
Achieving Real-Time
Video Summarization on

Commodity Hardware

by

Wesley Taylor

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in

The Faculty of Science
Computer Science

University of Ontario Institute of Technology
Supervisor: Dr. Faisal Z. Qureshi

April 2018

Copyright © Wesley Taylor, 2018

ii

iii

iv

Abstract

Achieving Real-Time Video

Summarization on Comodity Hardware

Wesley Taylor

Master’s Thesis

Faculty of Science (Computer Science)

University of Ontario Institute of Technology

2018

We present a system for automatic video summarization which is able to operate in

real-time on commodity hardware. This is achieved by performing segmentation

to divide a video into a series of small video clips, which are further reduced or

eliminated with the assistance of highly efficient low-level features. A numerical

score is then assigned to each segment by our model trained using a set of high-

performance hand-crafted features. Finally, segments are selected based on their

score to generate a final video summary. On our benchmark dataset, we achieve

results competitive to other methods. In cases where our accuracy is lower than

competitive methods, we achieve significantly higher performance. We additionally

present methods for generating additional summaries almost instantly, and for

learning user preferences over time—two processes which are often overlooked in

work on video summarization, but essential for real-world use.

v

vi

Table of Contents

Table of Contents vii

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Applications . 3

1.3 Cliply . 5

1.4 Notation . 7

1.5 Contributions . 9

1.6 Overview . 10

2 Background Information 13

2.1 Related Works . 14

vii

2.1.1 Video Segmentation . 14

2.1.2 Image and Video Features . 16

2.1.3 Video Summarization . 17

2.2 Datasets . 19

2.2.1 A Large-Scale Database for Aesthetic Visual Analysis (AVA) . 19

2.2.2 SumMe (from "Creating Summaries from User Videos") . . . 20

2.2.3 TVSum . 21

2.2.4 VSUMM . 21

2.3 Computer Vision Techniques . 22

2.3.1 HOG Features . 22

2.3.2 Decision Trees . 23

2.3.3 Information Gain in Decision Trees 25

2.3.4 Cross-Validation . 26

2.3.5 Grid Search . 27

3 Video Segmentation 29

3.1 Video Pre-processing . 31

3.1.1 Frame Labeling Features . 32

3.2 Finding Initial Segments . 35

3.2.1 Uniform Sampling . 35

3.2.2 Threshold-Based Scene Detection 36

3.2.3 Content-Aware Scene Detection 37

3.2.4 Change-Point Detection . 38

3.3 Segment Post-Processing . 40

3.3.1 Segment Splitting . 41

viii

3.3.2 Segment Trimming . 42

3.3.3 Low-Quality Segment Elimination 43

3.3.4 Short Segment Merging and Elimination 44

3.4 Final Result . 45

4 Feature Extraction 49

4.1 Frame Features . 50

4.1.1 Low-level Features . 50

4.1.2 High-level Features . 51

4.1.3 Final Feature Vector . 57

4.2 Segment Features . 58

5 Video Segment Scoring 59

5.1 Candidate Machine Learning Models 60

5.1.1 Decision Tree Learning . 60

5.1.2 Random Forest . 62

5.1.3 XGBoost . 64

5.2 Model Training . 66

5.3 Feature Importance . 67

6 Video Summarization 71

6.1 Initial Segment Selection . 72

6.1.1 0/1 Knapsack . 73

6.2 Additional Summaries . 74

6.2.1 Unsupervised Additional Summary Generation 75

6.2.2 Supervised Additional Summary Generation 75

ix

6.3 User Preferences . 78

7 Evaluation and Results 81

7.1 Pairwise F1-measure . 82

7.2 Sampling Methods . 83

7.2.1 Other Datasets . 83

7.2.2 All Datasets Leave-one-video-out 84

7.2.3 Same Dataset Leave-one-video-out 85

7.2.4 Leave-one-segment-out . 85

7.3 Model Optimization . 86

7.3.1 Base Models . 86

7.3.2 XGBoost Grid Search . 90

7.4 Results . 94

7.4.1 SumMe Accuracy . 95

7.4.2 Performance . 96

8 Conclusions 101

8.1 Contributions . 102

8.2 Limitations and Future Work . 102

Bibliography 105

x

List of Figures

1.1 Summary creation steps in Cliply. 5

1.1.a Cliply’s upload page. 5

1.1.b Cliply’s music selection page. 5

1.1.c Cliply’s duration selection page. 5

1.1.d Cliply’s title selection page. 5

1.2 Cliply’s summary viewing interface. 6

1.2.a Cliply’s history page. 6

1.2.b Cliply’s summary review page. 6

1.3 Cliply’s interface for manual video segment selection. 7

1.4 Overview of our summarization system. 10

2.1 Visualization of HOG features. 23

2.2 An example decision tree. 24

3.1 An example video segmentation result. 30

3.2 The result of video pre-processing. 32

xi

3.3 The result of video frame labeling . 33

3.4 Uniform sampling applied to a video. 36

3.5 Threshold-based scene detection applied to a video. 37

3.6 Content-aware scene detection applied to a video. 37

3.7 Change-point detection applied to a video. 39

3.8 The results of segment splitting. 42

3.9 The results of segment trimming. 43

3.10 The results of segment elimination. 44

3.11 The results of segment merging. 46

3.12 The final result of performing video segmentation. 46

4.1 Face detection and alignment. 55

4.1.a Face landmark positions. 55

4.1.b A face template aligned to a face. 55

5.1 Feature importance plot. 68

6.1 Using Cliply for supervised summary generation. 77

7.1 Train-test split using the “Other Datasets” method. 84

7.2 Train-test split using the “All-datasets Leave-one-video-out” method. 84

7.3 Train-test split using the “Same Dataset Leave-one-video-out” method. 85

7.4 Train-test split using the “Leave-one-segment-out” method. 86

7.5 Default parameters for our base models. 87

7.5.a Default parameters for XGBoost regression model. 87

7.5.b Default parameters for random forest regression model. . . . 87

7.6 Duration versus computation time for the SumMe dataset. 98

xii

7.7 Performance Versus Accuracy for the SumMe Dataset. 99

xiii

xiv

List of Tables

2.1 Decision tree values. 25

4.1 List of low-level aesthetics features. 51

5.1 Base model results. 66

7.1 Comparison of model accuracy. 88

7.2 Initial “Max Depth” and “Minimum Child Weight” parameter tuning. 91

7.3 Fine-tuning of “Max Depth” and “Minimum Child Weight”. 92

7.4 “Gamma” parameter tuning. 92

7.5 “Subsample” and “Col-sample By-Tree” parameter tuning. 93

7.6 Accuracy values for various methods on the SumMe dataset. 95

7.7 Raw performance data for the SumMe dataset. 97

xv

xvi

List of Algorithms

1 The SumMe summary extraction algorithm. 28

2 The segment merging algorithm. 47

5 Additional summary generation algorithm (supervised). 76

3 Segment selection algorithm. 79

4 Additional summary generation algorithm (unsupervised). 80

xvii

xviii

chapter 1

Introduction

This chapter serves to provide a general overview of our work. We start by giving a general

summary of our research topic, along with describing the motivation behind our work. We

describe some possible applications of our work, as well give an overview of an additional

project—Cliply—which was developed alongside our work as a practical example application.

We conclude by stating our primary contributions, and providing an overview of the general

structure of our system.

W ith video capable mobile devices becoming increasingly ubiquitous, we

are seeing an analogous increase in amount of video data that is captured

and stored. Additionally, as the difficulty of capturing video and cost of storage

decreases, we tend to see a corresponding decrease in the quality of captured videos.

As a result of this, it becomes very difficult to locate interesting video clips among

1

1.1. Motivation Chapter 1. Introduction

the vast sea of data. One solution to this problem lies in the development of a video

summarization system which is able to automatically locate these interesting clips

and generate a final, curated video summary.

1.1 Motivation

With the appearance of consumer devices such as action cameras, we have reached

a point where virtually no effort is required to record large amounts of video

data. Although this is a significant accomplishment, it also brings with it a new

problem—the videos recorded often require significant editing before they are in a

state suitable for viewing. This editing process is non-trivial for an average user,

often requiring both expertise with video editing software, and access to specialized

hardware. This makes a video summarization system that is able to operate on an

average user’s machine (commodity hardware) extremely desirable.

Additional problems lie in both the length of videos that are being recorded, and their

actual content. In recent years, the cost of digital storage has decreased significantly,

while both the resolution and length of videos has increased—a standard action

camera video will be recorded at 1080p, and be many hours long in duration. The

actual process of hand-editing this video could itself easily require hours of work

even for a skilled user. This limitation means that most users will not have time to

edit every video they record, resulting in an ever-growing backlog of videos which

will never be viewed. A video summarization system able to operate at real-time

speeds would be able to process videos in an online manner, effectively meaning

that a backlog would never develop.

2

Chapter 1. Introduction 1.2. Applications

In terms of content, these modern “raw user” videos are unlike the older “edited”

videos which were popular previously in that effectively no effort is made to

separately record different events. For example, with an edited video, the operator

of the camera would traditionally choose to stop recording if nothing interesting is

happening, then resume recording again when they expect something interesting

to happen. With raw user videos, the operator of the camera will simply record

everything that happens, interesting or not, often resulting in a final video consisting

of a few interesting segments, and many more uninteresting ones. A method which

is able to efficiently distinguish between these two types of segments would be a

significant step towards a video summarization system which is able to generate

high-quality summaries for raw user videos.

Finally, different viewers will have different preferences on what they find interesting

in a video. With traditional hand-editing, viewers only see the segments deemed

interesting by the editor, and the time cost for a human editor to create multiple

edits of a single video is significant. The ability to generate multiple possible

summaries rather than just a single summary would be a very useful feature for

a video summarization system to have, as would be the ability to learn a specific

user’s preferences over time.

1.2 Applications

Video summarization has a wide range of applications, including:

Personal video stories. People often want to share videos with their family and

3

1.2. Applications Chapter 1. Introduction

friends for important events such as a vacation or wedding, but showing the

entire video may be boring, and editing the video to extract the interesting

clips would be time-consuming. Automated video summarization would be

able to generate a short summary of the most interesting parts of an event,

even taking into account high-level visual information such as which people

are present in specific clips.

Sports highlight reels. Currently, sports highlight reels are manually created by

domain experts, and only focus on the most popular highlights. Automatic

summarization of these videos has the potential to understand domain

knowledge for specific sports, and generate multiple highlight reels for

different viewers. For example, in hockey, some users may want to see

highlights which contain tackles, while other users may wish to see highlights

containing goals.

Automated movie and television trailers. Movie trailers are created with the goal

of convincing viewers to watch the full movie, but have the disadvantage

that they must generally appeal to the largest number of people possible.

By using automated video summarization methods to generate multiple

trailers, the system would be able to over time learn to personalize trailers for

specific groups of people, for example different age demographics, potentially

increasing the number of people that end up watching the movie.

4

Chapter 1. Introduction 1.3. Cliply

1.3 Cliply

Alongside our work on video summarization, we developed a web-based system

which allows users to upload their videos, and generate short “video stories” from

them. Although the system incorporates much of our work on video summarization,

it also adds a large range of features to enhance raw video summaries and make

them more desirable to end users. Some examples include support for adding music

and for overlaying a title over the final summary video. Some example screenshots

from the upload phase of Cliply can be found in Figure 1.1.

(a) The upload page for Cliply. (b) The Cliply page used to select
music for a summary.

(c) The Cliply page used to pick a
duration for the final summary.

(d) The Cliply page used to select a
title, and optionally include it in the
final summary video.

Figure 1.1: A visual summary of the four steps a user follows to create a summary video in
the Cliply system. Users first upload one or more videos using the page in (a). They are
then able to optionally select a music track for the video on the page in (b), a duration for
their summary on the page in (c), and finally select a title for their summary on the page in
(d), and optionally include it in the final summary video.

5

1.3. Cliply Chapter 1. Introduction

Access to this system was extremely helpful during our work on video summariza-

tion. By developing our work as extensions to Cliply’s automatic summarization

system, we were able to avoid a large amount of the boilerplate code traditionally re-

quired for re-generating intermediate data and re-testing our work when significant

changes occurred. We were able to simply start-up a new local instance of Cliply,

add our testing videos, and the underlying system would take care of generating all

intermediate and final data. Additionally, we were able to view all the processed

videos in Cliply’s web-interface, shown in Figure 1.2.

(a) The Cliply page which shows a
history of all videos a user has sub-
mitted.

(b) The Cliply page for viewing a
video summary. From here, users
can preview their summary, refine
it using the “thumbs down” icon,
share it to popular social media sites,
or download a copy of it.

Figure 1.2: A demonstration of the interface provided by Cliply for viewing video summaries
and their details.

A final benefit of the Cliply system is that it was able to provide us with a user-friendly

interface for the “Additional Summaries” step in our summarization system. This

step requires optionally marking multiple segments of a video as either “keep” or

“discard”. Without Cliply, we would need to manually look through each segment,

and construct an input file. With Cliply however, we are able to use the simple

interface demonstrated in Figure 1.3 to view and select segments, automatically

6

Chapter 1. Introduction 1.4. Notation

create the input file, and even generate the new summary video.

Figure 1.3: The interface provided by Cliply for selecting video segments to specifically
keep or discard. Any segments specifically selected are highlighted at the top, while a
listing of all segments is provided in the “All Segments” section. A green check mark on a
segment indicates it should be kept and a red cross indicates that it should be discarded.
If no mark is present, the system will decide to keep or discard it. Clicking on a segment
image switches it’s state between unselected, keep, or discard.

1.4 Notation

In our work, the lowest level we work at is the video-level, where we have a video V,

consisting of a number c of ordered frames f, that is, V = {f0, . . . , fc}. Each video

can also carry with it a number of attributes—in particular, the number of frames

in the video frames(V), the frame rate of the video fps(V), and the dataset a video

belongs to dataset(V).

Each frame f is represented as a 3-dimensional array of pixel values p ∈ [0, 255],

with the third dimension representing the number of color channels in the image,

and hence the color space of the image. The most common cases we deal with are 3

7

1.4. Notation Chapter 1. Introduction

channels, where the image is in the RGB color space, or 1 channel, where the image

is in the grayscale color space. In terms of attributes, each frame has a width in

pixels width(f), a height height(f), and a channel count channels(f).

Branching off of this base notation for videos, there are a few additional definitions

specific to our work in video summarization which are important. The first of these

is for that of a segment s which represents an ordered range of frames {fa, . . . , fb}

from a video V, with a, b < frames(V) and a < b. Each segment carries with it a

number of attributes, including the number of frames within a segment frames(s),

the index of the first frame of the segment start(s) = a, and the index of the last

frame of the segment end(s) = b. We can also define the distance between two

segments sc and sd with start(sd) < end(sc) as distance(sc, sd) = start(sd) − end(sc).

For a video V, we can have a segmentation S as SV = {s0, . . . , sk}, consisting of

non-overlapping segments s, that is, end(si) < start(si+1). Finally, we can represent

our end goal—a summarization U—as a possibly equal subset of this segmentation,

that is, UV ⊆ SV . We often need to reference the set of all the frames within a

segmentation or summary, for which we use the notation frames(S) and frames(U)

respectively.

We often need to describe n-dimensional feature vectors for an associated object o.

For this purpose, we have adapted the notation Xn
o . For example, a 128-dimensional

feature vector for frame fi would be represented by X128
fi

.

For a segment si, we use the notation Qsi ∈ [0, 1] to represent the score computed

for a segment, where 1 represents an interesting/high-quality segment, and 0 an

uninteresting/low-quality segment.

8

Chapter 1. Introduction 1.5. Contributions

1.5 Contributions

The primary contribution of our work is:

A high performance video summarization system which is able to

perform video summarization at real-time on commodity hardware.

In addition to this primary contribution, parts of our work also serve as relevant

contributions in isolation. These include:

1. A video pre-processing process which makes use of very low-level features

to efficiently locate undesirable frames, then uses these to compute optimal

segments.

2. A method of incorporating user history over time in order to learn to generate

personalized video summaries.

3. A method of generating additional summaries almost instantaneously.

9

1.6. Overview Chapter 1. Introduction

1.6 Overview

V
Video

Segmentation
Feature

Extraction
Segment
Scoring

Summary
Generation

SV X124
s∈SV

Qs∈SV

UV

Figure 1.4: Overview of our summarization system. We start with a video V and perform
video segmentation, resulting in a segmentation SV . We perform feature extraction on this
segmentation to obtain for each segment s ∈ SV a 124-dimensional feature vector X124

s . This
feature vector is used by the segment scoring process to generate for each segment s ∈ SV a
score Qs . Finally, these scores are used by the summary generation process to generate a
final summary UV .

Our video summarization system follows a tiered approach, where methods with

a high performance but lower level of detail are first used as a rough filter for

frames and segments of the video. This allows us to quickly eliminate a number

of problem frames and segments which commonly appear in raw user videos. By

reducing the number of frames that need to be processed, we are able to make use

of more computationally expensive methods later on, while maintaining similar

performance.

Generally, video summarization consists of four major steps:

1. Video Segmentation is described in Chapter 3, where for a target video V,

a segmentation SV is generated. This step includes a pre-processing step to

eliminate undesirable frames.

2. Feature extraction is described in Chapter 4, where features are first ex-

tracted for each frame, then aggregated within each segment s to obtain a

10

Chapter 1. Introduction 1.6. Overview

124-dimensional features vector X124
s .

3. Segment scoring is described in Chapter 5, where based on the extracted

features and a segment scoring model, each segment s is scored with a float

value Qs ∈ [0, 1]. A value of 1 represents a high-quality segment, while a

value of 0 represents a low-quality one.

4. Summary generation is described in Chapter 6, where a selection algorithm is

used to construct a final summary UV . This step also includes the generation

of additional summaries.

The majority of our implementation is written in C++ for performance reasons, but

there are also parts which are written in Python, such as our machine learning

models.

Once we have described our system, we present our evaluation method and results

in Chapter 7, finishing up with our conclusion in Chapter 8, where we summarize

our contributions, discuss some limitations of our work, and provide some ideas for

future work that could be performed to expand on our system.

11

1.6. Overview Chapter 1. Introduction

12

chapter 2

Background Information

This chapter presents an overview of some background information that may be needed for

future chapters. We start by looking at some of the previous research related to our work.

We then give an overview of some of the common datasets used for video summarization,

including any relevant pre-processing we performed on the data. Finally, we include an

overview of some computer vision and machine learning techniques used later in our work.

A lthough video summarization has been an active research topic in computer

vision for decades, it has experienced a renewed interest in recent years. The

high computational capabilities of modern hardware allow us to process video in a

fraction of the time previously required, which when combined with the evolution of

modern vision techniques such as deep neural networks, has resulted in a significant

increase in the breadth of techniques which are viable to apply to the topic of video

13

2.1. Related Works Chapter 2. Background Information

summarization. Combined with the vast quantity of prior work involving video

summarization, many interesting research prospects are available to pursue.

2.1 Related Works

Although our primary focus is video summarization, some of the steps we perform

during our work are themselves topics with a significant amount of prior research.

Among these are video segmentation, which simply deals with taking a video and

dividing it up in to a number of segments, and image and video feature extraction,

which deals with extracting relevant and useful features from images and videos.

2.1.1 Video Segmentation

Video segmentation has many years of research behind it, resulting in the creation

of a variety of algorithms over the years. Early works such as [1, 2, 3] focused on

detecting scene transitions in edited videos—for example fades or dissolves—while

more modern works such as [4, 5, 6, 7] instead focus on the more difficult problem

of segmenting raw user videos.

The classic thresholding-based segmentation algorithm was originally proposed

in [1], and operates by first computing the average brightness value of each frame

in a video. Segments are then detected by comparing each frame brightness to a

pre-selected threshold value, and creating a new segment whenever the brightness

falls below the threshold. An improvement is also proposed in [2] which makes

the threshold value dynamic and able to adapt to global lighting changes over time.

14

Chapter 2. Background Information 2.1. Related Works

Overall, this method is very efficient, but only useful for very simple transitions

such as fades when scenes are separated by a series of low brightness frames.

The work in [3] is perhaps first major improvement to early threshold-based methods,

and instead examines motion and intensity differences between frames to perform

segmentation. Rather than examining only values for a single frame, differences

over multiple adjacent frames are considered, and segments are created whenever

the values match any of a set of previously observed scene transition patterns. This

method is able to detect a larger range of transitions, in particular those caused by

fast camera movements which may be present in raw user videos.

More recently, the two segmentation methods [4, 5] have been proposed with the

express goal of performing segmentation in the case of raw user videos. The method

first proposed in [4] extracts a number of features from each frame of a video,

then performs agglomerative clustering[8] on these features to generate the final

segmentation. The other work proposed in [5] takes a slightly different approach,

instead extracting optical flow and blurriness features from each frame, then using

a pre-trained classifier to classify frames as either “static”, “in transit”, or “changing

attention”. Both of these methods are significant improvements over the previous

work involving raw user videos.

Perhaps the most recent work is that which applies multiple change-point detection[6,

7] to the problem of video segmentation. In this work, a number of features are

extracted for each frame of a video, and a matrix is formed containing all the features

for every video. An optimization is performed using this matrix, and the result is the

positions of any relevant segment boundaries. A fundamental difference between

15

2.1. Related Works Chapter 2. Background Information

this method and most other methods is that change-point detection operates on the

entire signal at once, meaning that the resulting segmentation has a higher chance

of being globally consistent.

2.1.2 Image and Video Features

Feature extraction is an important part of our work, as the accuracy of our model

is dependent on our ability to efficiently extract features from our videos which

are relevant to the task of video segment scoring. When efficiency is a concern,

there are a large range of low-level hand-crafted features[9, 10, 11, 12, 13, 14, 15]

which are relevant to our task. More recent work on video summarization has

additionally incorporated higher-level features[16, 17, 18, 19] such as SIFT features

and dense motion trajectories, and even very high-level features[20, 21, 22] such as

object detection and neural network layer features.

Research in the field of computational aesthetics[9, 10] provides us a large range of

low-level features for assessing the “beauty” of images. Some of these, such as [11]

are inspired by psychology and art theory, and attempt to compute approximate

emotional values, while others such as [12] attempt to compute features which

describe the general texture of an image. Some other important features that may

be used include image sharpness[14] and the rule-of-thirds based on computing

spectral saliency[15] over 9 quadrants of a frame.

As hardware improves, so does the complexity of features which are used for

video summarization. Modern works tend to use some combination of general

image features such as GIST[17] and SIFT[18], robust motion features such as

16

Chapter 2. Background Information 2.1. Related Works

dense trajectories[19], and even general models for image aesthetics[16]. With the

recent popularity of deep learning, we are even starting to see the use of features

constructed using computationally complex methods based on neural networks,

such as face detection[20], object detection[22], and layer extraction from networks

such as GoogLeNet[21].

2.1.3 Video Summarization

Although many methods have been proposed for video summarization over the

years, the basic underlying process has generally remained the same. Specifically,

the variety of methods[4, 23, 24, 25] first compute a segmentation, then perform

scoring of these segments, and finally use 0/1 knapsack[26] to perform segment

selection for the final summary. One exception to this is some of the state-of-the-art

work which uses LSTM neural networks[27]. Many early works[4, 23, 25] were

unsupervised methods, but with the recent appearance of some high-quality video

summarization datasets, supervised methods[24, 27] which learn some model based

on previous summary data are now the most popular.

Commonly, methods based on clustering[4] and attention[23] are used as baselines

when evaluating new methods. Both of these methods are unsupervised. The

clustering method involves first extracting a number of features and using clustering

to generate a segmentation. For each segment, an additional set of features are

extracted, an interestingness score is computed for each segment, and 0/1 knapsack

is used to create a final summary. The attention method operates similarly, extracting

attention features for each frame which act as interestingness scores, then generating

17

2.1. Related Works Chapter 2. Background Information

a summary using 0/1 knapsack. These two methods tend to obtain higher accuracy

values compared to a randomly generated summary, but are overtaken by most

modern methods.

The work performed in [24] is significant, as not only did it develop a state-of-the-art

method for video summarization, but it also created a high-quality dataset to be used

for benchmarking video summarization methods. In this work, segmentation was

performed using change-point detection, segments were scored using a combination

of low and high-level features, then the final summary was generated using 0/1

knapsack. The method used in [25] is very similar this method, with the primary

differences being that their work performs some pre-processing of the video data in

an attempt to improve efficiency, and they use a different set of features for scoring

segments.

The current state-of-the-art results on the SumMe dataset were recently obtained

using an LSTM neural network[27]. This method is significantly different than

previous methods. In particular, the fact that LSTMs operate on sequences of frames

rather than either individual frames or individual segments means that there is no

need to perform segmentation. Additionally, wheras most methods only generate

interestingness scores at the segment-level, the LSTM is actually able to generate

per-frame values. This method operates by first extracting the output of the pool 5

layer of the GoogLeNet model as features, then using these as input to the LSTM.

The result of this is per-frame interestingness scores, which can then be used in

combination with 0/1 knapsack to generate a final summary. The primary benefit of

this method is that it actually operates on the sequence of frames in a video, rather

than just some aggregation of features over a group of frames.

18

Chapter 2. Background Information 2.2. Datasets

2.2 Datasets

Below, we describe the primary datasets we use in our work, and discuss any

pre-processing that needed to be performed.

2.2.1 A Large-Scale Database for Aesthetic Visual Analysis (AVA)

A significant part of our work is reliant on the ability to accurately compute the

“aesthetics” of arbitrary frames of a video. For this purpose, we have found the

dataset A Large-Scale Database for Aesthetic Visual Analysis (AVA)[28] to be an

essential asset. It contains over 250, 000 images along with aesthetic scores and

labels for various semantic and photographic categories. There has previously

been a large range of work which makes use of this dataset for the purpose of

computing the aesthetics of arbitrary photographs, however, our method deals with

a categorically different range of images compared to those seen in traditional (and

even modern) computer vision—ones from low-quality, user-recorded videos.

2.2.1.1 Dataset Processing

The base AVA dataset contains multiple files, however, we are primarily interested

in the contents of the AVA.txt file. This file is a CSV file containing 15 columns, of

which only 11 are of interest to us, specifically columns 2 up to and including 12.

Column 2 contains the image ID which is needed to download the actual image

content from the DPChallenge website. The remaining ten columns contain the

19

http://www.dpchallenge.com/

2.2. Datasets Chapter 2. Background Information

number of votes submitted for each level of aesthetic quality, that is, the third

column contains the number of votes which rank the image with an aesthetics value

of 1, the fourth column the count for a ranking of 2, up to the twelfth column for the

10 ranking count.

Since our primary goal for this dataset is to learn a model for determining the

aesthetics ranking of an arbitrary image, there are two important steps we needed

to perform before this was possible:

1. Downloading all the images.

2. Computing the aesthetics score of each image.

Images were downloaded using a Python script and saved as JPEGs. Of the 255530

images in the dataset, only 195128 were still available for download. To compute

the final score of each image, we simply computed the normalized weighted mean

of the votes for each image, giving us a final floating point aesthetics value in the

range [0, 1].

2.2.2 SumMe (from "Creating Summaries from User Videos")

The SumMe dataset[24] is the first video summarization dataset focusing specifically

on raw user videos that contain a number of interesting events. It contains 25

videos, each of which contains at least 15 different user summaries, for a total of 390

summaries overall. This dataset is currently used as the standard benchmark for

state-of-the-art video summarization methods.

20

Chapter 2. Background Information 2.2. Datasets

2.2.2.1 Dataset Processing

The base dataset contains for each video, a single data file exported from Matlab

in mat format. Each file has a user_score attribute which contains a 2D matrix

where each row represents a frame, and each column a user. Each element of this

matrix is either 0 if the frame was not selected for inclusion in the summary, or

> 0 otherwise. We use Algorithm 1 to convert this raw data matrix into a set of

summaries {U0, . . . , Uc}.

2.2.3 TVSum

The TVSum dataset[29] consists of 50 videos from Youtube belonging to various

genres. Each video is divided into 2 second long shots which are ranked by 20 users

for importance on a scale of 1 to 5. In order to obtain user summaries from this

dataset, we use 0/1 knapsack to select for each user’s importance scores, a summary

with length equal to 15% of the original video.

2.2.4 VSUMM

The VSUMM dataset[30] is an older dataset focusing on static summaries rather

than dynamic. This means that each summarization is represented as a number

of key frames, rather than a final video clip. This dataset consists of 100 videos

from two different sources: 50 from Openvideo, and 50 from Youtube. Each video

contains 5 summaries as a list of the frames which represent the static summary. To

21

2.3. Computer Vision Techniques Chapter 2. Background Information

generate dynamic summaries, we simply create uniform segments centered at each

keyframe to obtain a final summary with length equal to 15% of the original video.

2.3 Computer Vision Techniques

In our work, there are a number of techniques specific to computer vision which

are prerequisites to some of the more advanced methods examined later in our

work. To assist readers, we have created this section to provide a summary of these

techniques, along with any assumptions we make.

2.3.1 HOG Features

Histogram of oriented gradients (HOG) features are commonly used in computer

vision for the purpose of object detection. They operate by counting occurrences of

gradient orientations in local regions of an image. Traditionally, for a given image,

these are computed over a dense grid of uniformly spaced cells, usually 8× 8 pixels

in size. A detailed description of their computation method is beyond the scope of

this work, and interested readers are directed to [31] for further information. The

result of this method applied to an image is a feature vector consisting of 9 values

for each cell, which represent the sum of the magnitude of the gradient vectors for

each 20 degree angle bin in the range [0, 180). HOG features tend to be desirable for

object detection as they are invariant to changes in lighting and small deformations.

22

Chapter 2. Background Information 2.3. Computer Vision Techniques

Figure 2.1: A visualization of both the HOG features and gradient image for an example
image. The center image was created by computing the gradient of the leftmost image,
and assigning a color to each pixel where the hue represents the angle of the gradient, and
the intensity of the color represents the magnitude of the gradient. The rightmost image
displays the traditional visualization used for HOG features. The image is divided into bins,
and 9 white lines are drawn at different angles within each bin, with the intensity of the line
representing the strength of the gradient for that specific angle.

A traditional visualization of these features is shown in Figure 2.1. In the right

image, each 8× 8 cell contains 9 white lines, oriented based on the orientation of

the bin they represent, and with a length based on their magnitude in the resulting

HOG feature histogram. We additionally display the original image on the left,

and the gradient image in the center, where the color of each pixel represents the

orientation of the gradient at that point, and the intensity represents the magnitude.

2.3.2 Decision Trees

A decision tree is a model which uses a tree-like graph of decisions and outcomes.

Each decision is represented by a node in the graph, and has an associated test on an

attribute. Each labeled branch out from a node represents the result of the attribute

test. In most cases, there will just be two branches, one for true and one for false.

23

2.3. Computer Vision Techniques Chapter 2. Background Information

Finally, all leaf nodes of the graph contain the determined class for a path through

the graph, and may optionally include a regression value r = [0, 1] and percentage

of observations o = [0, 100]% that reached the leaf during training.

Gender

Age > 9.5 Survived
0.73, 36%

Male Female

Died
0.17, 61%

S/S Aboard > 2.5

Yes No

DiedDied
0.05, 2%

Survived
0.89, 2%

Yes No

Figure 2.2: An example decision tree for predicting the survival outcome of passengers on
the Titanic. In this case, we can see that the dataset is first split based on the value of the
gender attribute. A value of Female results in a Survived leaf node with a probability of
0.73, meaning that a female on the Titanic had a 73% chance of survival. A value of Male,
on the other hand, leads to another decision node. This process continues downwards until
no attributes remain with the information gain of a split using them above some threshold
value.

An example decision tree is presented in Figure 2.2, which represents the survival of

passengers on the Titanic dataset[32]—one of the basic datasets traditionally used

when describing the workings of decision trees. Decision nodes are represented

by a gray rounded rectangle node and display the attribute test that is used. Leaf

nodes are represented as colored rectangles, with one color for each distinct class.

24

Chapter 2. Background Information 2.3. Computer Vision Techniques

Leaf nodes also include the regression value r and percentage of observations o as

labels below them. The series of decisions that lead to a given class can be found by

simply working backwards from each leaf node. The regression values, observation

percents, and decisions followed to reach each conclusion can be seen in Table 2.1.

Class r o Decisions

Died 0.05 2% Gender = Male, Age 6 9.5, S/S Aboard > 2.5

0.17 61% Gender = Male, Age > 9.5

Survived 0.73 36% Gender = Female
0.89 2% Gender = Male, Age 6 9.5, S/S Aboard 6 2.5

Table 2.1: The regression values and observation percents for each class in our example
decision tree, along with a list of the decisions which were followed to read each leaf node.

2.3.3 Information Gain in Decision Trees

Information gain is a metric used by many decision tree learning algorithms. It is

based on the concept of entropy H from information theory, which was designed to

measure the amount of information content a given set of examples belonging to

different classes exhibit. Given a set of sample features T = {(x1, x2, . . . , xn, y)}, y ∈ Y

where xi represents a single feature/attribute value and y represents the class of

the feature, the entropy H can be simply defined as

H(T) = −
∑
y∈Y

py log2 py.

Each py value represents the probability of the class y in the set T , that is, py = |{t ∈

T | ty = y}|/|T |. We can additionally define conditional entropy of a sample set T

25

2.3. Computer Vision Techniques Chapter 2. Background Information

given an attribute value xi = a as

H(T |a) =
∑

v∈vals(xi)

|{t ∈ T | xi = v}|

T
·H({t ∈ T | xi = v}).

Finally, we can define the information gain of a sample set T for a single attribute a

as

IG(T, a) = H(T) −H(T |a).

Generally, this value is a good representation of the “relevance” of an attribute. In

decision tree algorithms, this value is commonly used to decide which attribute

should be used to split up a dataset.

2.3.4 Cross-Validation

Cross-validation is a technique used for the purpose of model validation to attempt

to determine the ability of the model to generalize when provided with a set of

data independent of the training data. For a typical prediction problem dealing

with a set of data X with know results Y, the most basic form of model validation

involves splitting the data into two sets—the training set Xt and Yt, and the

testing/evaluation set Xe and Ye. The model is trained on the training set, and once

training has completed, is evaluated on the testing set. This introduces, among

other issues, the possibility for either training or testing to be performed on an

unrepresentative subset of the data, resulting in either overfitting or an inaccurate

computed accuracy metric.

The traditional solution is to perform a procedure known as k-fold cross-validation.

26

Chapter 2. Background Information 2.3. Computer Vision Techniques

Using this method, the set of data is first split into k random equally-sized subsets

Xi and Yi with i ∈ [1, k]. Training and evaluation is then performed by looping over

each i ∈ [1, k], and

1. training a model mj using a subset of folds
⋃
({Xj and Yj | j ∈ [1, k], j 6= i}),

followed by

2. testing the model using the excluded fold Xi and Yi.

Once metrics have been computed for each i value, the average of each metric is

returned as the final value. The value used for k should be adjusted based on

various statistics of the input data such as the cardinality and the availability of

computational resources.

2.3.5 Grid Search

The vast majority of machine learning methods are parameterized based on some

“hyper-parameter” values p ∈ P. For most models, sane defaults are provided,

however, simple tuning of these parameters to a specific set of training data very

often results in an increase in model prediction accuracy. A common method for

selecting optimalp values for a given algorithma and set of dataX is to perform “grid

search”, where a subset of possible values for each parameter p ∈ P are provided,

and for each set of values hp in the Cartesian product {p0 × · · · × pn | n = |P|}, the

algorithm a is trained and evaluated using cross-validation.

27

2.3. Computer Vision Techniques Chapter 2. Background Information

Algorithm 1 The algorithm used for computing the summarizations for a video
from the SumMe dataset.

Inputs:
m: A f× c user_scorematrix

1: function ExtractSummeSummaries(m)
2: W ← List() . Construct an empty list
3: for i from 0 below c do
4: U ← List() . Construct an empty list
5: prev← 0

6: for j from 0 below f do
7: if m[j, i] > 0 then
8: if prev > 0 then
9: increment segment end

10: else
11: append segment
12: end if
13: else
14: if prev > 0 then
15: new segment
16: end if
17: end if
18: end for
19: end for
20: return S

21: end function
Output: A set of summaries W = {U0, . . . , Uc}

28

chapter 3

Video Segmentation

This chapter presents the processes we tested for performing video segmentation on a single

video. Overall, we examine three of the primary segmentation methods used by traditional

approaches [33, 34]. We additionally describe a more complex method which makes use of

multiple change-point detection to dynamically adjust segment boundaries to better fit the

underlying content. Since our primary goal is to develop a time-efficient summarization

system, we additionally perform segment pre-processing and post-processing in an attempt

to eliminate segments that are obviously non-desirable. The computational overhead of this

additional processing is minimal, and has the potential for large computational savings later

on in our summarization system.

The first step in our summarization system is segmentation, where for an input

video V, a segmentation SV is generated consisting of k > 0 non-overlapping

29

Chapter 3. Video Segmentation

segments {s0, . . . , sk}. Although the segments are not allowed to overlap, it is possible

for gaps to exist between segments, that is, we only require that end(si) < start(si+1).

A visual representation of this process can be found in Figure 3.1.

Multiple approaches to segmentation have been developed over time, each with

differing amounts of complexity and types of videos they work best with. For

example, uniform sampling is perhaps the least complex, simply choosing segments

of equal length with no gaps between them. More advanced methods actually

attempt to locate the transitions between different “scenes” in a video, where the

visual content has changed significantly. One such example of a method is multiple

change-point detection[6], which has shown to be fairly accurate when locating

scene transitions.

V

s0 s1 s2

5 Frame Uniform Sampling

Figure 3.1: An example of the expected results from this step when using uniform sampling.
We start with a video V with frames(V) = 15, and using uniform sampling with a length of 5
frames, we obtain a segmentation SV consisting of k = 3 segments {s0, s1, s2}.

Our entire segmentation process can be broken down into three distinct steps:

Video Pre-processing Low level frame features are extracted from the video and

30

Chapter 3. Video Segmentation 3.1. Video Pre-processing

“labels” are optionally assigned via comparison to empirically derived thresh-

old values.

Finding Initial Segments The video is initially divided into a number of candidate

segments.

Segment Post-processing The candidate segments are processed further in an

attempt to maximize the quality of the final segments, and eliminate any

obviously undesirable segments.

The remainder of this chapter provides details of each step, including any options

considered during the development of our pre-processing and post-processing

processes.

3.1 Video Pre-processing

The first step we perform is video pre-processing, where low-level features are

extracted for each frame of a video and are used to optionally assign initial “labels”

to individual frames. In particular, we attempt to locate frames which are too dark,

blurry, or have a high degree of uniformity. A visualization of the primary task

performed by this step can be found in Figure 3.2.

31

3.1. Video Pre-processing Chapter 3. Video Segmentation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
1 2

U
3 4

B
5

B
6

B
7

B
8 9 10

U
11 12 13 14

D
15 16 17

Figure 3.2: The results of applying pre-processing to an input video. The original video is
shown at the top of the figure, consisting of 17 frames. At the bottom of the figure, we see
the same video, but with some frames having labels applied to them, indicating that they
were identified as “undesirable” by one of the pre-processing metrics.

3.1.1 Frame Labeling Features

The features we compute for the purpose of labeling frames have minimal com-

putational requirements, and are thus discarded once they have been used. To

perform frame labeling, we simply loop over each frame of the video, compute a

number of feature values, then compare each to a previously empirically computed

per-feature threshold value. Frames with feature values below this threshold value

are considered undesirable, and assigned a label. Some example video frames,

along with their computed feature values and corresponding labels can be found in

Figure 3.3.

32

Chapter 3. Video Segmentation 3.1. Video Pre-processing

Y = 0.63

S = 1955.33

U = 0.70
Label: none

Y = 0.45

S = 83.19

U = 0.75
Label: blurry

Y = 0.02

S = 3.42

U = 0.15
Label: dark

Y = 0.14

S = 6552.91

U = 0.24
Label: uniform

Figure 3.3: Four example frames from a video, along with the values computed for each of
the feature values, and the corresponding label assigned to the frame, if any. Any feature
values which fall below the threshold value are highlighted in red.

Threshold values for each label were computed by hand-labeling approximately

one hundred positive and negative example frames, then extracting the feature

values, resulting in a set of feature values for the positive examples xp and negative

examples xn. To minimize the false positive rate, the final threshold value is selected

as min(max(xn),min(xp)), that is, the largest value from the negative examples

which is less than the smallest value from the positive examples.

3.1.1.1 Dark Frames

In order to locate frames with a low amount of illumination, the relative luminance

Y ∈ [0, 1] of each frame f = (R,G, B) consisting of a red channel R, green channel G,

and blue channel B is calculated as the average value over all pixels, that is,

Y = mean(0.2126 · R+ 0.7152 ·G+ 0.0722 · B).

A frame is then labeled as “dark” if Y 6 α for some threshold value α. For our work,

the optimal value of α was empirically determined to be 0.097. The third image in

33

3.1. Video Pre-processing Chapter 3. Video Segmentation

Figure 3.3 is an example of a “dark” frame.

3.1.1.2 Blurry Frames

The sharpness S of each frame is computed using the Tenengrad method[35, 36],

where frames with S 6 β for some threshold value β are labeled as “blurry”. We

empirically determined the optimal β value to be 502.32. To compute S, first, the

horizontal image gradientGx and vertical image gradientGy of the grayscale version

of each frame is calculated. We then calculate the final sharpness value

S = mean(G2
x +G2

y)

as the mean magnitude over all pixels of these image gradients. The second image

in Figure 3.3 is an example of a “blurry” frame.

3.1.1.3 Uniform Frames

A low uniformity value U < γ for a frame is a general indication that the frame

doesn’t contain a significant amount of meaningful information, as the intensity

values over all pixels in the frame are very similar. These frames are labeled as

“uniform”. A value of γ = 0.2 was empirically determined to be the optimal value

for our purposes. The value for U is obtained by first computing the normalized, 1D,

128-bin grayscale histogram H of the image. We then compute the ratio between the

top 5th percentile values of H and the rest of H. In order to preserve the convention

that threshold values should be upper bounds, the final value for U is then equal to

34

Chapter 3. Video Segmentation 3.2. Finding Initial Segments

1 minus this computed value. The fourth image in Figure 3.3 is an example of a

“uniform” frame.

3.2 Finding Initial Segments

In our work, we are mostly concerned with segmenting raw user videos—those which

are usually captured by amateurs, using consumer devices such as smartphones or

action cameras. This contrasts sharply with the vast majority of previous work in

the field of video summarization, where edited videos with distinct “scenes” (such

as TV shows and news programs) have traditionally been used.

Transitions in these raw user videos are significantly more difficult to detect

compared to those in edited videos. Even current state-of-the art methods[33, 34]

elect to use a basic method such as uniform sampling to select their initial segments,

and rely purely on the later steps in their summarization system to refine their

segment boundaries. In addition to examining these methods, we also reformulate

our video as a multidimensional time-series sequence of features, allowing us to cast

video segmentation as a multiple change-point detection problem and use modern

signal processing methods.

3.2.1 Uniform Sampling

The most basic method that can be used to find the initial segments of a video involves

simply dividing the video into a number of segments of equal length, usually in the

range of 3 to 15 seconds each. Although this method is computationally efficient,

35

3.2. Finding Initial Segments Chapter 3. Video Segmentation

the quality of segments it generates tend to be low.

Figure 3.4: An example of uniform sampling applied to a video. The ground-truth scenes
of the underlying video are indicated by blocks of different colors.

An example of the results this method produces can be seen in Section 3.2.1. It is

important to note that the selected segments rarely correspond to the logical units

(scenes) of the video, often only capturing part of an underlying scene, or even parts

of multiple different scenes, such as in the third segment in Section 3.2.1. We elected

not to use this method, as the generated segments were of very low quality.

3.2.2 Threshold-Based Scene Detection

Threshold-based detectors are among the simplest of scene detection methods which

actually process the underlying image data. They operate by simply computing

the average brightness value of every frame in the target video, and creating a new

segment when this value falls below some threshold value. This method is very

efficient and works well for edited videos containing abrupt scene transitions, that

is, edited videos. However, for the case of the raw user videos, the method performs

poorly, rarely selecting more than a couple of segments for long videos (> 5 minutes

in duration). A possible solution to this problem is to enforce a maximum segment

duration, such as 5 seconds, although in practice, this would effectively result in

uniform sampling.

36

Chapter 3. Video Segmentation 3.2. Finding Initial Segments

Figure 3.5: An example of threshold-based scene detection applied to a video. The ground-
truth scenes of the underlying video are indicated by blocks of different colors. In this case,
only two segments were selected in a video consisting of 4 underlying scenes. Furthermore,
the boundaries of these segments are a large distance away from any ground-truth scene
boundaries.

3.2.3 Content-Aware Scene Detection

Content-aware detection is similar to threshold-based detection, but rather than

using the average brightness of each frame, it uses the average pixel value in the

HSV color space of the image difference between two frames. As before, we loop over

each frame and calculate this value, starting a new segment whenever we encounter

a frame with a value that falls below some threshold value. The primary benefit of

this method over threshold-based detection is that it is actually able to detect when

the content of the frame changes, rather than just disappears (fades to black). For

raw user videos, this method performs moderately well—it is able to capture scene

transitions resulting from fast pans of the camera, but does miss slower pans. Any

zooming that occurs in the video also tends to result in a new scene, which is only

sometimes desirable.

Figure 3.6: An example of content-aware scene detection applied to a video. The ground-
truth scenes of the underlying video are indicated by blocks of different colors. Although
this method only selects three of the four underlying scenes, the ones that it does select are
of high quality, as they have boundaries very close to the ground-truth boundaries.

37

3.2. Finding Initial Segments Chapter 3. Video Segmentation

3.2.4 Change-Point Detection

In some of the most recent works on video segmentation—especially those involving

user videos—a method based on multiple change-point detection[6] is used. The

purpose of change-point detection when applied to a set of time series data is to locate

any times where the probability distribution of the data changes significantly. For

the case of videos, we use a feature matrix consisting of color and edge histograms

for each frame of the video. Video segmentation is framed as a group fused least

absolute shrinkage and selection operator (LASSO) problem, and we make use of

the method originally described in the work by Bleakley and Vert [6], and optimized

for use with long video sequences in the work by Song et al. [29].

As input, change-point detection requires a time series feature matrix X, where each

column represents a frame and each row the features for that frame. There are

many options for the frame features that can be used, but keeping with our desire to

achieve real-time performance, we elected to use relatively simple 2200-dimensional

color and edge histogram features X2200
f . For each frame f, we compute two primary

features over a two-level pyramid consisting of five regions: (1) HSV histograms

with 128-bins per channel, and (2) edge orientations and magnitudes with 30 bins

for each. These are then concatenated to form a final feature vector X2200
f . Once

features have been extracted for all n = frames(V) frames of V, we use them as the

columns of a matrix, resulting in a final feature matrix X ∈ R2200×n. It is possible

to use more complicated features, such as the outputs from a layer of a neural

network, but even for a relatively simple network such as VGG-19, the time required

per-frame to extract these features is prohibitive.

38

Chapter 3. Video Segmentation 3.2. Finding Initial Segments

Once we have our input feature matrix X, a set of sparse coefficients A ∈ Rn×n are

computed by solving the convex optimization problem

arg min
A
‖X − XA‖2F +

λ

2
‖A‖2,1. (3.1)

The term ‖·‖2F represents the Frobenius norm defined as ‖A‖2F =
∑

i,j |Ai,j|
2. The

term ‖·‖2,1 is the `2,1 norm, defined as ‖A‖2,1 =
∑

i(
∑

j |Ai,j|
2
)1/2, which computes

the sum of the Euclidean norms of the columns of the matrix. In Equation 3.1, the

first term represents the reconstruction error, and the second term the total variation,

where λ > 0 is used to control the relative importance among the two terms. The

exact method used to perform the optimization is beyond the scope of our work, so

readers are referred to the description by Song et al. [29] if additional details are

required.

After performing the optimization and obtaining an optimal A, we can compute a

score for each frame zfi = ‖Ai,·‖2. By selecting the top-k highest scoring frames as

split points, we are able to obtain a segmentation SV consisting of k+1 segments. We

elected to target obtaining segments with an average length of 5 seconds, resulting

in k = b frames(V)/(5 · fps(V))c.

Figure 3.7: An example of change-point detection applied to a video. The ground-truth
scenes of the underlying video are indicated by blocks of different colors. This method
is able to successfully locate all the underlying scenes of the video, with a high degree of
accuracy for the boundary locations compared to the ground-truth data.

Overall, this method can be thought of as a more robust version of threshold-based

39

3.3. Segment Post-Processing Chapter 3. Video Segmentation

and content-aware sampling. Rather than relying simply on local color or brightness

features, a combination of color and edge histograms are used to locate segment

boundaries based on the statistical properties of the entire video.

3.3 Segment Post-Processing

After the initial segment selection has finished, we are left with a list of non-

overlapping segments with no gaps between them, that is,

SV = {s0, . . . , sk} with end(si) + 1 = start(si+1). (3.2)

The next step makes use of the frame labels computed in Section 3.1.1 to post-process

each segment and eliminate undesirable frames and segments, effectively converting

segments in the form of Equation 3.2 into their final form. Our goal with this step

is to make use of the simple visual features currently available to us to eliminate

segments which are obviously undesirable. Any frames or segments that can be

eliminated now will result in large computational savings in later steps of our

system, as we will no longer have to extract the higher-level, more computationally

complex features.

Specifically, this post-processing consists of four steps:

Segment splitting The labels of the frames within each segment are examined, and

based on a metric, segments are optionally split into multiple new segments.

Segment trimming For the case of segments which contain labeled frames on either

40

Chapter 3. Video Segmentation 3.3. Segment Post-Processing

end, we remove these frames from the segment.

Low-Quality segment elimination The fraction of labeled frames is computed for

each segment, and any segments with a percent exceeding some threshold

value are removed.

Short segment merging and elimination For any segment less than some thresh-

old duration, we examine its neighbor segments, and either merge it with its

neighbors if the distance between them is below some threshold, or eliminate

it otherwise.

In the remainder of this section, we provide details of each step in this process.

3.3.1 Segment Splitting

In this step, we use a sliding window approach to split segments at any point right

before a window in which all frames are labeled. This means that we use a window

starting at the frame after the current one. The size of the window is selected to

be half the number of frames in an optimal segment. We stop once our window

extends past the frame range for the current segment. We additionally take into

account the label of the current frame, only spitting if we are not currently on a

labeled frame.

41

3.3. Segment Post-Processing Chapter 3. Video Segmentation

D
1 2

U
3 4

B
5

B
6

B
7

B
8 9 10

U
11 12 13 14

D
15 16 17

D
1 2

U
3 4

B
5

B
6

B
7

B
8 9 10

U
11 12 13 14

D
15 16 17

Figure 3.8: A visualization of the segment splitting step with a window size of 4 frames.
The top half of the figure shows our video before splitting is applied. Frames highlighted
in gray indicate ones which are covered by our current window, and the frame with a
thick border represents the current frame we are examining. This frame and window have
been specifically selected as they represent an instance where splitting should actually be
performed. The resulting state after splitting can be found at the bottom of the figure.
Specifically, we can see that the first video segment has been split into two segments just
before the segment with four blurry frames in a row.

An example of a segment before and after splitting can be found in Figure 3.8. It is

important to note that this step only splits segments and makes no attempt to remove

individual frames—they will be eliminated by subsequent steps of post-processing.

3.3.2 Segment Trimming

Since segment splitting never actually removes any frames, we are often still left

with a number of segments containing labeled frames at the beginning/end. The

process of segment trimming operates by simply looping over every segment, and

removing any frames at the beginning or end of that segment which are labeled.

Once this step has finished, the first and last frame of every segment will not have a

label. A visual summary of the operations and end result performed by this method

on the results of the previous step can be found in Figure 3.9.

42

Chapter 3. Video Segmentation 3.3. Segment Post-Processing

D
1 2

U
3 4

B
5

B
6

B
7

B
8 9 10

U
11 12 13 14

D
15 16 17

2

U
3 4 9 10

U
11 12 13 14 16 17

Figure 3.9: A visualization of the segment trimming step applied to the segments which
resulted from the segment splitting step. In the top of the figure, labeled frames at the
beginning or end of each segment have been highlighted. The bottom of the figure shows
the result after these highlighted frames have been removed from their respective segments.
For any non-labelled frames, frame numbers have been added to assist with future steps.

3.3.3 Low-Quality Segment Elimination

Once segments have been split, we eliminate any segments which consist mostly

of labeled frames. To do this, we simply loop over every segment, calculate the

percentage of frames which are labeled, and compare it to some threshold value. If

the percentage exceeds this threshold value, we remove the segment.

The primary benefit of this step over previous steps is that it operates globally rather

than locally, examining the segment as a whole rather than a small subset. A visual

summary of this method applied to the results of the previous step can be found in

Figure 3.10.

43

3.3. Segment Post-Processing Chapter 3. Video Segmentation

2

U
3 4 9 10

U
11 12 13 14 16 17

9 10

U
11 12 13 14 16 17

Figure 3.10: A visualization of the segment elimination step can be found above. In this
case, we have used 30% as the threshold value for the percentage of labeled frames needed
before a segment is eliminated. There is one segment for which this is true, highlighted in
the top of the diagram. The bottom of the figure shows the resulting segments after this
segment has been eliminated.

3.3.4 Short Segment Merging and Elimination

After the previous steps have been performed, we may still be left with segments

that have a small duration with a majority of frames which are of high quality (not

labeled). These segments can not be included in the final segmentation, as their

later inclusion in a summary will result in abrupt “jumps” between scenes, which

are often undesirable to end-users. However, the fact that they contain mostly

high-quality frames means that they should only be removed as a last resort. To

maximize our use of these segments, we attempt to merge them with neighboring

segments, only removing them if no merge is possible.

In this step, we examine each segment with a duration below some threshold

duration dm, then examine each of its neighbor segments. If the distance between

two segments is below some threshold value db, we merge the two segments. Note

that a segment can be merged with both its previous and next neighbors if the

44

Chapter 3. Video Segmentation 3.4. Final Result

distance between both falls below the threshold value. If the segment can not be

merged with either of its neighbors, it is instead removed.

Overall, for a segment s with a previous neighbor sp and next neighbor sn, there

are four possible outcomes:

1. If both the distance between sp and s falls below the threshold value, and the

distance between sn and s falls below the threshold value as well, both sp and

sn are removed, and the range of s is extended to range from the beginning of

sp and end of sn.

2. If just the distance between sp and s is below the threshold value, sp is removed

and the range of s is extended to start at the first frame of sp.

3. If just the distance between sn and s is below the threshold value, sn is

removed and the range of s is extended to end at the last frame of sn.

4. Otherwise, s is removed.

Pseudocode of this can be found in Algorithm 2, and the result of this process

applied to the results of the previous step can be seen in Figure 3.11.

3.4 Final Result

We started this chapter with an example video consisting of 17 frames, and worked

through each step of our video segmentation system to arrive at a final result

consisting of a single 9 frame segment, as seen in Figure 3.12. It is important to note

the significant reduction of almost 50% in the number of frames before and after

45

3.4. Final Result Chapter 3. Video Segmentation

9 10

U
11 12 13 14 16 17

9 10

U
11 12 13 14

D
15 16 17

Figure 3.11: A visualization showing how segment merging is performed. In this case,
there is a single segment with a duration below the threshold duration, highlighted in the
top of diagram. The distance between this segment and its previous neighbor is less than
the threshold so the two segments have been merged. The final segmentation state is shown
in the bottom of the figure.

performing segmentation. Although the reduction amount is most likely less in

practice, we can easily see the benefit of our post-processing. This, combined with

our initial segmentation using multiple change-point detection gives us a distinct

performance advantage compared to other methods at this early step in our video

summarization system.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

9 10

U
11 12 13 14

D
15 16 17

Figure 3.12: A visualization of the result of our entire video segmentation process applied
to an example video. Performing an initial segmentation along with post-processing using
very low-level features allows us to go from a 17 frame long video segment, to a single 9
frame long segment.

46

Chapter 3. Video Segmentation 3.4. Final Result

Algorithm 2 The algorithm used for performing segment merging and elimination.

Inputs:
S: A segmentation consisting of n segments {s0, . . . , sn−1}

dm: The minimum segment frame duration threshold
db: The between segment frame duration threshold

1: function PostProcessShortSegments(S, dm, db)
2: for sp, s, sn in Zip(S, S[1 :], S[2 :]) do
3: if frames(s) > dm then
4: continue
5: end if
6: merged← False
7: if distance(sp, s) 6 db then
8: S ← Remove(S, sp)
9: start(s)← start(sp)

10: merged← True
11: end if
12: if distance(s, sn) 6 db then
13: S ← Remove(S, sn)
14: end(s)← end(sn)
15: merged← True
16: end if
17: if merged = False then
18: S ← Remove(S, s)
19: end if
20: end for
21: return S

22: end function
Output: A new version of S with segment merging and elimination applied

47

3.4. Final Result Chapter 3. Video Segmentation

48

chapter 4

Feature Extraction

This chapter provides an overview of the methods we use to extract features from our videos,

which are later used for scoring segments. At the frame-level, we extract both low-level

features, which are time-efficient to compute, and higher-level features, which are more

expensive to compute, but have the potential to provide a deeper degree of scene understanding.

Once these frame-level features are computed, we additionally compute per-segment features

as aggregations of these features.

Once all candidate segments SV for our videoV have been located, the next step

is to extract a number of features for these segments. In our work, we extract

features at varying levels of detail. In particular, we extract a large number of low-

level visual features which have previously been used in computational aesthetics

to score the attractiveness or “beauty” of an image. These features are efficient to

49

4.1. Frame Features Chapter 4. Feature Extraction

compute, but are limited in the amount of scene understanding they are able to

achieve. Additionally, we compute features using more complicated computer vision

methods—in particular face detection and face recognition. These higher-level

features are extracted with the intention of gaining a deep understanding of the

content of a video. They are expensive to compute, but we hypothesize that their

benefits as additional features will outweigh this expense when applied to the task

of segment scoring. We start by extracting frame-level features, and conclude by

performing an aggregation over these features for each segment in order to obtain a

single feature vector Xs for each segment s ∈ SV .

4.1 Frame Features

Initially, for each frame f in each segment s of our segmentation SV , we extract a

feature vectorXf. In particular, we extract a combination of low-level features related

to computational aesthetics, and higher-level features related to face detection and

recognition.

4.1.1 Low-level Features

Low-level features have the benefit of being computationally efficient to compute,

with their primary drawback being that they are unable to capture higher-level

concepts, such as the presence of a specific person in an image. We currently extract

a number of hand-crafted features related to computational aesthetics, which over

the years, have shown to be useful for the task of scoring the attractiveness of an

50

Chapter 4. Feature Extraction 4.1. Frame Features

image[9, 10, 11, 37]. Overall, we compute 59 different feature values for each frame,

leaving us with a set of low-level feature vectors X59
f . A summary of the features

we extract, along with their dimensionality and a short description of each can be

found in Table 4.1.

Feature Dim. Description

Contrast 1 The ratio between the luminance range and average luminance.
Image Mean HSV 3 The average H, S, and V values over the entire image.
Center Mean HSV 3 The average H, S, and V values for the image center quadrant.
Itten Histograms[11] 20 Histograms of H values over 12 bins, S values over 5 bins, and V

values over 3 bins.
Itten Contrasts[11] 3 Standard deviation of each Itten Histogram.
Pleasure, Arousal,
Dominance[11]

3 Approximate emotional values computed as linear
combinations of the mean V and S values.

Haralick Texture
Features[12]

13 Average Haralick texture features over all four directions.

Contrast Balance 1 Distance between the original and contrast-normalized
grayscale image.

Exposure Quality 1 Negative absolute value of luminance histogram skew.
JPEG Quality[13] 1 No-reference quality estimation algorithm for JPEG images.
Tenengrad[14] 1 Sharpness according to the Tenengrad method.
Spectral Residual 9 Rule of thirds using spectral saliency[15] in 9 quadrants.

Table 4.1: A summary of the low-level features extracted from each frame. The dimen-
sionality of each feature is provided, as well as a short description of what it computes.
References have been provided whenever possible, in the case that more information is
required for a specific feature.

4.1.2 High-level Features

The high-level features that we compute were selected with the intention of gaining a

deeper understanding of the actual content of a video. Where low-level features are

only able to compute general concepts such as the sharpness or relative brightness

51

4.1. Frame Features Chapter 4. Feature Extraction

of single frames of a video, high-level features have the potential to provide us with

information more akin to what a human may observe when viewing a video. For

example, face detection and recognition features allow us to determine specifically

which people are present in a frame—something that humans instinctively do when

viewing a video.

For the vast majority of videos, knowledge of the people that are featured in the

video and statistics related to their appearance are extremely important for proper

understanding of the video content. For our case of raw user videos, this knowledge

would allows us to determine which people appear the most and least in a video,

and score the segments accordingly. We first perform face detection, which gives us

the number of faces present in a frame, as well as the position of each face. Using

this information, we then perform face recognition, where we perform clustering on

every detected face, resulting in a list of specific people that appear in the video,

and the frames they appear in.

The fact that we already extract a number of low-level image aesthetics features,

combined with our access to the AVA dataset containing a large number of user

image aesthetic rankings, additionally led us to the idea of extracting a general, high-

level aesthetics feature for each frame. Since our primary concern is distinguishing

between aesthetically desirable and undesirable frames, and since our per-frame

features will be aggregated into per-segment features for our final summarization,

we elected to train an XGBoost classification model. Frames classified as 0 represent

aesthetically undesirable frames, while frames classified as 1 represent desirable

ones.

52

Chapter 4. Feature Extraction 4.1. Frame Features

4.1.2.1 Face Detection

Face detection is vision process which takes as input a frame f, and returns a

possibly empty list of bounding boxes which for the current frame, contain face

boundaries. Many face detection methods have been developed over the years, but

for our work, we make use of the one provided by the dlib library—a modern, high-

performance C++ library which facilitates the use of high-quality deep-learning

models. Specifically, dlib uses a Felzenszwalb’s HOG (FHOG)[20] object detector

pre-trained to detect faces. This FHOG detector uses a combination of image

pyramid downsampling with a 5/6 ratio, a 80 × 80 sliding window, and HOG

features (previously discussed in Section 2.3.1) to perform object detection. The

basic idea behind the FHOG detector is to detect objects by examining each sub-

window of an image at a number of different scales, which effectively reduces object

detection to a problem of binary classification. For each sub-window, we extract an

arbitrary feature vector X31 as the concatenation of the HOG features for each cell.

This is performed for a number of decreasing scales of the image, forming a HOG

pyramid H. For each scale of H, we have a learned filter F which represents the

concatenation of optimal HOG features to represent the target object at the given

scale. Given X31 and F, we are able to compute the score of X31 simply as F · X31.

This score is then summed over each scale in the pyramid H to obtain a final score.

Finally, any sub-windows which have a score exceeding some threshold score γ are

selected as probable locations for the target object.

The full implementation of FHOG used in our work goes even further by learning

a parts-based model as a combination of the previously described model, initially

53

4.1. Frame Features Chapter 4. Feature Extraction

limited to images in smaller scales of the pyramid. To achieve this, it takes advantage

of the knowledge that a more detailed version of the current image exists in order to

compute sub-filters over parts of the current sub-window at the same scale. The

aggregate score of these parts then results in a significantly more informative scoring

of each window.

The final result of this step is that for each frame f, we have a possibly empty list of

m face bounding boxes Bf = {b0, . . . , bm}.

4.1.2.2 Face Recognition

For each bounding box b, we extract a feature vector X128 using the default face

recognition model included with dlib. Then, we perform face pose estimation

using the default face shape predictor[38] from dlib. This predictor was trained

using the iBUG 300-W[39] face landmark dataset. This predictor takes as input a

bounding box containing a face, and computes the position of 68 important “facial

landmarks”, shown in Figure 4.1.a. Furthermore, these facial landmarks are aligned

with the underlying face image, giving a final result similar to the one presented in

Figure 4.1.b.

54

Chapter 4. Feature Extraction 4.1. Frame Features

1

2

3

4

5

18

6

19

37

20

38
42

7

41
39

21

49

40

61

60

50

8

22

32

59

68

51

62

33

28

29

30

31

34

52

63

67

58

9

35

53

64

66

57

36

23

43

54

65

56

10

24

44
48

55

47
45

25

11

46

26

12

27

13

14

15

17

16

(a) A visual display of the base land-
mark positions for a predictor using 68
landmark points.

(b) An example of a face template
aligned to a face based on predicted
facial landmark positions.

Figure 4.1: A visual demonstration of important concepts related to face detection and
alignment. The first example in (a) shows the general positioning of important landmarks
for an arbitrary face, while the second example in (b) provides an example of how these
landmark positions can be aligned to a face with an arbitrary orientation.

Once these landmarks have been computed, we are able to perform the first half

of face recognition, where for a bounding box and set of landmark features, we

extract a feature vector X128 representing the embedding of the face in a pre-learned

metric vector space. In this space, faces which are very similar (from the same

person) will have a very small distance between them, and faces which are different

(representing different people) will have a large distance between them. These

features are computed using the pre-trained deep metric model for faces included

in dlib.

Specifically, the model used is a version of the deep neural network ResNet-34[40],

modified to contain only 29 layers, and half the number of filters per layer. The

55

4.1. Frame Features Chapter 4. Feature Extraction

network is also modified to use a metric loss function in order to learn a metric

space for faces. Training is performed using over 3 million faces from the FaceScrub

dataset[41] and the VGG-Face dataset[42], and when tested on the Labeled Faces in

the Wild (LFW)[43] dataset, it is able to predict with 99.38% accuracy if two images

are of the same person.

To perform actual face recognition, we perform clustering using every face feature

vector X128 over all frames for every segment of the video. Specifically, we use the

Chinese whispers graph clustering algorithm[44] to compute an optimal clustering

of faces into “people”, with no prior knowledge about the number of people

being clustered. Chinese whispers is a linear-time hard partitioning, randomized,

flat clustering method. This means that although the result can change between

iterations and there is no hierarchical information between clusters, we get a final

clustering which (1) assigns each face to only a single segment, and (2) can be

efficiently computed for all feasible durations of input video. A video with a duration

of 1 hour can easily contain > 50000 nodes, so a linear-time algorithm is extremely

desirable.

The initial “graph” used as input to Chinese whispers is constructed by simply

looping over every pair of features
{(

X128
fa

, X128
fb

) ∣∣ fa, fb ∈ frames(s), fa 6= fb
}

across

all segments and frames computed in the previous step, and creating an “edge”

between two nodes when their distance is below some threshold value τ. A value of

τ = 0.6 was selected, as it matches the value that was used for the metric loss layer

of the deep neural network used in the previous step. Chinese whispers is then run

using this graph, resulting in for every frame f, a set of recognized faces {` | ` ∈ Z}.

56

Chapter 4. Feature Extraction 4.1. Frame Features

4.1.2.3 Aesthetics Model

As mentioned previously, in addition to using low-level aesthetics features as input

features themselves, we leverage the AVA dataset to train a general model for

computing a single score for a given image. Every image in the AVA dataset has

an average user score in the range [0.0, 1.0]. Similar to previous models for image

aesthetics[16][28], we classify an image as 0 if the average score is below 0.5, and 1

otherwise. We train an XGBoost classification model using 10-fold cross validation

and a train-test split of 70%/30%. Our model obtains an accuracy of 73.66%. This

is significantly higher than the reference model[28], which obtains an accuracy of

53.85%, and slightly lower than the modern ILGnet[16] deep learning model, which

obtains an accuracy of 82.66%. For the significant speed increase our model has

over ILGnet, this accuracy is acceptable for our purposes.

4.1.3 Final Feature Vector

For our final feature vector, we concatenate all our low-level and high-level features.

We start with our low-level feature vector X59
f . We concatenate the number of faces

present in the frame to get a new feature vector X60
f . For the face recognition feature,

we first filter out any recognized faces which only appear in a single frame, as

these represent unimportant faces. We then concatenate the number of recognized

faces present in the frame, to get a new feature vector X61
f . Finally, we append our

aesthetics model value, giving us a final frame feature vector X62
f .

57

4.2. Segment Features Chapter 4. Feature Extraction

4.2 Segment Features

Now that we have for each frame f a feature vector X62
f , we perform an aggregation

over all frame features in each segment to obtain for each segment s, a feature vector

Xs . For each feature value {x0, . . . , x61} ∈ X62, we compute the mean and standard

deviation across all frames in each segment. We then have as a final feature vector

X124
s =

61⋃
i=0

{
mean

({
xif

∣∣ f ∈ s
})

, std
({

xif
∣∣ f ∈ s

})}
(4.1)

for each segment s ∈ SV .

58

chapter 5

Video Segment Scoring

This chapter presents the methods which we developed for scoring a segment based on it’s

quality using the previously computed segment features. We start by describing the candidate

models we selected for computing scores, discussing the advantages and limitations of each.

We go on to describe our methods for training and testing possible models, and provide a

short analysis of the initial training results. We conclude by performing an analysis of the

importance of each feature in our selected model.

In this step, we operate on the segment features
{
X124
s

∣∣ s ∈ SV

}
computed in the

previous step, and compute a set of segment scores {Qs | s ∈ SV}. In our work,

we evaluate models using three tree-based machine learning methods: (1) decision

trees, (2) random forests, and (3) XGBoost. We start by giving an overview of these

models, describing their primary method of operation, their advantages against

59

5.1. Candidate Machine Learning Models Chapter 5. Video Segment Scoring

other methods, as well as their limitations.

We move on to describe our method for training and evaluating each model. We

then discuss the results, and select one, or possibly two models to use for segment

scoring, providing justification for our choice. Using out best model, we extract

features importances and analyze them in order to possibly eliminate features which

do not contribute significantly to the final accuracy of our models, thereby increasing

the performance of our system without sacrificing accuracy.

5.1 Candidate Machine Learning Models

For scoring segments, we examine a number of candidate models. Due the structure

of our input feature vector—a concatenation of various feature values covering

different topics—we mostly focus on methods which require minimal knowledge

and pre-processing of the input data. In particular, we focus on three tree-based

models:

1. Decision Trees

2. Random Forests

3. XGBoost

5.1.1 Decision Tree Learning

Decision tree learning makes use of a decision tree, previously described in Sec-

tion 2.3.2, to perform classification or regression using our input features as the

60

Chapter 5. Video Segment Scoring 5.1. Candidate Machine Learning Models

attributes during training. In our work, we use SKlearn for training decision trees

and performing classification or regression, which uses an optimized version of the

Classification And Regression Trees (CART) algorithm[45]. This is a greedy recur-

sive method which at each step, finds the combination of attribute and threshold

value which maximizes the information gain (previously described in Section 2.3.3).

The general operation of the algorithm is fairly simple—a rule involving one of the

attributes which maximizes the information gain is selected, the current node is

split into two new nodes, and the same process is applied to each of these new

nodes. The algorithm terminates when either: (1) it is determined that no additional

information gain is possible, or (2) when some pre-set stopping condition such as a

maximum depth is met. The result is a decision tree where each branch ends in a

leaf node consisting of a single class, which can be traced backwards to the root to

obtain the unique set of rules that define it.

Advantages

Decision trees are among the simplest of tree-based models, and hence have an

easy-to-understand internal structure. Their primary advantages over non-tree

models are as follows:

• They are easy to interpret and visualize.

• Their inner workings can be easily observed and recorded, facilitating repro-

ducible research.

• They can handle numerical and categorical data without pre-processing.

61

5.1. Candidate Machine Learning Models Chapter 5. Video Segment Scoring

• They tend to have moderately high performance on large datasets, both in

terms of speed and accuracy.

Limitations

The fact that decision trees are among the simplest of tree-based models, however,

also results in a few significant limitations:

• As a result of the greedy model commonly used to decide the optimal

decision at each node, they are only able to perform local rather than global

optimizations.

• They are prone to overfitting in the case of deep trees, and suffer from decreased

accuracy for shallower trees when compared to more complex tree-based

models.

5.1.2 Random Forest

Random forests are an ensemble learning method which combines bootstrap

aggregating[46] (“bagging”) and decision trees. They operates by first generating

multiple decision trees by continually resampling the training data with replacement,

then performing either voting or averaging over the output of each tree to obtain

the final classification or regression value respectively. One of their major benefits

is that they offer significantly less overfitting when compared to a single decision

tree. They effectively combine many low-bias, high-variance models to achieve a

low final error.

62

Chapter 5. Video Segment Scoring 5.1. Candidate Machine Learning Models

The algorithm used for training is fairly simple—basically general bootstrap aggre-

gating combined with a decision tree learning algorithm modified to use attribute

bagging[47]. For a training set X = x1, . . . , xn with outputs Y = y1, . . . , yn, bagging

operates by constructing a forest F of decision trees fb for b ∈ [1, B], where B is a

hyper-parameter. In our work, we perform grid search with cross-validation to

select an optimal value of B. For each value b ∈ B, we randomly sample, with

replacement, B examples from our data X and Y, resulting in a new set of data

Xb and Yb. This new set of data is used to train a decision tree fb. Note that B

determines both the number of trees that are constructed, and the size of the set of

examples used to train them. Once we have our trained forest F, we can compute

the output y ′ for an unseen input feature vector x ′ as either

y ′ = mean({fb(x ′) | b ∈ B}) or y ′ = mode({fb(x ′) | b ∈ B})

for regression or classification respectively.

As mentioned previously, random forests make use of a modified decision tree

learning algorithm which incorporates feature bagging. At each decision node,

rather than evaluating all features, a random subset of p features is instead selected.

This is done in an attempt to avoid the cross-tree correlation that may occur during

ordinary bootstrap aggregation if a small number of features are strong predictors

for the output value. If this was the case, these features would be selected by the

vast majority of the B trees, resulting in a strong correlation among the trees—an

extremely undesirable property. For classification, p =
⌊√

|x|
⌋

is typically used,

while for regression, p = max(min(|x|, 5), |x|/3) is recommended.

63

5.1. Candidate Machine Learning Models Chapter 5. Video Segment Scoring

Advantages

The major advantages of random forests over decision trees lies in the fact that they

make use of multiple trees, while decision trees use only a single tree. In particular:

• By averaging over several trees, the risk of overfitting is significantly reduced.

• They are able to achieve reduced variance and bias compared to decision trees,

therefore generally resulting in an increase in accuracy.

Limitations

The use of multiple trees, however, also comes with some costs:

• They are harder to visualize and understand.

• They are more computationally expensive.

5.1.3 XGBoost

XGBoost[48] is a machine learning gradient boosting method developed in the last

few years which has recently enjoyed a large amount of attention due to its use in

the winning models of many machine learning competitions. The model structure

consists of a number of weak prediction models, such as decision trees, which are

built in a stage-wise fashion. In this respect, XGBoost is similar to random forests,

the primary difference lying in the types of decision trees they build.

Where random forests generate full decision trees with a low bias and high variance,

64

Chapter 5. Video Segment Scoring 5.1. Candidate Machine Learning Models

XGBoost instead builds a number of very shallow decision trees (called “weak

learners”), each with a high bias and low variance. The very first tree is simply a very

shallow tree, which by itself, has bad performance. It then builds another shallow

tree which is trained to predict what the first tree missed. This process continues,

iteratively creating additional weak learners, until some stopping condition is

reached—traditionally the number of trees to build. The final model is then formed

as an ensemble of these weak learners.

Advantages

The primary advantages of XGBoost over other tree-based models are a result of its

use of many weak learners. We have that:

• They generally outperform random forests with optimal parameters.

• They achieve reduced overfitting compared to random forests and decision

trees.

Limitations

The use of weak learners, combined with the many possible hyper-parameters

available for tuning, lead to a few limitations. In particular:

• They often require fine-tuning to achieve optimal performance.

• They are very difficult to visualize and understand.

65

5.2. Model Training Chapter 5. Video Segment Scoring

5.2 Model Training

Initially, we trained a segment-level interestingness model for each of the three

base models—decision trees, random forests, and XGBoost—using the default

parameters. The models are evaluated using features extracted from uniform 5

second segments across all videos in the SumMe and TVSUM50 datasets. Train-test

splits are generated using 10-fold cross-validation on shuffled data, and the mean-

squared-error is used as the error metric for evaluating each model. The results for

each model are presented in Table 5.1.

Model Min Max Mean Std. Dev.

Decision Tree 0.04005 0.05145 0.04559 0.00380

Random Forest 0.02302 0.03025 0.02673 0.00238

XGBoost 0.02244 0.02907 0.02537 0.00214

Table 5.1: Metrics for the mean-square-error of each of our three base models evaluated
using 10-fold cross validation. We can see that of the three models, XGBoost has the best
performance, with the random forest model performing slightly worse, and the decision
tree significantly worse.

As we can see from Table 5.1, both the XGBoost and random forest models obtain

very similar error rates, with XGBoost slightly out-performing the random forest

model, and both significantly out-performing the decision tree model. For this

reason, we will use both XGBoost and random forest models for evaluating our

system. It is important to note that at this point in the system, we elected not to

perform model fine-tuning, instead waiting until Chapter 7, where we discuss an

error metric designed specifically for use with video summaries.

66

Chapter 5. Video Segment Scoring 5.3. Feature Importance

5.3 Feature Importance

An additional benefit of using tree-based models such as decision trees and XGBoost

is that the underlying models they make use of effectively compute the “importance”

of each feature as a side effect of their learning process. Averaging over all folds

for a given model, we can obtain for each feature an “importance” value, which we

normalize across all features to be in the range [0.0, 1.0]. For a given feature, a value

of 1 means that the feature is very important to the model, while a value of 0 means

that the feature is effectively useless to the model.

Since we previously saw that the XGBoost model obtained the best performance

among the models we tested, we compute the feature importances by averaging

over all the folds of our XGBoost model, yielding the results presented in Figure 5.1.

67

5.3. Feature Importance Chapter 5. Video Segment Scoring

0 10 20 30 40 50 60 70 80 90 100 110 120

0.2

0.4

0.6

0.8

1
Aesthetics Means
Aesthetics Variances
XGBoost Aesthetics Model
Face Detection and Recognition

Figure 5.1: A plot of feature importances for each feature included in our final feature
vector. For the purpose of visualization, we have grouped the features into four major
groups, each represented by its own color: blue represents the mean values of each aesthetic
feature, green the variances of each aesthetic feature, red the mean and variance of our
XGBoost aesthetics model values, and finally purple the mean and variance values for our
face detection and face recognition features. The background of each group additionally
contains an aggregate bar which shows the average importance across the entire group.

One important conclusion we can draw from Figure 5.1 is that among all the

features used by our model, those involving face detection and face recognition

have minimal importance, meaning they do not contribute a relevant amount of

information to the model. This is of particular importance to us, as these features

are computationally expensive to compute compared to the other features we use,

and our initial hypothesis was that the computational cost of these features would

be offset by their actual importance when computing a segment score. Figure 5.1

shows that this is obviously not the case, and thus resulted in us deciding to exclude

face detection and recognition features from our final feature vector. Therefore, we

remove the last four features from our segment features, giving us the new set of

segment features
{
X120
s

∣∣ s ∈ SV

}
.

68

Chapter 5. Video Segment Scoring 5.3. Feature Importance

Another relevant observation is related to the features obtained from our XGBoost

aesthetics model. Looking at Figure 5.1, we can see that these features have a

relatively high importance. In particular, their combined average importance is the

highest among the major groups of features. This is important, as it means that

we were able to train a supervised model for individual image aesthetics using

frame-level data from the AVA dataset, and successfully apply it to the task of

segment scoring. In particular, this is testimony in favour of the possibility of

combining aggregation and low-level data to obtain relevant future predictions of

higher-level values.

69

5.3. Feature Importance Chapter 5. Video Segment Scoring

70

chapter 6

Video Summarization

In this chapter, we describe our method for generating a summary of a video using the list

of scored segments computed previously. We start by describing the basic method we use

for performing an initial segment selection. We go on to describe the method we developed

for incorporating user-preference data into our summarizations, as well as our method for

generating additional summaries in an unsupervised manner. We finish up by describing

possible future work that could be incorporated into our summarization methods.

Once all segments have been scored, we are able to perform the final video sum-

marization step. In this step, we operate on the segment scores {Qs | s ∈ SV}

computed previously, and generate a final summary UV for our video. We start

by describing how segments are initially selected to obtain a final summarization.

When describing this, we also discuss our method of incorporating user preference

71

6.1. Initial Segment Selection Chapter 6. Video Summarization

information into the segment selection process.

In the case that a user is unsatisfied with a generated summary, we also support

generating additional summaries, either in a supervised or unsupervised manner.

In the supervised case, a user provides either a 0 or 1 score for one or more

segments, and these scores are taken into account when generating the new

summary. Specifically, we highlight the intuitive and easy-to-use interface provided

by the Cliply system to facilitate this. We also support an unsupervised variant,

where additional summaries can be generated with no user input. In the case that

a user is or isn’t satisfied with a summary, this provides us with insight into their

individual preferences towards different segments. We therefore also describe how

we make use of this information to over time, learn a user-specific model for segment

interestingness.

Finally, we discuss the possible future work that could be incorporated into our

summarization methods. Keeping in mind our goal of creating summaries at real-

time on commodity hardware (an average user’s machine), we focus on methods

that still have relatively small computational costs.

6.1 Initial Segment Selection

Our initial segment selection method is based on formulating summary generation

as a knapsack problem, specifically a 0/1 knapsack problem. Given a set of items

(segments) s ∈ SV , each with a weight (duration) frames(s) and a value (score) Qs ,

we determine which segments to include in our final summary such that the final

72

Chapter 6. Video Summarization 6.1. Initial Segment Selection

length is less than or equal to our target summary duration, and the sum of segment

scores is maximized. We initially present the unsupervised variant of our algorithm,

used when no user-preference data is available, that is, we are dealing with a new

user. We go on to describe how we can modify our algorithm to be supervised in

order to use it with a user which has previously used our system, and therefore has

individual user-preference data available.

6.1.1 0/1 Knapsack

Our primary goal for video summarization is simply that given a list of segments

s ∈ SV with scores Qs , select a set of segments UV ⊆ SV which maximize the sum of

scores across all segments and have a total duration less than or equal to some target

duration W. This effectively formulates our summarization as an 0/1 knapsack

problem, which for our specific case, can be expressed as

arg max
U⊆SV

∑
s∈U

Qs subject to:
∑
s∈U

frames(s) 6 W.

In our work, we use of a simple dynamic programming solution[26]. If we define T

as an n×W array, and T(i,w) as the maximum score that can be obtained with a

duration up to or less than w using the first i items of SV = {s0, . . . , sn−1}, we have

73

6.2. Additional Summaries Chapter 6. Video Summarization

the recursive definition:

T(0,w) = 0

T(i,w) =


T(i− 1,w) if frames(si) > w

max(T(i− 1,w), T(i− 1,w− frames(si)) +Qsi) if frames(si) 6 w.

The solution can be found by computing the value of T(n,W), a process which we

describe in Algorithm 3.

This algorithm serves as the baseline for our unsupervised method, where we simply

run the algorithm using our segments and scores as inputs, and as the output, get a

final summary.

6.2 Additional Summaries

Although it would be optimal if all users were satisfied with our initial summary,

this is often not the case. In the case that a user is unsatisfied with a summary U,

we support generating an additional summary U ′ almost instantly, as we only need

to adjust segment scores and generate a new summary using our 0/1 knapsack

algorithm. We additionally support a supervised variant of generating additional

summaries, where we allow users to provide either a 0 or 1 score of one or more

segments, and incorporate these preferences when generating the new summary.

A user generating an additional summary is also an opportunity for us to learn

their preferences over time. Specifically, for a user u, we maintain a history of any

74

Chapter 6. Video Summarization 6.2. Additional Summaries

per-user scores we obtain for specific segments Qu.

6.2.1 Unsupervised Additional Summary Generation

When a user is unsatisfied with a generated summary, and does not provide any

input as to their preference toward the inclusion of any segments in the next

summary, we consider this to be the unsupervised case of additional summary

generation. In this case, we simply scale the score of all segments from the previous

summary down by some bias value γ ∈ [0.0, 1.0], and generate a new summary. In

our work, we used a γ value of 0.1. This scaling process is repeated until a summary

is generated containing different segments than the original, or the score of all

segments reaches a maximum. This algorithm is presented in Algorithm 4.

Although we do not specifically know what the user disliked about the original

summary U, we are still able to partially learn user preference data from them with

the help of U ′. In essence, we assume that the user disliked all segments which were

removed from U to create U ′. That is, for a specific user u and segments s ∈ U−U ′,

we remember the new, reduced segment score Qu
s = Qs in their history.

6.2.2 Supervised Additional Summary Generation

In the case that a user provides segment preference input, we consider this to be

the supervised case of additional summary generation. An initial summary is first

generated using all segments that the user indicated they want to remain in the final

summary. Any segments which the user does not want included have their score

75

6.2. Additional Summaries Chapter 6. Video Summarization

set to 0, ensuring that they will not get selected for future summaries until all other

choices have been exhausted. Finally, the unsupervised generation method is used

to select segments to make up the remaining time needed for the final summary.

This algorithm is presented in Algorithm 5.

Algorithm 5 Algorithm for generating an additional summary in the supervised
case.

Inputs:
S: A segmentation.
Q: A set of scores for each segment.
W: A target frame count for the final summary.
U: The previously generated summary for the segmentation S.
S0: A set of segments S0 ⊆ S the user wants to discard.
S1: A set of segments S1 ⊆ S the user wants to keep.

1: function AdditionalSummarySupervised(S, Q, W, U, S0, S1)
2: U ′ ← S1

3: for s ∈ S0 do
4: Qs ← 0

5: end for
6: U ′ ← U ′ ∪AdditionalSummary(S,Q,W,U −U ′)

7: return U ′

8: end function
Output: A new summary U ′ ⊆ S, U ′ 6= U

This is perhaps the process that benefits the most from the Cliply system, as it

provides an intuitive user interface to allow users to categorize segments, as shown

in Figure 6.1. Using this interface, users are provided with a representative frame

for each segment, and are able to alter the score they attribute to segments simply

by clicking on each representative frame. The current categorization of segments is

displayed at the top of the page, and when users are satisfied with their selection,

76

Chapter 6. Video Summarization 6.2. Additional Summaries

they can simply submit it and have a new supervised summary generated.

Figure 6.1: An example of the user interface provided by Cliply to assist users in scoring
segments. In this case, we can see that the user has categorized three segments as 1, indicated
by the green check mark button in the bottom right of the first three segment images. We
also see that they have categorized the fourth segment as 0, indicated by the red cross
button. At this point, the user has the option of scrolling down to assign a category to more
segments, or to submit their current selection and generate a new supervised summary.

Unlike the unsupervised case, a user u disliking a summary U in this case provides

us with significant insight into their personal preferences, as we know exactly which

segments they liked and disliked. For any segments s ∈ S0 that the user disliked,

we can add this to their scoring history as Qu
s = 0. Additionally, for any segments

s ∈ S1 that the user explicitly wanted to keep, we add this to their scoring history as

Qu
s = 1. The final use of unsupervised summary generation takes care of updating

their history with any remaining derived preference information.

77

6.3. User Preferences Chapter 6. Video Summarization

6.3 User Preferences

As mentioned previously, for each user u of our system, we maintain a history of

their segment scores as Qu. Using these historical segment scores, we are actually

able to over time, learn a model for each user which takes into account their specific

segment preferences. For each user, we maintain a model similar to the one we

use for segment scoring, but trained using their score history Qu rather than the

scores provided by our reference datasets. XGBoost supports continuing training of

a previous model, so we are able to implement this by starting with an untrained

model for each user, and fine-tuning the model whenever new data is added to their

segment score history Qu.

It is trivial to modify our system to incorporate a per-user model when available.

Rather than using Q as the segment score input to any of our summarization func-

tions (SelectSegments, AdditionalSummary, and AdditionalSummarySupervised),

we simply modify Q to be an linear combination of the scores from Q and Qu,

where Qs is used in place of Qu
s if no history exists for a specific segment s. That is,

we set

Qs = αQs + βQu
s ,

where both α and β default to 0.5, resulting in an average of the two scores. We

are then able to use any of the previously discussed summary generation methods,

with the benefit that they now incorporate per-user preference data.

78

Chapter 6. Video Summarization 6.3. User Preferences

Algorithm 3 Dynamic programming algorithm for segment selection.

Inputs:
S: A segmentation consisting of n segments {s0, . . . , sn−1}.
Q: A set of scores for each segment.
W: A target frame count for the final summary.

1: function SelectSegments(S, Q, W)
2: T = Zeros(n,W) . Construct a n×W array of zeroes
3: for j = 1, . . . , n do
4: for w = 0, . . . ,W do
5: if frames(sj) > w then
6: T [j,w]← T [j− 1,w]

7: else
8: T [j,w]← max(T [j− 1,w], T [j− 1,w− frames(sj)] +Qsj)

9: end if
10: end for
11: end for
12: U ← List() . Construct an empty list
13: w←W

14: for j = n, . . . , 1 do
15: if T [j,w] 6= T [j− 1,w] then
16: U ← Append(U, sj−1) . Append segment sj−1 to U

17: w← w− frames(sj−1)

18: end if
19: end for
20: return U

21: end function
Output: A summary U ⊆ S

79

6.3. User Preferences Chapter 6. Video Summarization

Algorithm 4 Algorithm for generating an additional summary in the unsupervised
case.

Inputs:
S: A segmentation.
Q: A set of scores for each segment.
W: A target frame count for the final summary.
U: The previously generated summary for the segmentation S.

1: function AdditionalSummary(S, Q, W, U)
2: U ′ ← U

3: while U ′ = U do
4: for s ∈ U do
5: Qs ← Qs − γ ·Qs

6: end for
7: U ′ ← SelectSegments(S,Q,W)

8: end while
9: return U ′

10: end function
Output: A new summary U ′ ⊆ S, U ′ 6= U

80

chapter 7

Evaluation and Results

In this chapter, we present our approach to evaluating and optimizing our video summa-

rization method. Specifically, we provide error metrics for summaries generated using our

system, compared to metrics over the reference summaries for each relevant dataset. We

additionally perform fine-tuning on our XGBoost model to maximize the accuracy of our

model. In conclusion, we present the final model we used, along with any options that were

used for that model. Overall, this chapter presents our final model, along with the path we

followed to arrive at this final model.

A t this point in our system, we have from Chapter 5 a method for scoring the

segments in a video, and from Chapter 6 a method for selecting a subset

of these scored segments to form a final summary of the target video. In order to

assess the quality of our generated segments, we introduce the pairwise F1-measure,

81

7.1. Pairwise F1-measure Chapter 7. Evaluation and Results

which is used to compare a generated summary to multiple user summaries. For

the random forest and XGBoost models from Chapter 5, we perform grid search

over various model parameters, and continue with the optimal parameters for each

variable. In the end, we compare the final pairwise F1-measure values for both the

random forest and XGBoost models, and select the model which obtains the highest

value.

7.1 Pairwise F1-measure

Since our datasets contain multiple summaries from different users, we need a

method to evaluate the performance of a summary against all of the user summaries.

The standard method used for this is the pairwise F1-measure, originally proposed in

[24]. For a given generated summary U and set of user summaries J = {U0, . . . , Un},

we first compute for each user summary Ui in J the precision pi and recall ri as

pi =

∣∣ frames(U) ∩ frames(Ui)
∣∣

| frames(Ui)|
and ri =

∣∣ frames(U) ∩ frames(Ui)
∣∣

| frames(U)|
.

We are then able to compute the pairwise F1-measure FU of our summary as

FU =
1

n+ 1

n∑
i=0

2 · piri

pi + ri
.

Better methods are represented by higher F1-measure values.

82

Chapter 7. Evaluation and Results 7.2. Sampling Methods

7.2 Sampling Methods

When training our models, there are various ways we can divide our data into a

train and test split. Since for the SumMe dataset we would like to test our model

on every video to compare to current methods, we need to use a sampling method

better than the traditional split of a random shuffle of all the segments. Overall,

we use four different sampling methods, each using a different subset of all the

available data for training the models. Along with a short description of each, we

provide a figure showing an example of the train and test splits that would be used

for an example video.

It is important to note that as a result of our method being computationally efficient

and able to operate in real-time, and the minimal training time required, we are

actually able to make use of the leave-one-out variant of exhaustive cross-validation.

For the case of more modern summarization methods, especially those that make

use of deep networks, this is not generally an option as both the training time and

segment scoring time would be too long.

7.2.1 Other Datasets

Our first method involves for a given dataset, performing testing using every video

in the dataset, and using every video from the other datasets as the training set.

This allows us to train a single model for each dataset, then perform summarization

for every video in a given dataset. Since no videos from the testing dataset are

used for training, this sampling method allows us to assess the ability of our model

83

7.2. Sampling Methods Chapter 7. Evaluation and Results

when applied to an arbitrary video in-the-wild. An example visualization of this

sampling method can be found in Figure 7.1.

Figure 7.1: An example of the train and test set used for computing the summarization
performance of any video in the SumMe dataset using the other datasets sampling method.
Videos colored blue represent the training set, while ones in red represent the test set. In
this case, every video in the SumMe dataset is used for testing, and all other videos are used
for training.

7.2.2 All Datasets Leave-one-video-out

For this sampling method, we train a model for each video which uses the segments

from every other video across all datasets as the training set, and the segments for

the current video as the testing set. By comparing the results of this sampling to

the one described in Section 7.2.1, we are able determine the importance of training

using videos similar to our target testing videos. An example visualization of this

sampling method can be found in Figure 7.2.

Figure 7.2: An example of the train and test set used for computing the summarization
performance of a single video using the all datasets leave-one-out sampling method. Videos
colored blue represent the training set, while ones in red represent the test set. In this case,
all but one video is used to train a model for scoring the segments of a single video.

84

Chapter 7. Evaluation and Results 7.2. Sampling Methods

7.2.3 Same Dataset Leave-one-video-out

For this sampling method, we train a model for each video which uses the segments

from every other video in the dataset as the training set, and the segments for the

current video as the testing set. This allows us to assess how our model performs

when dealing with a limited amount of training data. It is also useful to compare

to the sampling described in Section 7.2.2 to get an idea of the expected change in

performance possible when additional data is available. An example visualization

of this sampling method can be found in Figure 7.3.

Figure 7.3: An example of the train and test set used for computing the summarization
performance of a single video using the same dataset leave-one-out sampling method.
Videos colored blue represent the training set, while ones in red represent the test set. In
this case, one video from the SumMe dataset is used as a test, while the remaining videos in
the dataset are used for training. Videos in the other datasets are not used at all.

7.2.4 Leave-one-segment-out

This sampling method operates at a lower level than the previous methods, and for

each segment, training a model which uses every other segment as the training set,

and just the current segment as the test set. By comparing to the previous methods,

especially the one from Section 7.2.2, this method allows us to determine how the

performance of our model changes when our training data contains segments which

are highly correlated to our target test segment. An example visualization of this

sampling method can be found in Figure 7.4.

85

7.3. Model Optimization Chapter 7. Evaluation and Results

Figure 7.4: An example of the train and test set used for computing the summarization
performance of a single video using the leave-one-segment-out sampling method. In this
case, we divide the data at the segment level, rather than the video level. Segments colored
blue represent the training set, while ones in red represent the test set. In this case, a single
segment of a video in the SumMe dataset is used for testing, while all other segments across
all datasets are used for training the model.

7.3 Model Optimization

Our final goal is to obtain an optimized model for segment scoring which maximizes

the mean F1-measure of all videos in the SumMe dataset. We start by first performing

summarization using each of our two base models and four sampling methods.

Based on these results, we select the best model, and proceed to perform grid search

over the parameters of this model.

7.3.1 Base Models

As base models, we use an XGBoost model and a random forest model, each using

the default parameters, which can be found in Figure 7.5.

86

Chapter 7. Evaluation and Results 7.3. Model Optimization

XGBoost Parameters

Parameter Value

learning_rate 0.1

gamma 0

max_depth 3

min_child_weight 1

n_estimators 100

subsample 1

colsample_bytree 1

reg_alpha 0

(a) Default parameters used for our XG-
Boost regression model.

Random Forest Parameters

Parameter Value

max_features auto
n_estimators 10

(b) Default parameters used for our ran-
dom forest regression model.

Figure 7.5: The default parameters used for each of our base models.

For testing, we use the SumMe dataset, and for each model, perform training and

testing using each of the four sampling methods previously discussed in Section 7.2.

The primary sampling method of interest to us is the “Other Datasets” method,

as it maximizes the training data available, while also minimizing the chances of

overfitting, since the dataset used for evaluation is completely independent from

the one used for training. The results of our initial testing can be found in Table 7.1.

87

7.3. Model Optimization Chapter 7. Evaluation and Results

XGBoost Random Forest

Video Name Other All One-out Same One-out Segment One-out Other All One-out Same One-out Segment One-out

Air Force One 0.144 0.195 0.110 0.531 0.200 0.189 0.212 0.504
Base jumping 0.160 0.131 0.154 0.216 0.180 0.123 0.149 0.205
Bearpark climbing 0.261 0.178 0.181 0.301 0.165 0.218 0.210 0.286
Bike Polo 0.310 0.155 0.219 0.413 0.356 0.233 0.239 0.392
Bus in Rock Tunnel 0.120 0.126 0.144 0.286 0.093 0.131 0.187 0.272
Car railcrossing 0.141 0.165 0.104 0.366 0.091 0.150 0.304 0.348
Cockpit Landing 0.233 0.120 0.108 0.423 0.135 0.146 0.052 0.402
Cooking 0.348 0.287 0.154 0.408 0.183 0.341 0.284 0.388
Eiffel Tower 0.090 0.145 0.084 0.413 0.208 0.165 0.241 0.392
Excavators river crossing 0.176 0.229 0.152 0.287 0.188 0.088 0.231 0.273
Fire Domino 0.192 0.173 0.126 0.337 0.158 0.112 0.158 0.320
Jumps 0.109 0.130 0.423 0.423 0.433 0.402 0.121 0.402
Kids playing in leaves 0.145 0.103 0.065 0.439 0.089 0.136 0.079 0.417
Notre Dame 0.110 0.096 0.107 0.362 0.104 0.210 0.159 0.344
Paintball 0.304 0.178 0.186 0.471 0.272 0.102 0.251 0.447
Playing on water slide 0.218 0.251 0.103 0.256 0.052 0.250 0.149 0.243
Saving dolphines 0.183 0.098 0.064 0.294 0.187 0.080 0.098 0.279
Scuba 0.187 0.276 0.080 0.203 0.141 0.089 0.098 0.193
St Maarten Landing 0.557 0.580 0.051 0.491 0.460 0.209 0.206 0.466
Statue of Liberty 0.130 0.144 0.106 0.339 0.153 0.047 0.125 0.322
Uncut Evening Flight 0.074 0.093 0.137 0.444 0.058 0.192 0.085 0.422
Valparaiso Downhill 0.225 0.335 0.188 0.342 0.129 0.199 0.158 0.325
car over camera 0.295 0.305 0.287 0.357 0.120 0.156 0.203 0.339
paluma jump 0.143 0.120 0.111 0.464 0.046 0.115 0.145 0.441
playing ball 0.092 0.262 0.244 0.368 0.094 0.223 0.224 0.350

Average 0.198 0.195 0.147 0.369 0.172 0.172 0.175 0.351
Variance 0.011 0.011 0.006 0.007 0.011 0.006 0.004 0.006

Table 7.1: The resulting F1-measure values computed for each model and sampling
method combination for each video in the SumMe dataset. Higher values represent better
performance for a given video and sampling method.

The results presented in Table 7.1 provide us with a large range of information

related to our models and datasets. In particular, we see that for identical sampling

methods, the XGBoost model outperforms the random forest model for all sampling

methods except for the “Same One Out” method. The fact that the random forest

model performs better only when trained using data from the same dataset could

indicate that it is overfitting on dataset-specific trends. This, combined with the

generally higher accuracy obtained using XGBoost suggests that we should use it as

our only model moving forward.

Another important thing to note is the significantly higher F1-measure values

attained when using the “Segment One-out” method, where only the single testing

segment is excluded from training, as opposed to the “All One-out”, where all

88

Chapter 7. Evaluation and Results 7.3. Model Optimization

segments from the testing video are excluded. If the difference was minor, this

could perhaps be explained simply by the fact that using segments with a strong

correlation to our target segment yields a model with a deeper understanding of

the category of segment is was trained to score. However, the significant difference

between the F1-measure suggests otherwise—specifically that the default parameters

used for each model encourage—or at least facilitate—overfitting.

Since we will only be using an XGBoost model moving forward, we feel it is also

important to examine the differences between the F1-measure values obtained for

each sampling method, and provide possible explanations for the difference we

observed. Generally, we see that for the “Segment One-out” method, the F1-measure

value is almost double that of the next closest sampling method—“All One-out”. As

mentioned previously, this suggests that the current model parameters encourage

overfitting in the final model. Future parameter tuning may be able to reduce or

even mitigate this adverse effect. We also see that the “Other” method slightly

out-performs the “All One-out” method, while still maintaining the same variance

among all videos. We can also see that when just using the same dataset for training

and testing (“Same One-out”), we end up with the worst results among all sampling

methods. Taking into account these observations among all sampling methods for

XGBoost, we can infer two major conclusions, namely that:

1. videos in the same dataset do not generally exhibit higher content correlations

than videos from different datasets; and

2. additional data can be helpful, but the addition of data with too many

similarities to the test set can also be detrimental to the final trained model.

89

7.3. Model Optimization Chapter 7. Evaluation and Results

The first conclusion is based on the fact that using video from the same dataset

during training actually resulted in a decrease in the quality of the final summary,

while the second conclusion is based on the fact that the addition of out-of-dataset

data for the “Other” and “All One-out” models resulted in a quality increase

compared to the “Same One-out” sampling method.

Using the default parameters for our XGBoost model, we are able to obtain an

average F1-measure value slightly below, but still quite similar to the score obtained

by the reference dataset[24] (0.234), and even similar to modern methods[29] (0.2655).

Our next step is therefore to perform grid search over the relevant parameters of

the default XGBoost model in order to maximize the F1-measure obtained for the

SumMe dataset.

7.3.2 XGBoost Grid Search

Grid search is a common method used in machine learning, where for multiple

model parameters and possible values, we iterate over Cartesian products of

different combinations of these possible parameter values, and at each step retain

the parameter set which results in the maximum final F1-measure averaged over

every video. If needed, a more technical description is provided in Section 2.3.5.

For the case of an XGBoost model, we perform grid search in a step-wise man-

ner, where at each step, we iterate over the Cartesian product of the parameters

and respective values for each step, and moving forward, retain the parameter

combination which maximizes the F1-measure over all videos in the SumMe dataset.

90

Chapter 7. Evaluation and Results 7.3. Model Optimization

7.3.2.1 Step 1: Max Depth and Minimum Child Weight

The two parameters which have the most significant effect on the outcome of an

XGBoost model are the “Max Depth”, and the “Minimum Child Weight”. For the

“Max Depth”, the typical range of values to test is [3, 5, 7, 9], and for “Minimum Child

Weight” the range is [1, 3, 5]. The resulting F1-measure values for each parameter

set can be found in Table 7.2. For this initial set of values, we found the optimal

result occurred with a “Max Depth” of 3 and a “Minimum Child Weight” of 5. We

performed a second grid search over values similar to this, yielding the results in

Table 7.3. Overall, we are able to achieve an increase from an F1-measure of 0.198 to

0.237 using a “Max Depth” of 3 and a “Minimum Child Weight” of 5.

Max
Depth

Minimum
Child Weight F1-measure

3 1 0.207

3 3 0.213

3 5 0.237

5 1 0.199

5 3 0.234

5 5 0.201

7 1 0.203

7 3 0.213

7 5 0.192

9 1 0.219

9 3 0.209

9 5 0.188

Table 7.2: The resulting mean F1-measure values obtained for each of our initial grid search
parameter values.

91

7.3. Model Optimization Chapter 7. Evaluation and Results

Max
Depth

Minimum
Child Weight F1-measure

2 4 0.219

2 5 0.214

2 6 0.212

3 4 0.209

3 5 0.237

3 6 0.216

4 4 0.222

4 5 0.214

4 6 0.217

Table 7.3: The resulting mean F1-measure values obtained for our second set of grid search
parameter values.

7.3.2.2 Step 2: Gamma

The next parameter we tune is “Gamma”, testing values [0.0, 0.1, 0.2, 0.3, 0.4], and

the default is 0.0. The results of the grid search can be found in Table 7.4. We can

see that in this case, the default value of 0.0 results in the maximum F1-measure.

Gamma F1-measure

0.0 0.237

0.1 0.230

0.2 0.200

0.3 0.198

0.4 0.209

Table 7.4: The resulting mean F1-measure values obtained for fine-tuning of “Gamma”.

92

Chapter 7. Evaluation and Results 7.3. Model Optimization

7.3.2.3 Step 3: Subsample and Col-sample By-tree

The final parameters we tune are “Subsample” using the values [0.6, 0.7, 0.8, 0.9, 1.0],

with 1.0 being the default value, and “Col-sample By-tree” using the values

[0.6, 0.7, 0.8, 0.9, 1.0], with 1.0 being the default. A subset of the results of the

grid search can be found in Table 7.5. We can see that in this case, the default values

of 1.0 and 1.0 result in the maximum F1-measure.

Subsample Col-sample
By-tree F1-measure

0.7 0.6 0.201

0.7 0.7 0.221

0.7 0.8 0.196

0.7 0.9 0.209

0.7 1.0 0.187

0.8 0.6 0.203

0.8 0.7 0.216

0.8 0.8 0.211

0.8 0.9 0.199

0.8 1.0 0.205

0.9 0.6 0.223

0.9 0.7 0.217

0.9 0.8 0.213

0.9 0.9 0.198

0.9 1.0 0.204

1.0 0.6 0.223

1.0 0.7 0.216

1.0 0.8 0.224

1.0 0.9 0.218

1.0 1.0 0.237

Table 7.5: The resulting mean F1-measure values obtained for fine-tuning of “Subsample”
and “Col-sample By-Tree”.

93

7.4. Results Chapter 7. Evaluation and Results

7.4 Results

In the end, we were able to develop and train a model using modern video

summarization datasets which is able to obtain close-to state-of-the-art results on

the SumMe dataset. Perhaps our most significant contribution lies in the speed at

which we are able to compute these summaries compared to other state-of-the-art

methods. Even on 4-year old commodity hardware—an i5-3380M CPU and with

16GB of RAM and no dedicated GPU—we are able to generate an initial summary

of a video with an arbitrary duration at faster than real-time speeds. That is, for a

video with a duration of an hour, we are able to generate a summary in less than an

hour. Afterwards, additional summaries can be generated almost instantly, and can

even incorporate user input if desired.

In the remainder of this section, we take a look at the accuracy values obtained

using previous work for the SumMe dataset, and compare them to our method. We

go on to analyze the performance of our method, specifically computing the average

speed over all videos in our test dataset. We additionally compute a linear fit to

our raw data, and demonstrate that our method appears to have linear complexity

in relation to video duration. We finish up by providing a performance versus

accuracy plot for our method and other modern summarization methods, along

with a small discussion on what it demonstrates.

94

Chapter 7. Evaluation and Results 7.4. Results

7.4.1 SumMe Accuracy

Primarily, we use the SumMe dataset for evaluating our summarization system.

We first train a segment scoring method using data from our other datasets, then

for each video in the SumMe dataset, use our system to generate a summary. For

each of these generated summaries, we compute the pairwise F1-measure value

against each user summary, recording the average value over all user summaries in

Table 7.6.

Dataset Humans Computational Methods

Videoname Random Upper Bound Worst Mean Best Uniform Cluster Attn. Summe Ours

Air Force One 0.144 0.490 0.185 0.332 0.457 0.161 0.143 0.215 0.318 0.362
Base jumping 0.144 0.398 0.113 0.257 0.396 0.168 0.109 0.194 0.121 0.106
Bearpark climbing 0.147 0.330 0.129 0.208 0.267 0.152 0.158 0.227 0.118 0.261
Bike Polo 0.134 0.503 0.190 0.322 0.436 0.058 0.130 0.076 0.356 0.301
Bus in Rock Tunnel 0.135 0.359 0.126 0.198 0.270 0.124 0.102 0.112 0.135 0.147
Car railcrossing 0.140 0.515 0.245 0.357 0.454 0.146 0.146 0.064 0.362 0.192
Cockpit Landing 0.136 0.443 0.110 0.279 0.366 0.129 0.156 0.116 0.172 0.201
Cooking 0.145 0.528 0.273 0.379 0.496 0.171 0.139 0.118 0.321 0.348
Eiffel Tower 0.130 0.467 0.233 0.312 0.426 0.166 0.179 0.136 0.295 0.088
Excavators river crossing 0.144 0.411 0.108 0.303 0.397 0.131 0.163 0.041 0.189 0.231
Fire Domino 0.145 0.514 0.170 0.394 0.517 0.233 0.349 0.252 0.130 0.169
Jumps 0.149 0.611 0.214 0.483 0.569 0.052 0.298 0.243 0.427 0.542
Kids playing in leaves 0.139 0.394 0.141 0.289 0.416 0.209 0.165 0.084 0.089 0.093
Notre Dame 0.137 0.360 0.179 0.231 0.287 0.124 0.141 0.138 0.235 0.107
Paintball 0.127 0.550 0.145 0.399 0.503 0.109 0.198 0.281 0.320 0.213
Playing on water slide 0.134 0.340 0.139 0.195 0.284 0.186 0.141 0.124 0.200 0.218
Saving dolphines 0.144 0.313 0.095 0.188 0.242 0.165 0.214 0.154 0.145 0.128
Scuba 0.138 0.387 0.109 0.217 0.302 0.162 0.135 0.200 0.184 0.140
St Maarten Landing 0.143 0.624 0.365 0.496 0.606 0.092 0.096 0.419 0.313 0.557
Statue of Liberty 0.122 0.332 0.096 0.184 0.280 0.143 0.125 0.083 0.192 0.259
Uncut Evening Flight 0.131 0.506 0.206 0.350 0.421 0.122 0.098 0.299 0.271 0.081
Valparaiso Downhill 0.142 0.427 0.148 0.272 0.400 0.154 0.154 0.231 0.242 0.288
car over camera 0.134 0.490 0.214 0.346 0.418 0.099 0.296 0.201 0.372 0.408
paluma jump 0.139 0.662 0.346 0.509 0.642 0.132 0.072 0.028 0.181 0.334
playing ball 0.145 0.403 0.190 0.271 0.364 0.179 0.176 0.140 0.174 0.151

Average 0.139 0.454 0.179 0.311 0.409 0.143 0.163 0.167 0.234 0.237

Table 7.6: F1-measure values resulting from testing various summarization methods on
videos from the SumMe dataset. For each video, among the computational methods, the
three highest results are highlighted using different shades of green. Darker shades are
used for higher F1-measure values, and hence better results.

Although the data presented in Table 7.6 provides us with a number of important

observations, the primary one of interest to us is the fact that among all the

computational methods, ours achieves the highest accuracy (F1-measure). We

95

7.4. Results Chapter 7. Evaluation and Results

achieve the highest accuracy on over 50% of the tested videos, and in cases where

we don’t, we often observe similar results to the SumMe method, where the less

computationally complex methods such as uniform and cluster-based selection

achieve the highest accuracy. A possible improvement to our work which makes

use of these methods is later discussed in Section 8.2.

7.4.2 Performance

In order to support our claim of faster than real-time performance, we performed

video summarization for each video in the SumMe dataset using our method, and

recorded the required processing time in Table 7.7. From this raw data, we can see

that on average, we are able to perform summarization at 1.82 times real-time. It is

also important to notice that across all videos, our speed never falls below real-time.

We additionally plot this data in Figure 7.6.

96

Chapter 7. Evaluation and Results 7.4. Results

Video Name Duration (s) Time (s) Speed

Jumps 38.00 19.12 1.99x
Cooking 85.80 22.16 3.87x
Fire Domino 53.73 27.99 1.92x
St Maarten Landing 70.04 36.72 1.91x
Scuba 74.03 48.45 1.53x
paluma jump 85.89 46.89 1.83x
Bike Polo 102.13 69.50 1.47x
Playing on water slide 102.27 54.76 1.87x
playing ball 103.97 54.52 1.91x
Kids playing in leaves 106.34 71.29 1.49x
Bearpark climbing 133.64 78.31 1.71x
Statue of Liberty 154.52 69.89 2.21x
car over camera 146.21 71.04 2.06x
Air Force One 179.76 103.59 1.74x
Notre Dame 192.00 106.87 1.80x
Base jumping 157.79 105.27 1.50x
Eiffel Tower 198.84 118.90 1.67x
Car railcrossing 169.34 115.14 1.47x
Bus in Rock Tunnel 171.10 109.00 1.57x
Valparaiso Downhill 172.77 115.51 1.50x
Paintball 254.25 137.37 1.85x
Saving dolphines 222.99 120.15 1.86x
Cockpit Landing 301.83 200.50 1.51x
Uncut Evening Flight 322.72 215.42 1.50x
Excavators river crossing 388.84 210.87 1.84x

Average 1.82x

Table 7.7: Raw performance data for our method applied to each video in the SumMe
dataset. The duration of each video is provided, along with the time required for our
method to complete, and corresponding speed as a multiplier of real-time.

When plotted, the raw point data in Figure 7.6 appeared to follow a linear pattern,

so we elected to compute a linear line-of-best-fit to the data. We use least squares to

fit a first-degree polynomial to our data, obtaining a fit y = 0.615x− 4.94, which is

plotted alongside our data in Figure 7.6. For this line, we compute the coefficient of

determination to be R2 = 0.943. This is a relatively high value, indicating that the

line is a good estimator for our data, and therefore that our system appears to have

linear complexity in terms of the video duration.

97

7.4. Results Chapter 7. Evaluation and Results

0 50 100 150 200 250 300 350 400
0

100

200

Video Duration (s)

Pr
oc

es
si

ng
Ti

m
e

(s
) y = 0.615x− 4.94

Figure 7.6: A plot of the video duration versus computation time data from Table 7.7. We
additionally plot a line of best fit to our data, demonstrating the fact that the complexity of
our method appears to be linear in terms of the duration of a video.

In order to compare the performance of our method to other methods, we compute

the average performance of each method as a multiplier of real-time, and plot the

performance value versus the accuracy of each method in Figure 7.7. When looking

at the plot, we can see that there are two major groups; the more computationally

complex methods of SumMe and LSTM appear in the top left corner, indicating that

they achieve a high accuracy at the cost of low performance. The other group we see

is in the bottom right corner, where the less complex methods are able to achieve

very high performance, but suffer from significantly reduced accuracy. Finally, when

we look at our method, we can see that we achieve a performance comparable to the

computationally simple methods, and accuracy comparable to the more complex

methods. In particular, only the LSTM method is able to achieve a higher accuracy

than our method, at the cost of significantly decreased performance.

98

Chapter 7. Evaluation and Results 7.4. Results

0 0.5 1 1.5 2 2.5

0.15

0.2

0.25

Performance (× Real-Time)

A
cc

ur
ac

y
(F

1-
m

ea
su

re
)

Uniform Cluster Attention SumMe LSTM Ours

Figure 7.7: A plot of performance as a multiplier of real-time versus accuracy as an
F1-measure value for various summarization methods, including ours. Data for all methods
previously examined in Section 7.4.1 is included, along with data for a state-of-the-art LSTM
based method[27].

99

7.4. Results Chapter 7. Evaluation and Results

100

chapter 8

Conclusions

In this chapter, we start by discussing the major contributions of our work. In addition to

these contributions, we discuss the major limitations of our work compared to other similar

works on video summarization, and some possible future work that could be performed to

combat these limitations.

Overall, in our work, we were able to develop a high performance system

for video summarization which obtains competitive results on the SumMe

dataset compared to other modern methods. The fact that our system was designed

to be efficient does however mean that with it comes some limitations, which

we discuss, along with possible future work that could be used to combat these

limitations.

101

8.1. Contributions Chapter 8. Conclusions

8.1 Contributions

The primary contribution of our work is:

A high performance video summarization system which is able to

perform video summarization at real-time on commodity hardware.

Additionally, we developed a segmentation method which makes use of very low-

level features to efficiently locate undesirable frames, then uses this information

to compute optimal segments. This method could possibly be used by other

summarization systems to improve their performance. In order to support generating

personalized video summaries, our summarization method is able to accumulate

user history over time, thereby learning each user’s personal preferences. Finally, the

design of our system supports generating additional summaries at virtually no cost,

and a method for obtaining user preference information whenever an additional

summary is requested.

8.2 Limitations and Future Work

While our lack of use of very high-level features gives us a significant speed benefit,

it also leads to some limitations. Chief among these is that our method is unable

to understand high-level concepts such as the presence of people or objects in a

scene, or the actions a person may be performing. Without this higher level of

understanding, we may be limited in the maximum accuracy we are able to obtain.

In the future, it may be beneficial to investigate the result of incorporating additional

102

Chapter 8. Conclusions 8.2. Limitations and Future Work

features such as detected objects[22], general features such as GIST[17]/SIFT[18],

motion features such as dense trajectories[19], or neural network layer features such

as the pool 5 layer of GoogLeNet[21].

The results presented in Table 7.6 show us that for some specific videos, even very

simple summarization methods such as uniform and cluster-based ones are able

to achieve accuracy measures which exceed those of more complex methods such

as ours. Since these simple methods generally have a very low computational

complexity, reformulating our segment scoring model as an ensemble of our current

method and some of these simpler methods could potentially be an easy way to

gain the accuracy benefits of each individual method.

Our use of 0/1 knapsack as a method for selecting segments is efficient, but only

operates locally on segments. This means that our generated summaries are unable

to incorporate global factors across all segments. If we consider a video with

multiple large scenes, one of which contains the majority of high-scoring segments,

we can see why this may be an issue; the final summary will most likely only contain

segments from a single scene, whereas a representative summary would contain

segments from each scene. A possible improvement would be to incorporate some

of the ideas from [33], and additionally take into account summary-level features

such as interestingness, representativeness, and uniformity to optimize our final

segment selection.

Our method of generating additional summaries is fairly rudimentary, simply

reducing the scores of previously selected segments by some fixed bias value, and

performing segment selection again. In some cases, this may result in an additional

103

8.2. Limitations and Future Work Chapter 8. Conclusions

summary containing none of the segments that were in the original summary, which

is often undesirable. A possible improvement would be to generate a summary

which only reduces the scoring of some subset of the selected segments. The subset

could be selected randomly, or perhaps based on the number of prior summaries

each segment was already included in. Changing to a method such as this could

potentially allow us to pinpoint exactly what segments the user is unsatisfied with.

Our use of fixed parameter values at various points in our system limits the ability

of our system to improve and learn over time. One example in particular is the

model weights α and β which are used for determining the amount of influence that

the global scoring model and per-user scoring model have for determining a final

segment scoring. We currently used fixed values of 0.5 for each of these. Different

users may have different preferences in relation to the values used for these weights,

and therefore incorporating them into our learning process could be an easy way to

increase the accuracy of our system.

104

Bibliography

[1] HongJiang Zhang, Atreyi Kankanhalli, and Stephen W. Smoliar. Automatic

partitioning of full-motion video. Multimedia Syst., 1(1):10–28, 1993.

[2] Huo Yi, Zhang Pengzhou, and Wang Yanfeng. Adaptive threshold based video

shot boundary detection framework. In Image Analysis and Signal Processing

(IASP), 2012 International Conference on, pages 1–5. IEEE, 2012.

[3] Chung-Lin Huang and Bing-Yao Liao. A robust scene-change detection method

for video segmentation. IEEE Trans. Circuits Syst. Video Techn., 11(12):1281–1288,

2001.

[4] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Discovering important

people and objects for egocentric video summarization. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012,

pages 1346–1353. IEEE Computer Society, 2012.

[5] Zheng Lu and Kristen Grauman. Story-driven summarization for egocentric

video. In 2013 IEEE Conference on Computer Vision and Pattern Recognition,

105

Bibliography

Portland, OR, USA, June 23-28, 2013, pages 2714–2721. IEEE Computer Society,

2013.

[6] Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple

change-point detection. arXiv preprint arXiv:1106.4199, 2011.

[7] Zaid Harchaoui and Olivier Cappé. Retrospective mutiple change-point

estimation with kernels. In Statistical Signal Processing, 2007. SSP’07. IEEE/SP

14th Workshop on, pages 768–772. IEEE, 2007.

[8] D. Defays. An efficient algorithm for a complete link method. Comput. J., 20(4):

364–366, 1977.

[9] Rossano Schifanella, Miriam Redi, and Luca Maria Aiello. An image is worth

more than a thousand favorites: Surfacing the hidden beauty of flickr pictures.

In Meeyoung Cha, Cecilia Mascolo, and Christian Sandvig, editors, Proceedings

of the Ninth International Conference on Web and Social Media, ICWSM 2015,

University of Oxford, Oxford, UK, May 26-29, 2015, pages 397–406. AAAI Press,

2015.

[10] Miriam Redi, Nikhil Rasiwasia, Gaurav Aggarwal, and Alejandro Jaimes. The

beauty of capturing faces: Rating the quality of digital portraits. In 11th IEEE

International Conference and Workshops on Automatic Face and Gesture Recognition,

FG 2015, Ljubljana, Slovenia, May 4-8, 2015, pages 1–8. IEEE Computer Society,

2015.

[11] Jana Machajdik and Allan Hanbury. Affective image classification using

features inspired by psychology and art theory. In Alberto Del Bimbo, Shih-Fu

106

Bibliography

Chang, and Arnold W. M. Smeulders, editors, Proceedings of the 18th International

Conference on Multimedia 2010, Firenze, Italy, October 25-29, 2010, pages 83–92.

ACM, 2010.

[12] Robert M. Haralick, K. Sam Shanmugam, and Its’hak Dinstein. Textural features

for image classification. IEEE Trans. Systems, Man, and Cybernetics, 3(6):610–621,

1973.

[13] Hamid R. Sheikh, Zhou Wang, and Alan C. Bovik. No-reference perceptual

quality assessment of JPEG compressed images. In Proceedings of the 2002

International Conference on Image Processing, ICIP 2002, Rochester, New York, USA,

September 22-25, 2002, pages 477–480. IEEE, 2002.

[14] Kuang-Chern Ng, Aun Neow Poo, and Marcelo H. Ang. Practical issues in

pixel-based autofocusing for machine vision. In Proceedings of the 2001 IEEE

International Conference on Robotics and Automation, ICRA 2001, May 21-26, 2001,

Seoul, Korea, pages 2791–2796. IEEE, 2001.

[15] Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral residual ap-

proach. In 2007 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA. IEEE

Computer Society, 2007.

[16] Xin Jin, Jingying Chi, Siwei Peng, Yulu Tian, Chaochen Ye, and Xiaodong Li.

Deep image aesthetics classification using inception modules and fine-tuning

connected layer. In 8th International Conference on Wireless Communications

& Signal Processing, WCSP 2016, Yangzhou, China, October 13-15, 2016, pages 1–6.

IEEE, 2016.

107

Bibliography

[17] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[18] David G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[19] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action

recognition by dense trajectories. In The 24th IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011,

pages 3169–3176. IEEE Computer Society, 2011.

[20] David A. Forsyth. Object detection with discriminatively trained part-based

models. IEEE Computer, 47(2):6–7, 2014.

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[22] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.

You only look once: Unified, real-time object detection. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June

27-30, 2016, pages 779–788. IEEE Computer Society, 2016.

[23] Naveed Ejaz, Irfan Mehmood, and Sung Wook Baik. Efficient visual attention

based framework for extracting key frames from videos. Sig. Proc.: Image

Comm., 28(1):34–44, 2013.

[24] Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc J. Van Gool.

108

Bibliography

Creating summaries from user videos. In David J. Fleet, Tomás Pajdla, Bernt

Schiele, and Tinne Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th

European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part

VII, volume 8695 of Lecture Notes in Computer Science, pages 505–520. Springer,

2014.

[25] Yale Song, Miriam Redi, Jordi Vallmitjana, and Alejandro Jaimes. To click or not

to click: Automatic selection of beautiful thumbnails from videos. In Snehasis

Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa,

Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi,

editors, Proceedings of the 25th ACM International Conference on Information and

Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016,

pages 659–668. ACM, 2016.

[26] Pamela H. Vance. Knapsack problems: Algorithms and computer implementa-

tions (S. martello and p. toth). SIAM Review, 35(4):684–685, 1993.

[27] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization

with long short-term memory. In Bastian Leibe, Jiri Matas, Nicu Sebe, and

Max Welling, editors, Computer Vision - ECCV 2016 - 14th European Conference,

Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VII, volume

9911 of Lecture Notes in Computer Science, pages 766–782. Springer, 2016.

[28] Naila Murray, Luca Marchesotti, and Florent Perronnin. AVA: A large-scale

database for aesthetic visual analysis. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pages

2408–2415. IEEE Computer Society, 2012.

109

Bibliography

[29] Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. Tvsum:

Summarizing web videos using titles. In IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages

5179–5187. IEEE Computer Society, 2015.

[30] Sandra Eliza Fontes de Avila, Ana Paula Brand

textasciitilde ao Lopes, Antonio da Luz Jr., and Arnaldo de Albuquerque Araújo.

VSUMM: A mechanism designed to produce static video summaries and a

novel evaluation method. Pattern Recognition Letters, 32(1):56–68, 2011.

[31] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pages

886–893. IEEE Computer Society, 2005.

[32] Thomas E. Cason. The titanic3 data frame.

[33] Michael Gygli, Helmut Grabner, and Luc J. Van Gool. Video summarization by

learning submodular mixtures of objectives. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,

pages 3090–3098. IEEE Computer Society, 2015.

[34] Mayu Otani, Yuta Nakashima, Esa Rahtu, Janne Heikkilä, and Naokazu Yokoya.

Video summarization using deep semantic features. In Shang-Hong Lai,

Vincent Lepetit, Ko Nishino, and Yoichi Sato, editors, Computer Vision - ACCV

2016 - 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24,

2016, Revised Selected Papers, Part V, volume 10115 of Lecture Notes in Computer

Science, pages 361–377. Springer, 2016.

110

Bibliography

[35] John F. Schlag, Arthur C. Sanderson, Charles P. Neuman, and Frank C. Wimberly.

Implementation of automatic focusing algorithms for a computer vision system

with camera control. Technical Report CMU-RI-TR-83-14, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, August 1983.

[36] J.M. Tenenbaum and Stanford Artificial Intelligence Laboratory. Accommoda-

tion in computer vision. Technical report, Department of Electrical Engineering,

Stanford University, 1970.

[37] Ke Zhou, Miriam Redi, Andrew Haines, and Mounia Lalmas. Predicting pre-

click quality for native advertisements. In Jacqueline Bourdeau, Jim Hendler,

Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings of the 25th

International Conference on World Wide Web, WWW 2016, Montreal, Canada, April

11 - 15, 2016, pages 299–310. ACM, 2016.

[38] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an

ensemble of regression trees. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages

1867–1874. IEEE Computer Society, 2014.

[39] Christos Sagonas, Epameinondas Antonakos, Georgios Tzimiropoulos, Stefanos

Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge: database and

results. Image Vision Comput., 47:3–18, 2016.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

770–778. IEEE Computer Society, 2016.

111

Bibliography

[41] Hongwei Ng and Stefan Winkler. A data-driven approach to cleaning large

face datasets. In 2014 IEEE International Conference on Image Processing, ICIP

2014, Paris, France, October 27-30, 2014, pages 343–347. IEEE, 2014.

[42] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recogni-

tion. In Xianghua Xie, Mark W. Jones, and Gary K. L. Tam, editors, Proceedings

of the British Machine Vision Conference 2015, BMVC 2015, Swansea, UK, September

7-10, 2015, pages 41.1–41.12. BMVA Press, 2015.

[43] Erik Learned-Miller, Gary B. Huang, Aruni RoyChowdhury, Haoxiang Li, and

Gang Hua. Labeled faces in the wild: A survey. Advances in Face Detection and

Facial Image Analysis, pages 189–248, 2016.

[44] Chris Biemann. Chinese whispers. In Proceedings of TextGraphs: the First

Workshop on Graph Based Methods for Natural Language Processing on the First

Workshop on Graph Based Methods for Natural Language Processing - TextGraphs

'06. Association for Computational Linguistics, 2006.

[45] Wei-Yin Loh. Classification and regression trees. Wiley Interdisc. Rew.: Data

Mining and Knowledge Discovery, 1(1):14–23, 2011.

[46] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[47] Robert K. Bryll, Ricardo Gutierrez-Osuna, and Francis K. H. Quek. Attribute

bagging: improving accuracy of classifier ensembles by using random feature

subsets. Pattern Recognition, 36(6):1291–1302, 2003.

[48] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu Aggarwal,

112

Bibliography

Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco,

CA, USA, August 13-17, 2016, pages 785–794. ACM, 2016.

113

	Title Page
	Certificate of Approval
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Applications
	Cliply
	Notation
	Contributions
	Overview

	Background Information
	Related Works
	Video Segmentation
	Image and Video Features
	Video Summarization

	Datasets
	A Large-Scale Database for Aesthetic Visual Analysis (AVA)
	Dataset Processing

	SumMe (from "Creating Summaries from User Videos")
	Dataset Processing

	TVSum
	VSUMM

	Computer Vision Techniques
	HOG Features
	Decision Trees
	Information Gain in Decision Trees
	Cross-Validation
	Grid Search

	Video Segmentation
	Video Pre-processing
	Frame Labeling Features
	Dark Frames
	Blurry Frames
	Uniform Frames

	Finding Initial Segments
	Uniform Sampling
	Threshold-Based Scene Detection
	Content-Aware Scene Detection
	Change-Point Detection

	Segment Post-Processing
	Segment Splitting
	Segment Trimming
	Low-Quality Segment Elimination
	Short Segment Merging and Elimination

	Final Result

	Feature Extraction
	Frame Features
	Low-level Features
	High-level Features
	Face Detection
	Face Recognition
	Aesthetics Model

	Final Feature Vector

	Segment Features

	Video Segment Scoring
	Candidate Machine Learning Models
	Decision Tree Learning
	Advantages
	Limitations

	Random Forest
	Advantages
	Limitations

	XGBoost
	Advantages
	Limitations

	Model Training
	Feature Importance

	Video Summarization
	Initial Segment Selection
	0/1 Knapsack

	Additional Summaries
	Unsupervised Additional Summary Generation
	Supervised Additional Summary Generation

	User Preferences

	Evaluation and Results
	Pairwise F1-measure
	Sampling Methods
	Other Datasets
	All Datasets Leave-one-video-out
	Same Dataset Leave-one-video-out
	Leave-one-segment-out

	Model Optimization
	Base Models
	XGBoost Grid Search
	Step 1: Max Depth and Minimum Child Weight
	Step 2: Gamma
	Step 3: Subsample and Col-sample By-tree

	Results
	SumMe Accuracy
	Performance

	Conclusions
	Contributions
	Limitations and Future Work

	Bibliography

