional layers. The

results for this approach onpose estimation is shown inTable 5.5. The results shown

is quite far from [2] especially on the position, but interestingly median error was

52

Chapter 5. Results 5.4. Multi-Convolutional Approach

Dataset PoseNet [50] LSTM-PoseNet [2] Ours

Convolutional

Spatial Attention

Improvement

(meter, degree) %

King’s College 1.66 m, 4.86◦ 0.99 m, 3.65◦ 1.39 m, 2.63◦ -27.2, +27.6

Old Hospital 2.62 m, 4.90◦ 1.51 m, 4.29◦ 3.72 m, 4.24◦ -120.5, +6.9

Office 0.48 m, 7.24◦ 0.30 m, 8.08◦ 0.64 m, 7.89◦ -103.3,+3.2

Stairs 0.48 m, 13.1◦ 0.40 m, 13.7◦ 0.48 m, 12.8◦ -15.0, +6.5

TUM-LSI 1.87 m, 6.14◦ 1.31 m, 2.79◦ 3.93 m, 2.15◦ +16, +22.9

Table 5.5: Median localization error achieved by the convolutional attention model
on a subset of camera pose estimation datasets: Cambridge Landmarks, 7-Scenes,
and TUM-LSI dataset. Bold values indicate the lowest error achieved for each row.

close to [50].

Dataset PoseNet [50] LSTM-PoseNet [2] Ours

Multi-Conv.

Spatial Attention

Improvement

(meter, degree) %

King’s College 1.66 m, 4.86◦ 0.99 m, 3.65◦ 0.95m, 4.11◦ +4.04, -12.6

Old Hospital 2.31 m, 5.38◦ 1.51m, 4.29◦ 1.76 m, 4.44◦ -16.5, -3.49

Office 0.48 m, 7.24◦ 0.30 m, 8.08◦ 0.28m, 7.52◦ +6.67, +6.93

Stairs 0.48 m, 13.1◦ 0.40 m, 13.7◦ 0.32m, 12.7◦ +20.0, +9.40

TUM-LSI 1.87 m, 6.14◦ 1.31 m, 2.79◦ 1.12m, 3.66◦ +14.5, -2.88

Table 5.6: Median localization error achieved by the multi-convolutional attention
model on a subset of camera pose estimation datasets: Cambridge Landmarks, 7-
Scenes, and TUM-LSI dataset. Bold values indicate the lowest error achieved for
each row.

We found that our model was underfitting the training data. Naively increas-

ing the depth size or kernel size was not showing any significant improvements.

Therefore by taking inspiration from the inceptionmodule proposed inGoogLeNet

[3], we converted each convolutional layer into multi-convolutional layers. We used

three convolutional kernels with kernel sizes of 1x1, 3x3 & 5x5 and stacked their fi-

53

Chapter 5. Results 5.4. Multi-Convolutional Approach

nal output together as shown in Figure 4.1. Similarly, in the case of ConvLSTM,

we used four convolutional kernels with kernel sizes of 1x1, 3x3, 5x5 & 7x7. Then

stacked their final output together for prediction. This approach helped improve re-

sults significantly as shown in Table 5.6. After which we applied our contribution

of layer selection mechanism to form layer-spatial attention.

54

Chapter 5. Results 5.4. Multi-Convolutional Approach

Layer Usage (%)

3
B

4
C 4
E

5
B

(a
)

K
in

g
's

 C
o
lle

g
e

(b
)

O
ld

 H
o
sp

it
a
l

(c
)

S
h
o
p
 F

a
ca

d
e

(e
)

S
tr

e
e
t

(f
)

C
h

e
ss

(g
)

Fi
re

(d

)
S
t.

 M
a
ry

's

C
h
u

rc
h

(h
)

H
e
a
d
s

(i
)

O
ffi

ce
(j

)
Pu

m
p
ki

n
(k

)
R

e
d
 K

it
ch

e
n

(l
)

S
ta

ir
s

(m
)

T
U

M
-L

S
I

(n
)

M
IT

-6
7

0

2
0

4
0

6
0

8
0

1
0

0

0.
0

0.
1

66
.7

33
.2

0.
0

66
.3

33
.7

0.
0

0.
0

66
.0

0.
3

33
.7

0.
1

0.
2

98
.9

0.
9

0
.0

0
.0

3
3

.3

6
6

.7

0.
0

0.
1

99
.9

0.
0

0.
0

65
.8

33
.5

0.
7

0.
0

0.
0

10
0.

0

0.
0

0

2
0

4
0

6
0

8
0

1
0

0

0.
2

8.
1

35
.9

55
.7

0.
0

0.
1

66
.6

33
.3

0.
1

0.
3

33
.5

66
.2

0.
2

1.
8

95
.1

2.
9

0.
1

42
.6

55
.7

1.
5

0.
2

33
.0

33
.5

33
.3

Fi
gu

re
5.
3:
La

ye
rS

el
ec
tio

n
Fr
eq

ue
nc

ie
s(
LS

F)
on

al
lf
ou

rd
at
as
et
so

n
th
e
te
st
se
t.
(a
)-

(e
)a

re
C
am

br
id
ge

La
nd

m
ar
ks

sc
en

es
,(
f)

-(
l)
ar
e
sc
en

es
fr
om

7-
Sc
en

es
,(
m
)a

nd
(n
)a

re
TU

M
-L
SI
,a
nd

M
IT
-6
7
da

ta
se
t,
re
sp

ec
tiv

el
y.
Th

e
bi
ns

re
fe
rt
o
th
e
G
oo

gL
eN

et
[3
]

C
on

v-
{3
B,

4C
,4

E,
5B

}l
ay
er
s.
Th

e
ve

rt
ic
al

ax
is
re
pr
es
en

ts
la
ye

ru
sa
ge

pe
rc
en

ta
ge

s.

55

Chapter 5. Results 5.4. Multi-Convolutional Approach

In
p

u
t

Im
a
g

e
S

te
p

 1
S

te
p

 2
S

te
p

 3

C
o
n
v-

4
E

C
o
n
v-

4
C

C
o
n
v-

4
C

In
p

u
t

Im
a
g

e
S

te
p

 1
S

te
p

 2
S

te
p

 3

C
o
n
v-

5
B

C
o
n
v-

4
C

C
o
n
v-

4
E

Camera Localization Scene Classification

S
te

p
 1

S
te

p
 2

C
o
n
v-

4
E

C
o
n
v-

4
C

S
te

p
 1

S
te

p
 2

C
o
n
v-

4
E

C
o
n
v-

4
C

S
te

p
 1

S
te

p
 2

C
o
n
v-

4
E

C
o
n
v-

4
E

S
te

p
 1

S
te

p
 2

C
o
n
v-

4
E

C
o
n
v-

4
C

Fi
gu

re
5.
4:

Q
ua

lit
at
iv
e
re
su

lts
on

ca
m
er
a
po

se
lo
ca
liz

at
io
n
(to

p
ro
w
)a

nd
in
do

or
sc
en

e
cl
as
si
fic

at
io
n
(b
ot
to
m

ro
w
).
To

p
ro
w
:

in
pu

ti
m
ag

e
al
on

g
w
ith

th
e
sp

at
ia
la

tte
nt
io
n
su

pe
ri
m
po

se
d
on

th
e
in
pu

ti
m
ag

e
fo
r
th
re
e
C
on

v-
LS

TM
st
ep

s.
Bo

tto
m

ro
w
:

sp
at
ia
la

tte
nt
io
n
su

pe
ri
m
po

se
d
on

th
e
in
pu

ti
m
ag

e
fo
r
tw

o
C
on

v-
LS

TM
st
ep

s.
Th

e
la
be

ls
un

de
rn
ea
th

ea
ch

im
ag

e
in
di
ca
te
s

th
e
se
le
ct
ed

C
N
N

la
ye

r.

56

Chapter 5. Results 5.5. Ablation Study

Dataset
Spatial Attention Only

Layer Selection Only Spatial and Layer Attention
Conv-3B Conv-4E Conv-5B

Camera-Pose Estimation

Old Hospital 1.49 m, 4.29◦ 1.42 m, 4.37◦ 1.76 m, 4.44◦ 2.36 m, 6.28◦ 1.36 m, 3.95◦

Office 0.27 m, 7.37◦ 0.26m, 7.35◦ 0.28 m, 7.52◦ 0.33 m, 7.97◦ 0.29 m, 8.02◦

TUM-LSI 1.21 m, 3.26◦ 1.13 m, 3.66◦ 1.12 m, 3.66◦ 5.27 m, 10.8◦ 0.98 m, 2.74◦

Indoor-Scene Classification

MIT-67 61.6 % 74.5 % 74.2 % 76.4 % 77.1%

Table 5.7: Ablation study on layer-spatial attention. In all cases, GoogLeNet [3]
Conv-{3B, 4E, 5B} layers are used. Bold values indicate the best result achieved for
each row.

5.5 Ablation Study

Table 5.7 summarizes an ablation study that we performed to gauge the impact of

combining layer selection with spatial attention. We choose Old Hospital (Cam-

bridge Landmarks), Office (7-Scenes), TUM-LSI, and MIT-67 datasets for this abla-

tion study. Old Hospital and Office were selected since we found these to be the

most challenging for our proposed network.

We manually selected GoogLeNet’s Conv-{3B, 4E, 5B} layers and applied spa-

tial attention to each independently. (Note, the PoseNet results reported in Table

5.1 use layer Conv-5B without any form of attention for direct position-orientation

regression.) Our results confirm that it is sometimes beneficial to use layers other

then the final CNN layer. Median localization errors, for example, improve for both

Old Hospital and Office datasets whenwe use layers other than Conv-5B. Note that

in previous camera pose localization works [2, 50, 51] Conv-5B was manually se-

lected. For indoor scene classification, selecting Conv-4E yields the best result. The

last column of Table 5.7 includes results obtained by combining layer selection and

spatial attention. Notice that in three out of four cases shown, network achieves

best performance (lowest errors in case of camera pose estimation, and highest ac-

57

Chapter 5. Results 5.5. Ablation Study

curacy in case of indoor scene classification) when using both layer selection and

spatial attention. The second last column in Table 5.7 includes results when using

layer selection alone. The network performance deteriorates when spatial attention

is absent.

Our results are consistent with our initial guiding intuition that salient informa-

tion is distributed across the spectrum of feature abstractions, e.g., things vs. stuff.

Our proposed layer-spatial attentionmechanism exploits this aspect to achieve bet-

ter performance.

58

chapter 6
Conclusion

This work presents a study of computational attention used in Convolutional Neu-

ral Networks (CNNs). The proposed model dynamically probes a set of convolu-

tional layers of a CNN to process and aggregate the optimal set of features for a

given task. Previously, a particular CNN layer is designate as the deep feature to

be used during subsequent processing. Also, the entire features are typically pro-

cessed tomake a prediction. Our attention architecture learns to sequentially attend

to different CNN layers (i.e., “what” feature abstraction to attend to) and different

spatial locations of the selected feature map (i.e., “where”) to perform the task at

hand. This attentionmodel learns completely from data without any additional su-

pervisory signal. In Chapter 2 we provided some background on the deep learning

used in this work and Chapter 4 covered our methodology.

In the context of computer vision, we demonstrated our approach on two com-

puter vision tasks: (1) camera localization and (2) scene classification. We empir-

ically showed that our approach of joint layer-spatial attention improves perfor-

mance over manually selecting layers and previous approaches on both tasks.

59

Chapter 6. Conclusion 6.1. Future Work

6.1 Future Work

This work uses the same baseline feature extractor i.e. CNN as other previous work

in order to provide a fair comparison. This way any improvement is coming from

our approach and not better features. It is conceivable to think that using different

feature extractor could potentially further improve the performance. In this work

the layer selection is a hard selection, selecting only one layer at each reccurent time

step. Another approach could be that using a combination of layerswithweighting.

The proposed approach to attention is general andmayproveuseful for other vision

tasks i.e. single-image action recognition. As future work, it would be interesting

to investigate with more complex layer (gating) selection network which can either

be task dependent or could be more general.

60

Bibliography

[1] T. Joseph, K. Derpanis, and F. Qureshi. (2019) Joint spatial and layer attention

for convolutional networks. [Online]. Available: https://arxiv.org/abs/1901.

05376

[2] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and D. Cremers,

“Image-Based Localization Using LSTMs for Structured Feature Correlation,”

in Proc. of the IEEE Conference on International Conference on Computer Vision

(ICCV), 2017, pp. 627–637.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc.

of the IEEE Conference on Conference on Computer Vision and Pattern Recognition

(CVPProc. MA,, 2015, pp. 1–9.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” inThe IEEEConference on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” inComputer Vision

(ICCV), 2017 IEEE International Conference on. IEEE, 2017, pp. 2980–2988.

61

https://arxiv.org/abs/1901.05376
https://arxiv.org/abs/1901.05376

Bibliography Bibliography

[6] L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang, “Video tracking using

learned hierarchical features,” vol. 24, no. 4. IEEE, 2015, pp. 1424–1435.

[7] E. Ilg, N.Mayer, T. Saikia,M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0:

Evolution of optical flow estimation with deep networks,” in IEEE conference

on computer vision and pattern recognition (CVPR), vol. 2, 2017, p. 6.

[8] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P.

Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image super-

resolution using a generative adversarial network.” inCVPR, vol. 2, no. 3, 2017,

p. 4.

[9] Y. LeCun, B. E. Boser, J. S. Denker, D.Henderson, R. E.Howard,W. E.Hubbard,

and L. D. Jackel, “Handwritten digit recognition with a back-propagation net-

work,” in Advances in neural information processing systems, 1990, pp. 396–404.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information process-

ing systems, 2012, pp. 1097–1105.

[11] C. Olah, A. Mordvintsev, and L. Schubert, “Feature Visualization,” Distill,

2017, https://distill.pub/2017/feature-visualization.

[12] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional

Networks,” in Proc. of the European Conference on Computer Vision (ECCV), 2014,

pp. 818–833.

[13] R. A. Rensink, “The Dynamic Representation of Scenes,” Visual Cognition,

vol. 7, pp. 17–42, 2000.

[14] J. K. Tsotsos, A Computational Perspective on Visual Attention. MIT Press, 2011.

62

Bibliography Bibliography

[15] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” in Proc. of the International Conference on

Learning Representations (ICLR), 2015.

[16] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio, “Show, Attend and Tell: Neural Image Caption Generationwith

Visual Attention,” in Proc. of the International Conference on Machine Learning,

(ICML), 2015, pp. 2048–2057.

[17] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in Proc. of the IEEE

Conference on Conference on Computer Vision and Pattern Recognition (CVPR),

2009, pp. 413–420.

[18] M. Hayat, S. H. Khan, M. Bennamoun, and S. An, “A Spatial Layout and Scale

Invariant Feature Representation for Indoor Scene Classification,” Proc. of the

IEEE Transactions on Image Processing, pp. 4829–4841, 2016.

[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,Deep learning. MIT press

Cambridge, 2016, vol. 1.

[20] F.-F. Li, J. Justin, and S. Yeung. (2018) Course notes on cs231n: Convolutional

neural networks for visual recognition. [Online]. Available: http://cs231n.

stanford.edu/

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recur-

rent neural networks,” in International Conference on Machine Learning, 2013,

pp. 1310–1318.

[22] C. Olah. (2015) Understanding lstm networks. [Online]. Available: http:

//colah.github.io/posts/2015-08-Understanding-LSTMs/

63

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography Bibliography

[23] S. Xingjian, Z. Chen, H.Wang, D.-Y. Yeung,W.-K.Wong, andW.-c.Woo, “Con-

volutional lstm network: A machine learning approach for precipitation now-

casting,” inAdvances in neural information processing systems, 2015, pp. 802–810.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” vol. 15,

no. 1. JMLR. org, 2014, pp. 1929–1958.

[25] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep fea-

tures for scene recognition using places database,” inProc. of Advances inNeural

Information Processing Systems (NeurIPS), 2014, pp. 487–495.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification,” in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 1026–1034.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in Proceedings of the thirteenth international conference

on artificial intelligence and statistics, 2010, pp. 249–256.

[29] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,

“Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization,” inAdvances in neural information processing systems, 2014,

pp. 2933–2941.

[30] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” vol. 12, no. Jul, 2011, pp. 2121–2159.

64

Bibliography Bibliography

[31] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA: Neural networks for ma-

chine learning, vol. 4, no. 2, pp. 26–31, 2012.

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in

Proc. of the International Conference on Learning Representations (ICLR), 2015.

[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: A System For Large-Scale Machine Learning,” Proc. of the Operating

Systems: Design and Implementation (OSDI), vol. 16, pp. 265–283, 2016.

[34] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses with

a third-order boltzmann machine,” in Advances in neural information processing

systems, 2010, pp. 1243–1251.

[35] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regular-

ization,” 2014.

[36] Y. Tang, N. Srivastava, and R. R. Salakhutdinov, “Learning generative mod-

els with visual attention,” in Advances in Neural Information Processing Systems,

2014, pp. 1808–1816.

[37] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple Object Recognition with Visual

Attention,” in Proc. of the IEEE Conference on International Conference on Robotics

and Automation (ICRA), 2015.

65

Bibliography Bibliography

[38] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models of Vi-

sual Attention,” in Proc. of Advances in Neural Information Processing Systems

(NeurIPS), 2014, pp. 2204–2212.

[39] D. Jayaraman andK. Grauman, “Learning to look around: Intelligently explor-

ing unseen environments for unknown tasks,” CoRR, vol. abs/1709.00507, pp.

1–11, 2017.

[40] A. Veit and S. Belongie, “Convolutional networks with adaptive inference

graphs,” in European Conference on Computer Vision. Springer, 2018, pp. 3–

18.

[41] S. Hochreiter and J. Schmidhuber, “Long Short-TermMemory,”Neural Compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] M. F. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber, “Deep Networks

with Internal Selective Attention through Feedback Connections,” in Proc. of

Advances in Neural Information Processing Systems (NeurIPS), 2014, pp. 3545–

3553.

[43] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang,

“ResidualAttentionNetwork for ImageClassification,” inProc. of the IEEECon-

ference on Conference on Computer Vision and Pattern Recognition (CVPR), 2017,

pp. 6450–6458.

[44] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connec-

tionist Reinforcement Learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[45] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” In-

ternational Journal of Computer Vision (IJCV), vol. 60, no. 2, pp. 91–110, 2004.

66

Bibliography Bibliography

[46] R. Anati, D. Scaramuzza, K. G. Derpanis, and K. Daniilidis, “Robot Localiza-

tionUsing Soft Object Detection,” in Proc. of the IEEE Conference on International

Conference on Robotics and Automation (ICRA), 2012, pp. 4992–4999.

[47] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & Effective Prioritized Matching

for Large-Scale Image-Based Localization,” Transactions on Pattern Analysis and

Machine Intelligence (PAMI), vol. 39, no. 9, pp. 1744–1756, 2017.

[48] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide Pose Estimation

using 3D Point Clouds,” in Proc. of the European Conference on Computer Vision

(ECCV), 2012, pp. 15–29.

[49] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocu-

lar SLAM,” in Proc. of the European Conference on Computer Vision (ECCV), 2014,

pp. 834–849.

[50] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolutional Network

for Real-Time 6-DOF Camera Relocalization,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2938–2946.

[51] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for cam-

era relocalization,” in Proc. of the IEEE Conference on International Conference on

Robotics and Automation (ICRA), 2016, pp. 4762–4769.

[52] A. Kendall, R. Cipolla et al., “Geometric loss functions for camera pose regres-

sion with deep learning,” in Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 8–16.

[53] C. Doersch, A. Gupta, and A. A. Efros, “Mid-level visual element discovery

as discriminative mode seeking,” in Advances in neural information processing

systems, 2013, pp. 494–502.

67

Bibliography Bibliography

[54] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman, “Blocks that shout: Dis-

tinctive parts for scene classification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 923–930.

[55] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features

off-the-shelf: an astounding baseline for recognition,” in Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition workshops (CVPR), 2014, pp.

806–813.

[56] E. J. Gumbel, Statistical theory of extreme values and some practical applications: a

series of lectures. US Govt. Print. Office, 21954.

[57] C. J. Maddison, D. Tarlow, and T. Minka, “A* sampling,” in Proc. of Advances in

Neural Information Processing Systems (NeurIPS), 2014, pp. 3086–3094.

[58] E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with Gumbel-

Softmax,” in Proc. of the International Conference on Learning Representations

(ICLR), 2017.

[59] A. Kendall and Y. Gal, “What uncertainties dowe need in bayesian deep learn-

ing for computer vision?” in Proc. of Advances in Neural Information Processing

Systems (NeurIPS), 2017, pp. 5574–5584.

[60] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, andA. Fitzgibbon, “Scene

coordinate regression forests for camera relocalization in rgb-d images,” in

Proc. of the IEEE Conference on Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2013, pp. 2930–2937.

[61] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,

S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion: real-time 3d recon-

struction and interaction using a moving depth camera,” in Proceedings of the

68

Bibliography Bibliography

24th annual ACM symposium on User interface software and technology. ACM,

2011, pp. 559–568.

69

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgments
	Contents
	Introduction
	Contributions
	Thesis Outline

	Background
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Training Neural Networks
	Optimization
	Backpropagation
	Training Procedure

	CNN models

	Related Works
	Attention
	Image-based camera pose regression
	Indoor scene classification

	Methodology
	Where: Spatial attention
	Soft Attention implementation.
	Multi-Convolutional Soft Attention mechanism.

	What: Layer attention
	Layer selection mechanism architecture.

	Joint Spatial and Layer Attention Architecture
	Tasks
	Camera Pose Estimation
	Indoor Scene Classification

	Results
	Experimental Setup
	Datasets
	Cambridge Landmarks
	7-Scenes
	TU Munich Large-Scale Indoor (TUM-LSI)
	MIT-67

	Experimental Results and Discussion
	Camera localization
	Indoor scene classification
	Results for more Conv-LSTM steps

	Multi-Convolutional Approach
	Ablation Study

	Conclusion
	Future Work

	Bibliography

