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ABSTRACT

Achieving Real-Time Video

Summarization on Comodity Hardware

Wesley Taylor
Master’s Thesis
Faculty of Science (Computer Science)
University of Ontario Institute of Technology

2018

We present a system for automatic video summarization which is able to operate in
real-time on commodity hardware. This is achieved by performing segmentation
to divide a video into a series of small video clips, which are further reduced or
eliminated with the assistance of highly efficient low-level features. A numerical
score is then assigned to each segment by our model trained using a set of high-
performance hand-crafted features. Finally, segments are selected based on their
score to generate a final video summary. On our benchmark dataset, we achieve
results competitive to other methods. In cases where our accuracy is lower than
competitive methods, we achieve significantly higher performance. We additionally
present methods for generating additional summaries almost instantly, and for
learning user preferences over time—two processes which are often overlooked in

work on video summarization, but essential for real-world use.
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CHAPTER

INTRODUCTION

This chapter serves to provide a general overview of our work. We start by giving a general
summary of our research topic, along with describing the motivation behind our work. We
describe some possible applications of our work, as well give an overview of an additional
project—Cliply—uwhich was developed alongside our work as a practical example application.
We conclude by stating our primary contributions, and providing an overview of the general

structure of our system.

ith video capable mobile devices becoming increasingly ubiquitous, we
W are seeing an analogous increase in amount of video data that is captured
and stored. Additionally, as the difficulty of capturing video and cost of storage
decreases, we tend to see a corresponding decrease in the quality of captured videos.

As a result of this, it becomes very difficult to locate interesting video clips among
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the vast sea of data. One solution to this problem lies in the development of a video
summarization system which is able to automatically locate these interesting clips

and generate a final, curated video summary.

1.1 Motivation

With the appearance of consumer devices such as action cameras, we have reached
a point where virtually no effort is required to record large amounts of video
data. Although this is a significant accomplishment, it also brings with it a new
problem—the videos recorded often require significant editing before they are in a
state suitable for viewing. This editing process is non-trivial for an average user,
often requiring both expertise with video editing software, and access to specialized
hardware. This makes a video summarization system that is able to operate on an

average user’s machine (commodity hardware) extremely desirable.

Additional problems lie in both the length of videos that are being recorded, and their
actual content. In recent years, the cost of digital storage has decreased significantly,
while both the resolution and length of videos has increased—a standard action
camera video will be recorded at 1080p, and be many hours long in duration. The
actual process of hand-editing this video could itself easily require hours of work
even for a skilled user. This limitation means that most users will not have time to
edit every video they record, resulting in an ever-growing backlog of videos which
will never be viewed. A video summarization system able to operate at real-time
speeds would be able to process videos in an online manner, effectively meaning

that a backlog would never develop.
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In terms of content, these modern “raw user” videos are unlike the older “edited”
videos which were popular previously in that effectively no effort is made to
separately record different events. For example, with an edited video, the operator
of the camera would traditionally choose to stop recording if nothing interesting is
happening, then resume recording again when they expect something interesting
to happen. With raw user videos, the operator of the camera will simply record
everything that happens, interesting or not, often resulting in a final video consisting
of a few interesting segments, and many more uninteresting ones. A method which
is able to efficiently distinguish between these two types of segments would be a
significant step towards a video summarization system which is able to generate

high-quality summaries for raw user videos.

Finally, different viewers will have different preferences on what they find interesting
in a video. With traditional hand-editing, viewers only see the segments deemed
interesting by the editor, and the time cost for a human editor to create multiple
edits of a single video is significant. The ability to generate multiple possible
summaries rather than just a single summary would be a very useful feature for
a video summarization system to have, as would be the ability to learn a specific

user’s preferences over time.

1.2 Applications

Video summarization has a wide range of applications, including:

Personal video stories. People often want to share videos with their family and
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friends for important events such as a vacation or wedding, but showing the
entire video may be boring, and editing the video to extract the interesting
clips would be time-consuming. Automated video summarization would be
able to generate a short summary of the most interesting parts of an event,
even taking into account high-level visual information such as which people

are present in specific clips.

Sports highlight reels. Currently, sports highlight reels are manually created by
domain experts, and only focus on the most popular highlights. Automatic
summarization of these videos has the potential to understand domain
knowledge for specific sports, and generate multiple highlight reels for
different viewers. For example, in hockey, some users may want to see
highlights which contain tackles, while other users may wish to see highlights

containing goals.

Automated movie and television trailers. Movie trailers are created with the goal
of convincing viewers to watch the full movie, but have the disadvantage
that they must generally appeal to the largest number of people possible.
By using automated video summarization methods to generate multiple
trailers, the system would be able to over time learn to personalize trailers for
specific groups of people, for example different age demographics, potentially

increasing the number of people that end up watching the movie.
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1.3 Cliply

Alongside our work on video summarization, we developed a web-based system
which allows users to upload their videos, and generate short “video stories” from
them. Although the system incorporates much of our work on video summarization,
it also adds a large range of features to enhance raw video summaries and make
them more desirable to end users. Some examples include support for adding music
and for overlaying a title over the final summary video. Some example screenshots

from the upload phase of Cliply can be found in Figure

Select Music

(a) The upload page for Cliply. (b) The Cliply page used to select
music for a summary.

Add a Title

(c) The Cliply page used to pick a (d) The Cliply page used to select a
duration for the final summary. title, and optionally include it in the
final summary video.

Figure 1.1: A visual summary of the four steps a user follows to create a summary video in
the Cliply system. Users first upload one or more videos using the page in (a). They are
then able to optionally select a music track for the video on the page in (b), a duration for
their summary on the page in (J), and finally select a title for their summary on the page in
(d), and optionally include it in the final summary video.
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Access to this system was extremely helpful during our work on video summariza-
tion. By developing our work as extensions to Cliply’s automatic summarization
system, we were able to avoid a large amount of the boilerplate code traditionally re-
quired for re-generating intermediate data and re-testing our work when significant
changes occurred. We were able to simply start-up a new local instance of Cliply,
add our testing videos, and the underlying system would take care of generating all
intermediate and final data. Additionally, we were able to view all the processed

videos in Cliply’s web-interface, shown in Figure

Your summaries

Preview your summary

(a) The Cliply page which shows a (b) The Cliply page for viewing a
history of all videos a user has sub- video summary. From here, users
mitted. can preview their summary, refine
it using the “thumbs down” icon,
share it to popular social media sites,
or download a copy of it.

Figure 1.2: A demonstration of the interface provided by Cliply for viewing video summaries
and their details.

A final benefit of the Cliply system is that it was able to provide us with a user-friendly

interface for the “/Additional Summaries(’ step in our summarization system. This

step requires optionally marking multiple segments of a video as either “keep” or
“discard”. Without Cliply, we would need to manually look through each segment,
and construct an input file. With Cliply however, we are able to use the simple

interface demonstrated in Figure [1.3|to view and select segments, automatically

6
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create the input file, and even generate the new summary video.

Improve your summary

By ranking some of the frames below, you'll be able to help our algorithm generate a better summary. Clicking once will mark the frame as

good, clicking again will mark it as bad, and clicking a final time will reset you

Segments that were used in your summary have already been selected. You can t everything if you prefer orjust skip this step

entirely to get a new auto-generated summary.

Selected segments

s

Figure 1.3: The interface provided by Cliply for selecting video segments to specifically
keep or discard. Any segments specifically selected are highlighted at the top, while a
listing of all segments is provided in the “All Segments” section. A green check mark on a
segment indicates it should be kept and a red cross indicates that it should be discarded.
If no mark is present, the system will decide to keep or discard it. Clicking on a segment
image switches it’s state between unselected, keep, or discard.

1.4 Notation

In our work, the lowest level we work at is the video-level, where we have a video V,
consisting of a number c of ordered frames f, that is, V = {fo, ..., f.}. Each video
can also carry with it a number of attributes—in particular, the number of frames
in the video frames(V), the frame rate of the video fps(V), and the dataset a video

belongs to dataset(V).

Each frame f is represented as a 3-dimensional array of pixel values p € [0,255],
with the third dimension representing the number of color channels in the image,

and hence the color space of the image. The most common cases we deal with are 3

7
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channels, where the image is in the RGB color space, or 1 channel, where the image
is in the grayscale color space. In terms of attributes, each frame has a width in

pixels width(f), a height height(f), and a channel count channels(f).

Branching off of this base notation for videos, there are a few additional definitions
specific to our work in video summarization which are important. The first of these
is for that of a segment s which represents an ordered range of frames {fq,..., fy}
from a video V, with a, b < frames(V) and a < b. Each segment carries with it a
number of attributes, including the number of frames within a segment frames(s),
the index of the first frame of the segment start(s) = a, and the index of the last
frame of the segment end(s) = b. We can also define the distance between two

segments s. and sq with start(sq) < end(s.) as distance(s.,sq) = start(sq) —end(s.).

For a video V, we can have a segmentation S as Sy = {so,..., Sk}, consisting of
non-overlapping segments s, that is, end(s;) < start(si1). Finally, we can represent
our end goal—a summarization U—as a possibly equal subset of this segmentation,
that is, Uy C Sv. We often need to reference the set of all the frames within a
segmentation or summary, for which we use the notation frames(S) and frames(U)

respectively.

We often need to describe n-dimensional feature vectors for an associated object o.
For this purpose, we have adapted the notation X{. For example, a 128-dimensional

feature vector for frame f; would be represented by X}2.

For a segment s;, we use the notation Qs, € [0, 1] to represent the score computed
for a segment, where 1 represents an interesting /high-quality segment, and 0 an

uninteresting /low-quality segment.
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1.5 Contributions

The primary contribution of our work is:

A high performance video summarization system which is able to

perform video summarization at real-time on commodity hardware.

In addition to this primary contribution, parts of our work also serve as relevant

contributions in isolation. These include:

1. A video pre-processing process which makes use of very low-level features
to efficiently locate undesirable frames, then uses these to compute optimal

segments.

2. A method of incorporating user history over time in order to learn to generate

personalized video summaries.

3. A method of generating additional summaries almost instantaneously.
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1.6 Overview

v Video Feature Segment Summary | Uy
Segmentation Extraction Scoring Generation
\ Sv / Xlé%v QSGSV

Figure 1.4: Overview of our summarization system. We start with a video V and perform
video segmentation, resulting in a segmentation Sy.. We perform feature extraction on this
segmentation to obtain for each segment s € Sy a 124-dimensional feature vector X!24. This
feature vector is used by the segment scoring process to generate for each segment s € Sy a
score Q. Finally, these scores are used by the summary generation process to generate a
final summary Uy .

Our video summarization system follows a tiered approach, where methods with
a high performance but lower level of detail are first used as a rough filter for
frames and segments of the video. This allows us to quickly eliminate a number
of problem frames and segments which commonly appear in raw user videos. By
reducing the number of frames that need to be processed, we are able to make use
of more computationally expensive methods later on, while maintaining similar

performance.
Generally, video summarization consists of four major steps:

1. Video Segmentation is described in Chapter 3| where for a target video V,
a segmentation Sy is generated. This step includes a pre-processing step to

eliminate undesirable frames.

2. Feature extraction is described in Chapter 4, where features are first ex-

tracted for each frame, then aggregated within each segment s to obtain a

10



Chapter 1. Introduction 1.6. Ouverview

124-dimensional features vector X!2%.

3. Segment scoring is described in Chapter |5, where based on the extracted
features and a segment scoring model, each segment s is scored with a float
value Qs € [0,1]. A value of 1 represents a high-quality segment, while a

value of 0 represents a low-quality one.

4. Summary generation is described in Chapter|f}, where a selection algorithm is
used to construct a final summary Uy. This step also includes the generation

of additional summaries.

The majority of our implementation is written in C++ for performance reasons, but
there are also parts which are written in Python, such as our machine learning

models.

Once we have described our system, we present our evaluation method and results
in Chapter 7] finishing up with our conclusion in Chapter 8, where we summarize
our contributions, discuss some limitations of our work, and provide some ideas for

future work that could be performed to expand on our system.

11
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CHAPTER

BACKGROUND INFORMATION

This chapter presents an overview of some background information that may be needed for
future chapters. We start by looking at some of the previous research related to our work.
We then give an overview of some of the common datasets used for video summarization,
including any relevant pre-processing we performed on the data. Finally, we include an

overview of some computer vision and machine learning techniques used later in our work.

Ithough video summarization has been an active research topic in computer
A vision for decades, it has experienced a renewed interest in recent years. The
high computational capabilities of modern hardware allow us to process video in a
fraction of the time previously required, which when combined with the evolution of
modern vision techniques such as deep neural networks, has resulted in a significant

increase in the breadth of techniques which are viable to apply to the topic of video

13
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summarization. Combined with the vast quantity of prior work involving video

summarization, many interesting research prospects are available to pursue.

2.1 Related Works

Although our primary focus is video summarization, some of the steps we perform
during our work are themselves topics with a significant amount of prior research.
Among these are video segmentation, which simply deals with taking a video and
dividing it up in to a number of segments, and image and video feature extraction,

which deals with extracting relevant and useful features from images and videos.

2.1.1 Video Segmentation

Video segmentation has many years of research behind it, resulting in the creation
of a variety of algorithms over the years. Early works such as [1} 2, 3] focused on
detecting scene transitions in edited videos—for example fades or dissolves—while
more modern works such as [4} 5, 6, [7] instead focus on the more difficult problem

of segmenting raw user videos.

The classic thresholding-based segmentation algorithm was originally proposed
in [1]], and operates by first computing the average brightness value of each frame
in a video. Segments are then detected by comparing each frame brightness to a
pre-selected threshold value, and creating a new segment whenever the brightness
falls below the threshold. An improvement is also proposed in [2] which makes

the threshold value dynamic and able to adapt to global lighting changes over time.

14
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Overall, this method is very efficient, but only useful for very simple transitions

such as fades when scenes are separated by a series of low brightness frames.

The work in [3] is perhaps first major improvement to early threshold-based methods,
and instead examines motion and intensity differences between frames to perform
segmentation. Rather than examining only values for a single frame, differences
over multiple adjacent frames are considered, and segments are created whenever
the values match any of a set of previously observed scene transition patterns. This
method is able to detect a larger range of transitions, in particular those caused by

fast camera movements which may be present in raw user videos.

More recently, the two segmentation methods [4} 5] have been proposed with the
express goal of performing segmentation in the case of raw user videos. The method
tirst proposed in [4] extracts a number of features from each frame of a video,
then performs agglomerative clustering[8] on these features to generate the final
segmentation. The other work proposed in [5] takes a slightly different approach,
instead extracting optical flow and blurriness features from each frame, then using
a pre-trained classifier to classify frames as either “static”, “in transit”, or “changing

attention”. Both of these methods are significant improvements over the previous

work involving raw user videos.

Perhaps the most recent work is that which applies multiple change-point detection[6)
7] to the problem of video segmentation. In this work, a number of features are
extracted for each frame of a video, and a matrix is formed containing all the features
for every video. An optimization is performed using this matrix, and the result is the

positions of any relevant segment boundaries. A fundamental difference between

15
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this method and most other methods is that change-point detection operates on the
entire signal at once, meaning that the resulting segmentation has a higher chance

of being globally consistent.

2.1.2 Image and Video Features

Feature extraction is an important part of our work, as the accuracy of our model
is dependent on our ability to efficiently extract features from our videos which
are relevant to the task of video segment scoring. When efficiency is a concern,
there are a large range of low-level hand-crafted features[9, (10} 11}, 12} [13} 14, 15]
which are relevant to our task. More recent work on video summarization has
additionally incorporated higher-level features[16, 17,18, 19] such as SIFT features
and dense motion trajectories, and even very high-level features[20, 21} 22] such as

object detection and neural network layer features.

Research in the field of computational aesthetics[9}[10] provides us a large range of
low-level features for assessing the “beauty” of images. Some of these, such as [11]
are inspired by psychology and art theory, and attempt to compute approximate
emotional values, while others such as [12] attempt to compute features which
describe the general texture of an image. Some other important features that may
be used include image sharpness[14] and the rule-of-thirds based on computing

spectral saliency[15] over 9 quadrants of a frame.

As hardware improves, so does the complexity of features which are used for
video summarization. Modern works tend to use some combination of general

image features such as GIST[17] and SIFT[18], robust motion features such as

16
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dense trajectories[19], and even general models for image aesthetics[16]. With the
recent popularity of deep learning, we are even starting to see the use of features
constructed using computationally complex methods based on neural networks,
such as face detection[20], object detection[22], and layer extraction from networks

such as GoogLeNet[21].

2.1.3 Video Summarization

Although many methods have been proposed for video summarization over the
years, the basic underlying process has generally remained the same. Specifically,
the variety of methods[4) 23} 24, 25] first compute a segmentation, then perform
scoring of these segments, and finally use 0/1 knapsack[26] to perform segment
selection for the final summary. One exception to this is some of the state-of-the-art
work which uses LSTM neural networks[27]. Many early works[4)} 23| 25] were
unsupervised methods, but with the recent appearance of some high-quality video
summarization datasets, supervised methods[24, 27] which learn some model based

on previous summary data are now the most popular.

Commonly, methods based on clustering[4] and attention[23] are used as baselines
when evaluating new methods. Both of these methods are unsupervised. The
clustering method involves first extracting a number of features and using clustering
to generate a segmentation. For each segment, an additional set of features are
extracted, an interestingness score is computed for each segment, and 0/1 knapsack
is used to create a final summary. The attention method operates similarly, extracting

attention features for each frame which act as interestingness scores, then generating
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a summary using 0/1 knapsack. These two methods tend to obtain higher accuracy
values compared to a randomly generated summary, but are overtaken by most

modern methods.

The work performed in [24] is significant, as not only did it develop a state-of-the-art
method for video summarization, but it also created a high-quality dataset to be used
for benchmarking video summarization methods. In this work, segmentation was
performed using change-point detection, segments were scored using a combination
of low and high-level features, then the final summary was generated using 0/1
knapsack. The method used in [25] is very similar this method, with the primary
differences being that their work performs some pre-processing of the video data in
an attempt to improve efficiency, and they use a different set of features for scoring

segments.

The current state-of-the-art results on the SumMe dataset were recently obtained
using an LSTM neural network[27]. This method is significantly different than
previous methods. In particular, the fact that LSTMs operate on sequences of frames
rather than either individual frames or individual segments means that there is no
need to perform segmentation. Additionally, wheras most methods only generate
interestingness scores at the segment-level, the LSTM is actually able to generate
per-frame values. This method operates by first extracting the output of the pool 5
layer of the GoogLeNet model as features, then using these as input to the LSTM.
The result of this is per-frame interestingness scores, which can then be used in
combination with 0/1 knapsack to generate a final summary. The primary benefit of
this method is that it actually operates on the sequence of frames in a video, rather

than just some aggregation of features over a group of frames.
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2.2 Datasets

Below, we describe the primary datasets we use in our work, and discuss any

pre-processing that needed to be performed.

2.2.1 A Large-Scale Database for Aesthetic Visual Analysis (AVA)

A significant part of our work is reliant on the ability to accurately compute the
“aesthetics” of arbitrary frames of a video. For this purpose, we have found the
dataset A Large-Scale Database for Aesthetic Visual Analysis (AVA)[28] to be an
essential asset. It contains over 250,000 images along with aesthetic scores and
labels for various semantic and photographic categories. There has previously
been a large range of work which makes use of this dataset for the purpose of
computing the aesthetics of arbitrary photographs, however, our method deals with
a categorically different range of images compared to those seen in traditional (and

even modern) computer vision—ones from low-quality, user-recorded videos.

2.2.1.1 Dataset Processing

The base AVA dataset contains multiple files, however, we are primarily interested
in the contents of the AVA. txt file. This file is a CSV file containing 15 columns, of
which only 11 are of interest to us, specifically columns 2 up to and including 12.
Column 2 contains the image ID which is needed to download the actual image

content from the DPChallenge website. The remaining ten columns contain the
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number of votes submitted for each level of aesthetic quality, that is, the third
column contains the number of votes which rank the image with an aesthetics value
of 1, the fourth column the count for a ranking of 2, up to the twelfth column for the

10 ranking count.

Since our primary goal for this dataset is to learn a model for determining the
aesthetics ranking of an arbitrary image, there are two important steps we needed

to perform before this was possible:
1. Downloading all the images.
2. Computing the aesthetics score of each image.

Images were downloaded using a Python script and saved as JPEGs. Of the 255530
images in the dataset, only 195128 were still available for download. To compute
the final score of each image, we simply computed the normalized weighted mean
of the votes for each image, giving us a final floating point aesthetics value in the

range [0, 1].

2.2.2 SumMe (from "Creating Summaries from User Videos")

The SumMe dataset[24] is the first video summarization dataset focusing specifically
on raw user videos that contain a number of interesting events. It contains 25
videos, each of which contains at least 15 different user summaries, for a total of 390
summaries overall. This dataset is currently used as the standard benchmark for

state-of-the-art video summarization methods.
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2.2.2.1 Dataset Processing

The base dataset contains for each video, a single data file exported from Matlab
in mat format. Each file has a user_score attribute which contains a 2D matrix
where each row represents a frame, and each column a user. Each element of this
matrix is either O if the frame was not selected for inclusion in the summary, or
> 0 otherwise. We use Algorithm (1| to convert this raw data matrix into a set of

summaries {Ug, ..., U}

2.2.3 TVSum

The TVSum dataset[29] consists of 50 videos from Youtube belonging to various
genres. Each video is divided into 2 second long shots which are ranked by 20 users
for importance on a scale of 1 to 5. In order to obtain user summaries from this
dataset, we use 0/1 knapsack to select for each user’s importance scores, a summary

with length equal to 15% of the original video.

224 VSUMM

The VSUMM dataset[30] is an older dataset focusing on static summaries rather
than dynamic. This means that each summarization is represented as a number
of key frames, rather than a final video clip. This dataset consists of 100 videos
from two different sources: 50 from Openvideo, and 50 from Youtube. Each video

contains 5 summaries as a list of the frames which represent the static summary. To
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generate dynamic summaries, we simply create uniform segments centered at each

keyframe to obtain a final summary with length equal to 15% of the original video.

2.3 Computer Vision Techniques

In our work, there are a number of techniques specific to computer vision which
are prerequisites to some of the more advanced methods examined later in our
work. To assist readers, we have created this section to provide a summary of these

techniques, along with any assumptions we make.

2.3.1 HOG Features

Histogram of oriented gradients (HOG) features are commonly used in computer
vision for the purpose of object detection. They operate by counting occurrences of
gradient orientations in local regions of an image. Traditionally, for a given image,
these are computed over a dense grid of uniformly spaced cells, usually 8 x 8 pixels
in size. A detailed description of their computation method is beyond the scope of
this work, and interested readers are directed to [31] for further information. The
result of this method applied to an image is a feature vector consisting of 9 values
for each cell, which represent the sum of the magnitude of the gradient vectors for
each 20 degree angle bin in the range [0, 180). HOG features tend to be desirable for

object detection as they are invariant to changes in lighting and small deformations.
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Figure 2.1: A visualization of both the HOG features and gradient image for an example
image. The center image was created by computing the gradient of the leftmost image,
and assigning a color to each pixel where the hue represents the angle of the gradient, and
the intensity of the color represents the magnitude of the gradient. The rightmost image
displays the traditional visualization used for HOG features. The image is divided into bins,
and 9 white lines are drawn at different angles within each bin, with the intensity of the line
representing the strength of the gradient for that specific angle.

A traditional visualization of these features is shown in Figure In the right
image, each 8 x 8 cell contains 9 white lines, oriented based on the orientation of
the bin they represent, and with a length based on their magnitude in the resulting
HOG feature histogram. We additionally display the original image on the left,
and the gradient image in the center, where the color of each pixel represents the

orientation of the gradient at that point, and the intensity represents the magnitude.

2.3.2 Decision Trees

A decision tree is a model which uses a tree-like graph of decisions and outcomes.
Each decision is represented by a node in the graph, and has an associated test on an
attribute. Each labeled branch out from a node represents the result of the attribute

test. In most cases, there will just be two branches, one for true and one for false.
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Finally, all leaf nodes of the graph contain the determined class for a path through
the graph, and may optionally include a regression value r = [0, 1] and percentage

of observations o = [0, 100]% that reached the leaf during training.

Gender

N

Male Female

Age > 55

/ \ 0.73, 36%

Yes No \
S/S Aboard > 2.5
0.17,61% / \
Yes No

0.05, 2% 0.89, 2%

Figure 2.2: An example decision tree for predicting the survival outcome of passengers on
the Titanic. In this case, we can see that the dataset is first split based on the value of the
gender attribute. A value of Female results in a Survived leaf node with a probability of
0.73, meaning that a female on the Titanic had a 73% chance of survival. A value of Male,
on the other hand, leads to another decision node. This process continues downwards until
no attributes remain with the information gain of a split using them above some threshold
value.

An example decision tree is presented in Figure 2.2, which represents the survival of
passengers on the Titanic dataset[32]—one of the basic datasets traditionally used
when describing the workings of decision trees. Decision nodes are represented
by a gray rounded rectangle node and display the attribute test that is used. Leaf

nodes are represented as colored rectangles, with one color for each distinct class.
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Leaf nodes also include the regression value r and percentage of observations o as
labels below them. The series of decisions that lead to a given class can be found by
simply working backwards from each leaf node. The regression values, observation

percents, and decisions followed to reach each conclusion can be seen in Table

Class r 0 Decisions

0.05 2% Gender = Male, Age < 9.5, S/S Aboard > 2.5
0.17 61% Gender =Male, Age > 9.5

0.73 36% Gender = Female

089 2% Gender =Male, Age< 9.5, S/SAboard < 2.5

Died

Survived

Table 2.1: The regression values and observation percents for each class in our example
decision tree, along with a list of the decisions which were followed to read each leaf node.

2.3.3 Information Gain in Decision Trees

Information gain is a metric used by many decision tree learning algorithms. It is
based on the concept of entropy H from information theory, which was designed to
measure the amount of information content a given set of examples belonging to
different classes exhibit. Given a set of sample features T = {(x1,%2,...,Xn,y)hy €Y
where x; represents a single feature/attribute value and y represents the class of

the feature, the entropy H can be simply defined as

H(T) =— Z Py log, py.

yey

Each p, value represents the probability of the class y in the set T, that is, p, = I{t €

T |ty =y}l/[T]. We can additionally define conditional entropy of a sample set T
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given an attribute value x; = a as

HTla = Y HteT’TXi:V}l~H({teT!xi:v}).

vevals(xy)

Finally, we can define the information gain of a sample set T for a single attribute a

as

IG(T,a) = H(T) — H(Tla).

Generally, this value is a good representation of the “relevance” of an attribute. In
decision tree algorithms, this value is commonly used to decide which attribute

should be used to split up a dataset.

2.3.4 Cross-Validation

Cross-validation is a technique used for the purpose of model validation to attempt
to determine the ability of the model to generalize when provided with a set of
data independent of the training data. For a typical prediction problem dealing
with a set of data X with know results Y, the most basic form of model validation
involves splitting the data into two sets—the training set X; and Y, and the
testing /evaluation set X, and Y.. The model is trained on the training set, and once
training has completed, is evaluated on the testing set. This introduces, among
other issues, the possibility for either training or testing to be performed on an
unrepresentative subset of the data, resulting in either overfitting or an inaccurate

computed accuracy metric.

The traditional solution is to perform a procedure known as k-fold cross-validation.

26



Chapter 2. Background Information 2.3. Computer Vision Techniques

Using this method, the set of data is first split into k random equally-sized subsets
Xi and Y; with i € [1,k]. Training and evaluation is then performed by looping over

each i€ [1,k], and

1. training a model m; using a subset of folds |J ({X; and Y; |j € [1,k],j # i}),
followed by

2. testing the model using the excluded fold X; and Y;.

Once metrics have been computed for each i value, the average of each metric is
returned as the final value. The value used for k should be adjusted based on
various statistics of the input data such as the cardinality and the availability of

computational resources.

2.3.5 Grid Search

The vast majority of machine learning methods are parameterized based on some
“hyper-parameter” values p € P. For most models, sane defaults are provided,
however, simple tuning of these parameters to a specific set of training data very
often results in an increase in model prediction accuracy. A common method for
selecting optimal p values for a given algorithm a and set of data X is to perform “grid
search”, where a subset of possible values for each parameter p € P are provided,
and for each set of values h,, in the Cartesian product {po x --- X pn | n =[P}, the

algorithm a is trained and evaluated using cross-validation.
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Algorithm 1 The algorithm used for computing the summarizations for a video
from the SumMe dataset.

Inputs:
m: A f X c user_score matrix

1: function EXTRACTSUMMESUMMARIES(T)
2 W < List( ) > Construct an empty list
3 for i from 0 below c do
4 U « List( ) > Construct an empty list
5: prev < 0
6 for j from O below f do
7 if m[j,i] > O then
8 if prev > 0 then
9 increment segment end
10: else
11: append segment
12: end if
13: else
14: if prev > O then
15: new segment
16: end if
17: end if
18: end for
19: end for
20: return S

21: end function
Output: A set of summaries W = {Uy, ..., U}
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CHAPTER

VIDEO SEGMENTATION

This chapter presents the processes we tested for performing video segmentation on a single
video. Overall, we examine three of the primary segmentation methods used by traditional
approaches [33,134]. We additionally describe a more complex method which makes use of
multiple change-point detection to dynamically adjust segment boundaries to better fit the
underlying content. Since our primary goal is to develop a time-efficient summarization
system, we additionally perform segment pre-processing and post-processing in an attempt
to eliminate segments that are obviously non-desirable. The computational overhead of this
additional processing is minimal, and has the potential for large computational savings later

on in our summarization system.

T he first step in our summarization system is segmentation, where for an input

video V, a segmentation Sy is generated consisting of k > 0 non-overlapping
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segments{so, ..., sx}. Although the segments are not allowed to overlap, it is possible
for gaps to exist between segments, that is, we only require that end(s;) < start(si1).

A visual representation of this process can be found in Figure

Multiple approaches to segmentation have been developed over time, each with
differing amounts of complexity and types of videos they work best with. For
example, uniform sampling is perhaps the least complex, simply choosing segments
of equal length with no gaps between them. More advanced methods actually
attempt to locate the transitions between different “scenes” in a video, where the
visual content has changed significantly. One such example of a method is multiple
change-point detection[6], which has shown to be fairly accurate when locating

scene transitions.

5 Frame Uniform Sampling

So S$1 S2

Figure 3.1: An example of the expected results from this step when using uniform sampling.
We start with a video V with frames(V) = 15, and using uniform sampling with a length of 5
frames, we obtain a segmentation Sy consisting of k = 3 segments {so0,s1,82}.

Our entire segmentation process can be broken down into three distinct steps:

Video Pre-processing Low level frame features are extracted from the video and
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“labels” are optionally assigned via comparison to empirically derived thresh-

old values.

Finding Initial Segments The video is initially divided into a number of candidate

segments.

Segment Post-processing The candidate segments are processed further in an
attempt to maximize the quality of the final segments, and eliminate any

obviously undesirable segments.

The remainder of this chapter provides details of each step, including any options
considered during the development of our pre-processing and post-processing

processes.

3.1 Video Pre-processing

The first step we perform is video pre-processing, where low-level features are
extracted for each frame of a video and are used to optionally assign initial “labels”
to individual frames. In particular, we attempt to locate frames which are too dark,
blurry, or have a high degree of uniformity. A visualization of the primary task

performed by this step can be found in Figure
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D U B|B|B|B U D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 3.2: The results of applying pre-processing to an input video. The original video is
shown at the top of the figure, consisting of 17 frames. At the bottom of the figure, we see
the same video, but with some frames having labels applied to them, indicating that they
were identified as “undesirable” by one of the pre-processing metrics.

3.1.1 Frame Labeling Features

The features we compute for the purpose of labeling frames have minimal com-
putational requirements, and are thus discarded once they have been used. To
perform frame labeling, we simply loop over each frame of the video, compute a
number of feature values, then compare each to a previously empirically computed
per-feature threshold value. Frames with feature values below this threshold value
are considered undesirable, and assigned a label. Some example video frames,

along with their computed feature values and corresponding labels can be found in

Figure
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Y= 0.63 Y = 045 Y =0.02 Y= 014

S =1955.33 S =83.19 S =342 S =6552.91
u= 0.70 U= 0.75 u=0.15 U= 0.24
Label: none Label: blurry Label: dark Label: uniform

Figure 3.3: Four example frames from a video, along with the values computed for each of
the feature values, and the corresponding label assigned to the frame, if any. Any feature
values which fall below the threshold value are highlighted in red.

Threshold values for each label were computed by hand-labeling approximately
one hundred positive and negative example frames, then extracting the feature
values, resulting in a set of feature values for the positive examples x,, and negative
examples x,,. To minimize the false positive rate, the final threshold value is selected
as min(max(x, ), min(x,)), that is, the largest value from the negative examples

which is less than the smallest value from the positive examples.

3.1.1.1 Dark Frames

In order to locate frames with a low amount of illumination, the relative luminance
Y € [0, 1] of each frame f = (R, G, B) consisting of a red channel R, green channel G,

and blue channel B is calculated as the average value over all pixels, that is,

Y = mean(0.2126 - R+ 0.7152 - G + 0.0722 - B).

A frame is then labeled as “dark” if Y < « for some threshold value «. For our work,

the optimal value of a was empirically determined to be 0.097. The third image in
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Figure [3.3is an example of a “dark” frame.

3.1.1.2 Blurry Frames

The sharpness S of each frame is computed using the Tenengrad method[35, 36],
where frames with S < {3 for some threshold value 3 are labeled as “blurry”. We
empirically determined the optimal 3 value to be 502.32. To compute S, first, the
horizontal image gradient G and vertical image gradient G, of the grayscale version

of each frame is calculated. We then calculate the final sharpness value
S = mean(G?2 + Gi)

as the mean magnitude over all pixels of these image gradients. The second image

in Figure[3.3]is an example of a “blurry” frame.

3.1.1.3 Uniform Frames

A low uniformity value U < vy for a frame is a general indication that the frame
doesn’t contain a significant amount of meaningful information, as the intensity
values over all pixels in the frame are very similar. These frames are labeled as
“uniform”. A value of y = 0.2 was empirically determined to be the optimal value
for our purposes. The value for U is obtained by first computing the normalized, 1D,
128-bin grayscale histogram H of the image. We then compute the ratio between the
top 5™ percentile values of H and the rest of H. In order to preserve the convention

that threshold values should be upper bounds, the final value for U is then equal to
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1 minus this computed value. The fourth image in Figure 3.3|is an example of a

“uniform” frame.

3.2 Finding Initial Segments

In our work, we are mostly concerned with segmenting raw user videos—those which
are usually captured by amateurs, using consumer devices such as smartphones or
action cameras. This contrasts sharply with the vast majority of previous work in
the field of video summarization, where edited videos with distinct “scenes” (such

as TV shows and news programs) have traditionally been used.

Transitions in these raw user videos are significantly more difficult to detect
compared to those in edited videos. Even current state-of-the art methods[33)} 34]
elect to use a basic method such as uniform sampling to select their initial segments,
and rely purely on the later steps in their summarization system to refine their
segment boundaries. In addition to examining these methods, we also reformulate
our video as a multidimensional time-series sequence of features, allowing us to cast
video segmentation as a multiple change-point detection problem and use modern

signal processing methods.

3.21 Uniform Sampling

The most basic method that can be used to find the initial segments of a video involves
simply dividing the video into a number of segments of equal length, usually in the

range of 3 to 15 seconds each. Although this method is computationally efficient,
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the quality of segments it generates tend to be low.

Figure 3.4: An example of uniform sampling applied to a video. The ground-truth scenes
of the underlying video are indicated by blocks of different colors.

An example of the results this method produces can be seen in Section It is
important to note that the selected segments rarely correspond to the logical units
(scenes) of the video, often only capturing part of an underlying scene, or even parts
of multiple different scenes, such as in the third segment in Section[3.2.1l We elected

not to use this method, as the generated segments were of very low quality.

3.2.2 Threshold-Based Scene Detection

Threshold-based detectors are among the simplest of scene detection methods which
actually process the underlying image data. They operate by simply computing
the average brightness value of every frame in the target video, and creating a new
segment when this value falls below some threshold value. This method is very
efficient and works well for edited videos containing abrupt scene transitions, that
is, edited videos. However, for the case of the raw user videos, the method performs
poorly, rarely selecting more than a couple of segments for long videos (> 5 minutes
in duration). A possible solution to this problem is to enforce a maximum segment
duration, such as 5 seconds, although in practice, this would effectively result in

uniform sampling.
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Figure 3.5: An example of threshold-based scene detection applied to a video. The ground-
truth scenes of the underlying video are indicated by blocks of different colors. In this case,
only two segments were selected in a video consisting of 4 underlying scenes. Furthermore,
the boundaries of these segments are a large distance away from any ground-truth scene
boundaries.

3.2.3 Content-Aware Scene Detection

Content-aware detection is similar to threshold-based detection, but rather than
using the average brightness of each frame, it uses the average pixel value in the
HSV color space of the image differenice between two frames. As before, we loop over
each frame and calculate this value, starting a new segment whenever we encounter
a frame with a value that falls below some threshold value. The primary benefit of
this method over threshold-based detection is that it is actually able to detect when
the content of the frame changes, rather than just disappears (fades to black). For
raw user videos, this method performs moderately well—it is able to capture scene
transitions resulting from fast pans of the camera, but does miss slower pans. Any
zooming that occurs in the video also tends to result in a new scene, which is only

sometimes desirable.

Figure 3.6: An example of content-aware scene detection applied to a video. The ground-
truth scenes of the underlying video are indicated by blocks of different colors. Although
this method only selects three of the four underlying scenes, the ones that it does select are
of high quality, as they have boundaries very close to the ground-truth boundaries.
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3.2.4 Change-Point Detection

In some of the most recent works on video segmentation—especially those involving
user videos—a method based on multiple change-point detection[6] is used. The
purpose of change-point detection when applied to a set of time series data is to locate
any times where the probability distribution of the data changes significantly. For
the case of videos, we use a feature matrix consisting of color and edge histograms
for each frame of the video. Video segmentation is framed as a group fused least
absolute shrinkage and selection operator (LASSO) problem, and we make use of
the method originally described in the work by Bleakley and Vert|[6], and optimized

for use with long video sequences in the work by Song et al.|[29].

As input, change-point detection requires a time series feature matrix X, where each
column represents a frame and each row the features for that frame. There are
many options for the frame features that can be used, but keeping with our desire to
achieve real-time performance, we elected to use relatively simple 2200-dimensional
color and edge histogram features X2°°. For each frame f, we compute two primary
features over a two-level pyramid consisting of five regions: (1) HSV histograms
with 128-bins per channel, and (2) edge orientations and magnitudes with 30 bins
for each. These are then concatenated to form a final feature vector X22°°. Once
features have been extracted for all n = frames(V) frames of V, we use them as the
columns of a matrix, resulting in a final feature matrix X € R?2°°x™_ It is possible
to use more complicated features, such as the outputs from a layer of a neural
network, but even for a relatively simple network such as VGG-19, the time required

per-frame to extract these features is prohibitive.
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Once we have our input feature matrix X, a set of sparse coefficients A € R™*™ are

computed by solving the convex optimization problem
. 2, A
arg min || X — XA||; +§HAH2,1. (3.1)
A

The term |-||Z represents the Frobenius norm defined as ||A||Z = 2 i lA >, The
term ||-[|2,1 is the £, 1 norm, defined as [|Al|2,1 = 3 (3, A ;1°)'/2, which computes
the sum of the Euclidean norms of the columns of the matrix. In Equation 3.1} the
tirst term represents the reconstruction error, and the second term the total variation,
where A > 0 is used to control the relative importance among the two terms. The
exact method used to perform the optimization is beyond the scope of our work, so
readers are referred to the description by Song et al.|[29] if additional details are

required.

After performing the optimization and obtaining an optimal A, we can compute a
score for each frame z, = ||A; .||,. By selecting the top-k highest scoring frames as
split points, we are able to obtain a segmentation Sy, consisting of k+ 1 segments. We

elected to target obtaining segments with an average length of 5 seconds, resulting

ink = | frames(V)/(5 - fps(V))|.

Figure 3.7: An example of change-point detection applied to a video. The ground-truth
scenes of the underlying video are indicated by blocks of different colors. This method
is able to successfully locate all the underlying scenes of the video, with a high degree of
accuracy for the boundary locations compared to the ground-truth data.

Overall, this method can be thought of as a more robust version of threshold-based
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and content-aware sampling. Rather than relying simply on local color or brightness
features, a combination of color and edge histograms are used to locate segment

boundaries based on the statistical properties of the entire video.

3.3 Segment Post-Processing

After the initial segment selection has finished, we are left with a list of non-

overlapping segments with no gaps between them, that is,
Sv ={soy...,Sk} with end(si) + 1 = start(siy1). (3.2)

The next step makes use of the frame labels computed in Section[3.1.1]to post-process
each segment and eliminate undesirable frames and segments, effectively converting
segments in the form of Equation 3.2|into their final form. Our goal with this step
is to make use of the simple visual features currently available to us to eliminate
segments which are obviously undesirable. Any frames or segments that can be
eliminated now will result in large computational savings in later steps of our
system, as we will no longer have to extract the higher-level, more computationally

complex features.
Specifically, this post-processing consists of four steps:

Segment splitting The labels of the frames within each segment are examined, and

based on a metric, segments are optionally split into multiple new segments.

Segment trimming For the case of segments which contain labeled frames on either
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end, we remove these frames from the segment.

Low-Quality segment elimination The fraction of labeled frames is computed for
each segment, and any segments with a percent exceeding some threshold

value are removed.

Short segment merging and elimination For any segment less than some thresh-
old duration, we examine its neighbor segments, and either merge it with its
neighbors if the distance between them is below some threshold, or eliminate

it otherwise.

In the remainder of this section, we provide details of each step in this process.

3.3.1 Segment Splitting

In this step, we use a sliding window approach to split segments at any point right
before a window in which all frames are labeled. This means that we use a window
starting at the frame after the current one. The size of the window is selected to
be half the number of frames in an optimal segment. We stop once our window
extends past the frame range for the current segment. We additionally take into
account the label of the current frame, only spitting if we are not currently on a

labeled frame.
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Figure 3.8: A visualization of the segment splitting step with a window size of 4 frames.
The top half of the figure shows our video before splitting is applied. Frames highlighted
in gray indicate ones which are covered by our current window, and the frame with a
thick border represents the current frame we are examining. This frame and window have
been specifically selected as they represent an instance where splitting should actually be
performed. The resulting state after splitting can be found at the bottom of the figure.
Specifically, we can see that the first video segment has been split into two segments just
before the segment with four blurry frames in a row.

An example of a segment before and after splitting can be found in Figure Itis
important to note that this step only splits segments and makes no attempt to remove

individual frames—they will be eliminated by subsequent steps of post-processing.

3.3.2 Segment Trimming

Since segment splitting never actually removes any frames, we are often still left
with a number of segments containing labeled frames at the beginning/end. The
process of segment trimming operates by simply looping over every segment, and
removing any frames at the beginning or end of that segment which are labeled.
Once this step has finished, the first and last frame of every segment will not have a
label. A visual summary of the operations and end result performed by this method

on the results of the previous step can be found in Figure
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Figure 3.9: A visualization of the segment trimming step applied to the segments which
resulted from the segment splitting step. In the top of the figure, labeled frames at the
beginning or end of each segment have been highlighted. The bottom of the figure shows
the result after these highlighted frames have been removed from their respective segments.
For any non-labelled frames, frame numbers have been added to assist with future steps.

3.3.3 Low-Quality Segment Elimination

Once segments have been split, we eliminate any segments which consist mostly
of labeled frames. To do this, we simply loop over every segment, calculate the
percentage of frames which are labeled, and compare it to some threshold value. If

the percentage exceeds this threshold value, we remove the segment.

The primary benefit of this step over previous steps is that it operates globally rather
than locally, examining the segment as a whole rather than a small subset. A visual

summary of this method applied to the results of the previous step can be found in

Figure
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Figure 3.10: A visualization of the segment elimination step can be found above. In this
case, we have used 30% as the threshold value for the percentage of labeled frames needed
before a segment is eliminated. There is one segment for which this is true, highlighted in
the top of the diagram. The bottom of the figure shows the resulting segments after this
segment has been eliminated.

3.3.4 Short Segment Merging and Elimination

After the previous steps have been performed, we may still be left with segments
that have a small duration with a majority of frames which are of high quality (not
labeled). These segments can not be included in the final segmentation, as their
later inclusion in a summary will result in abrupt “jumps” between scenes, which
are often undesirable to end-users. However, the fact that they contain mostly
high-quality frames means that they should only be removed as a last resort. To
maximize our use of these segments, we attempt to merge them with neighboring

segments, only removing them if no merge is possible.

In this step, we examine each segment with a duration below some threshold
duration d,, then examine each of its neighbor segments. If the distance between
two segments is below some threshold value dy,, we merge the two segments. Note

that a segment can be merged with both its previous and next neighbors if the
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distance between both falls below the threshold value. If the segment can not be

merged with either of its neighbors, it is instead removed.

Overall, for a segment s with a previous neighbor s, and next neighbor s,,, there

are four possible outcomes:

1. If both the distance between s,, and s falls below the threshold value, and the
distance between s,, and s falls below the threshold value as well, both s,, and
sn are removed, and the range of s is extended to range from the beginning of

sp and end of s,,.

2. Ifjust the distance between s, and s is below the threshold value, s,, is removed

and the range of s is extended to start at the first frame of s,.

3. If just the distance between s,, and s is below the threshold value, s, is

removed and the range of s is extended to end at the last frame of s,,.
4. Otherwise, s is removed.

Pseudocode of this can be found in Algorithm [2} and the result of this process

applied to the results of the previous step can be seen in Figure 3.11]

3.4 Final Result

We started this chapter with an example video consisting of 17 frames, and worked
through each step of our video segmentation system to arrive at a final result
consisting of a single 9 frame segment, as seen in Figure It is important to note

the significant reduction of almost 50% in the number of frames before and after
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Figure 3.11: A visualization showing how segment merging is performed. In this case,
there is a single segment with a duration below the threshold duration, highlighted in the
top of diagram. The distance between this segment and its previous neighbor is less than
the threshold so the two segments have been merged. The final segmentation state is shown
in the bottom of the figure.

performing segmentation. Although the reduction amount is most likely less in
practice, we can easily see the benefit of our post-processing. This, combined with
our initial segmentation using multiple change-point detection gives us a distinct

performance advantage compared to other methods at this early step in our video

summarization system.

U D
9 10 11 12 13 14 15 16 17

Figure 3.12: A visualization of the result of our entire video segmentation process applied
to an example video. Performing an initial segmentation along with post-processing using
very low-level features allows us to go from a 17 frame long video segment, to a single 9
frame long segment.
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Algorithm 2 The algorithm used for performing segment merging and elimination.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Inputs:

if frames(s) > dp, then
continue

end if

merged < Farse

if distance(s,,s) < dy, then
S < Remove(S, sp)
start(s) < start(sp)
merged < TRUE

end if

if distance(s, s,,) < dp then
S < Removi(S, sy)
end(s) < end(sy)
merged <— TRUE

end if

if merged = FaLsk then
S < ReMoVE(S, s)

end if

end for
return S

22: end function

S: A segmentation consisting of n segments {s¢,...,Sn_1}
dm: The minimum segment frame duration threshold
dp: The between segment frame duration threshold
function PostTPROCESSSHORTSEGMENTS(S, dp,, dp)
for sy, s, s in Z1p(S, S[1 :J,S[2 3]) do

Output: A new version of S with segment merging and elimination applied
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CHAPTER

FEATURE EXTRACTION

This chapter provides an overview of the methods we use to extract features from our videos,
which are later used for scoring segments. At the frame-level, we extract both low-level
features, which are time-efficient to compute, and higher-level features, which are more
expensive to compute, but have the potential to provide a deeper degree of scene understanding.
Once these frame-level features are computed, we additionally compute per-segment features

as aggregations of these features.

nce all candidate segments Sy for our video V have been located, the next step
O is to extract a number of features for these segments. In our work, we extract
teatures at varying levels of detail. In particular, we extract a large number of low-
level visual features which have previously been used in computational aesthetics

to score the attractiveness or “beauty” of an image. These features are efficient to
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compute, but are limited in the amount of scene understanding they are able to
achieve. Additionally, we compute features using more complicated computer vision
methods—in particular face detection and face recognition. These higher-level
features are extracted with the intention of gaining a deep understanding of the
content of a video. They are expensive to compute, but we hypothesize that their
benefits as additional features will outweigh this expense when applied to the task
of segment scoring. We start by extracting frame-level features, and conclude by
performing an aggregation over these features for each segment in order to obtain a

single feature vector X for each segment s € Sy,.

4.1 Frame Features

Initially, for each frame f in each segment s of our segmentation Sy, we extract a
teature vector X;. In particular, we extract a combination of low-level features related
to computational aesthetics, and higher-level features related to face detection and

recognition.

41.1 Low-level Features

Low-level features have the benefit of being computationally efficient to compute,
with their primary drawback being that they are unable to capture higher-level
concepts, such as the presence of a specific person in an image. We currently extract
a number of hand-crafted features related to computational aesthetics, which over

the years, have shown to be useful for the task of scoring the attractiveness of an
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image[9, [10, 11} 37]. Overall, we compute 59 different feature values for each frame,
leaving us with a set of low-level feature vectors X7°. A summary of the features

we extract, along with their dimensionality and a short description of each can be

found in Table

Feature Dim. Description

Contrast 1 The ratio between the luminance range and average luminance.

Image Mean HSV 3 The average H, S, and V values over the entire image.

Center Mean HSV 3 The average H, S, and V values for the image center quadrant.

Itten Histograms[11]] 20 Histograms of H values over 12 bins, S values over 5 bins, and V
values over 3 bins.

Itten Contrasts[11]] 3 Standard deviation of each Itten Histogram.

Pleasure, Arousal, 3 Approximate emotional values computed as linear

Dominance[11] combinations of the mean V and S values.

Haralick Texture 13 Average Haralick texture features over all four directions.

Features[12]

Contrast Balance 1 Distance between the original and contrast-normalized

grayscale image.

Exposure Quality 1 Negative absolute value of luminance histogram skew.
JPEG Quality[13] 1 No-reference quality estimation algorithm for JPEG images.
Tenengrad[14] 1 Sharpness according to the Tenengrad method.

Spectral Residual 9 Rule of thirds using spectral saliency[15] in 9 quadrants.

Table 4.1: A summary of the low-level features extracted from each frame. The dimen-
sionality of each feature is provided, as well as a short description of what it computes.
References have been provided whenever possible, in the case that more information is
required for a specific feature.

4.1.2 High-level Features

The high-level features that we compute were selected with the intention of gaining a
deeper understanding of the actual content of a video. Where low-level features are

only able to compute general concepts such as the sharpness or relative brightness
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of single frames of a video, high-level features have the potential to provide us with
information more akin to what a human may observe when viewing a video. For
example, face detection and recognition features allow us to determine specifically
which people are present in a frame—something that humans instinctively do when

viewing a video.

For the vast majority of videos, knowledge of the people that are featured in the
video and statistics related to their appearance are extremely important for proper
understanding of the video content. For our case of raw user videos, this knowledge
would allows us to determine which people appear the most and least in a video,
and score the segments accordingly. We first perform face detection, which gives us
the number of faces present in a frame, as well as the position of each face. Using
this information, we then perform face recognition, where we perform clustering on
every detected face, resulting in a list of specific people that appear in the video,

and the frames they appear in.

The fact that we already extract a number of low-level image aesthetics features,
combined with our access to the AVA dataset containing a large number of user
image aesthetic rankings, additionally led us to the idea of extracting a general, high-
level aesthetics feature for each frame. Since our primary concern is distinguishing
between aesthetically desirable and undesirable frames, and since our per-frame
teatures will be aggregated into per-segment features for our final summarization,
we elected to train an XGBoost classification model. Frames classified as 0 represent
aesthetically undesirable frames, while frames classified as 1 represent desirable

ones.
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4.1.2.1 Face Detection

Face detection is vision process which takes as input a frame f, and returns a
possibly empty list of bounding boxes which for the current frame, contain face
boundaries. Many face detection methods have been developed over the years, but
for our work, we make use of the one provided by the d1ib library—a modern, high-
performance C++ library which facilitates the use of high-quality deep-learning
models. Specifically, d1ib uses a Felzenszwalb’s HOG (FHOG)[20] object detector
pre-trained to detect faces. This FHOG detector uses a combination of image
pyramid downsampling with a 5/6 ratio, a 80 x 80 sliding window, and HOG
teatures (previously discussed in Section to perform object detection. The
basic idea behind the FHOG detector is to detect objects by examining each sub-
window of an image at a number of different scales, which effectively reduces object
detection to a problem of binary classification. For each sub-window, we extract an
arbitrary feature vector X' as the concatenation of the HOG features for each cell.
This is performed for a number of decreasing scales of the image, forming a HOG
pyramid H. For each scale of H, we have a learned filter F which represents the
concatenation of optimal HOG features to represent the target object at the given
scale. Given X3! and F, we are able to compute the score of X' simply as F- X3'.
This score is then summed over each scale in the pyramid H to obtain a final score.
Finally, any sub-windows which have a score exceeding some threshold score y are

selected as probable locations for the target object.

The full implementation of FHOG used in our work goes even further by learning

a parts-based model as a combination of the previously described model, initially
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limited to images in smaller scales of the pyramid. To achieve this, it takes advantage
of the knowledge that a more detailed version of the current image exists in order to
compute sub-filters over parts of the current sub-window at the same scale. The
aggregate score of these parts then results in a significantly more informative scoring

of each window.

The final result of this step is that for each frame f, we have a possibly empty list of

m face bounding boxes B¢ = {bg,...,bm}.

4.1.2.2 Face Recognition

For each bounding box b, we extract a feature vector X'?® using the default face
recognition model included with dlib. Then, we perform face pose estimation
using the default face shape predictor[38] from dlib. This predictor was trained
using the iBUG 300-W[39] face landmark dataset. This predictor takes as input a
bounding box containing a face, and computes the position of 68 important “facial
landmarks”, shown in Figure[4.1.a] Furthermore, these facial landmarks are aligned

with the underlying face image, giving a final result similar to the one presented in

Figure
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(a) A visual display of the base land-  (b) An example of a face template
mark positions for a predictor using 68 aligned to a face based on predicted
landmark points. facial landmark positions.

Figure 4.1: A visual demonstration of important concepts related to face detection and
alignment. The first example in (a) shows the general positioning of important landmarks
for an arbitrary face, while the second example in (b) provides an example of how these
landmark positions can be aligned to a face with an arbitrary orientation.

Once these landmarks have been computed, we are able to perform the first half
of face recognition, where for a bounding box and set of landmark features, we
extract a feature vector X'%® representing the embedding of the face in a pre-learned
metric vector space. In this space, faces which are very similar (from the same
person) will have a very small distance between them, and faces which are different
(representing different people) will have a large distance between them. These
features are computed using the pre-trained deep metric model for faces included

in dlib.

Specifically, the model used is a version of the deep neural network ResNet-34[40],

modified to contain only 29 layers, and half the number of filters per layer. The
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network is also modified to use a metric loss function in order to learn a metric
space for faces. Training is performed using over 3 million faces from the FaceScrub
dataset[41] and the VGG-Face dataset[42], and when tested on the Labeled Faces in
the Wild (LFW)[43] dataset, it is able to predict with 99.38% accuracy if two images

are of the same person.

To perform actual face recognition, we perform clustering using every face feature
vector X'%8 over all frames for every segment of the video. Specifically, we use the
Chinese whispers graph clustering algorithm[44] to compute an optimal clustering
of faces into “people”, with no prior knowledge about the number of people
being clustered. Chinese whispers is a linear-time hard partitioning, randomized,
flat clustering method. This means that although the result can change between
iterations and there is no hierarchical information between clusters, we get a final
clustering which (1) assigns each face to only a single segment, and (2) can be
efficiently computed for all feasible durations of input video. A video with a duration
of 1 hour can easily contain > 50000 nodes, so a linear-time algorithm is extremely

desirable.

The initial “graph” used as input to Chinese whispers is constructed by simply
looping over every pair of features { (X}28,X}28) | fq, fy € frames(s), fo # fp } across
all segments and frames computed in the previous step, and creating an “edge”
between two nodes when their distance is below some threshold value t. A value of
T = 0.6 was selected, as it matches the value that was used for the metric loss layer
of the deep neural network used in the previous step. Chinese whispers is then run

using this graph, resulting in for every frame f, a set of recognized faces {{ | { € Z}.
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4.1.2.3 Aesthetics Model

As mentioned previously, in addition to using low-level aesthetics features as input
tfeatures themselves, we leverage the AVA dataset to train a general model for
computing a single score for a given image. Every image in the AVA dataset has
an average user score in the range [0.0, 1.0]. Similar to previous models for image
aesthetics[16]][28], we classify an image as 0 if the average score is below 0.5, and 1
otherwise. We train an XGBoost classification model using 10-fold cross validation
and a train-test split of 70%/30%. Our model obtains an accuracy of 73.66%. This
is significantly higher than the reference model[28], which obtains an accuracy of
53.85%, and slightly lower than the modern ILGnet[16] deep learning model, which
obtains an accuracy of 82.66%. For the significant speed increase our model has

over ILGnet, this accuracy is acceptable for our purposes.

4.1.3 Final Feature Vector

For our final feature vector, we concatenate all our low-level and high-level features.
We start with our low-level feature vector X2?. We concatenate the number of faces
present in the frame to get a new feature vector X¢°. For the face recognition feature,
we first filter out any recognized faces which only appear in a single frame, as
these represent unimportant faces. We then concatenate the number of recognized
faces present in the frame, to get a new feature vector X¢'. Finally, we append our

aesthetics model value, giving us a final frame feature vector X$2.
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4.2 Segment Features

Now that we have for each frame f a feature vector X$?, we perform an aggregation
over all frame features in each segment to obtain for each segment s, a feature vector
X,. For each feature value {x°,...,x°"} € X°2, we compute the mean and standard

deviation across all frames in each segment. We then have as a final feature vector
61
X1 = U {mean ({x} | fes}),std ({x;|fes})} (4.1)

i=0

for each segment s € Sy.
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CHAPTER

VIDEO SEGMENT SCORING

This chapter presents the methods which we developed for scoring a segment based on it’s
quality using the previously computed segment features. We start by describing the candidate
models we selected for computing scores, discussing the advantages and limitations of each.
We go on to describe our methods for training and testing possible models, and provide a
short analysis of the initial training results. We conclude by performing an analysis of the

importance of each feature in our selected model.

n this step, we operate on the segment features {X!?* | s € Sy} computed in the
Iprevious step, and compute a set of segment scores {QS | s € Sv}. In our work,
we evaluate models using three tree-based machine learning methods: (1) decision
trees, (2) random forests, and (3) XGBoost. We start by giving an overview of these

models, describing their primary method of operation, their advantages against
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other methods, as well as their limitations.

We move on to describe our method for training and evaluating each model. We
then discuss the results, and select one, or possibly two models to use for segment
scoring, providing justification for our choice. Using out best model, we extract
features importances and analyze them in order to possibly eliminate features which
do not contribute significantly to the final accuracy of our models, thereby increasing

the performance of our system without sacrificing accuracy.

5.1 Candidate Machine Learning Models

For scoring segments, we examine a number of candidate models. Due the structure
of our input feature vector—a concatenation of various feature values covering
different topics—we mostly focus on methods which require minimal knowledge
and pre-processing of the input data. In particular, we focus on three tree-based

models:
1. Decision Trees
2. Random Forests

3. XGBoost

5.1.1 Decision Tree Learning

Decision tree learning makes use of a decision tree, previously described in Sec-

tion to perform classification or regression using our input features as the
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attributes during training. In our work, we use SKlearn for training decision trees
and performing classification or regression, which uses an optimized version of the
Classification And Regression Trees (CART) algorithm[45]]. This is a greedy recur-
sive method which at each step, finds the combination of attribute and threshold
value which maximizes the information gain (previously described in Section [2.3.3).
The general operation of the algorithm is fairly simple—a rule involving one of the
attributes which maximizes the information gain is selected, the current node is
split into two new nodes, and the same process is applied to each of these new
nodes. The algorithm terminates when either: (1) it is determined that no additional
information gain is possible, or (2) when some pre-set stopping condition such as a
maximum depth is met. The result is a decision tree where each branch ends in a
leaf node consisting of a single class, which can be traced backwards to the root to

obtain the unique set of rules that define it.

Advantages

Decision trees are among the simplest of tree-based models, and hence have an
easy-to-understand internal structure. Their primary advantages over non-tree

models are as follows:
* They are easy to interpret and visualize.

¢ Their inner workings can be easily observed and recorded, facilitating repro-

ducible research.

* They can handle numerical and categorical data without pre-processing.
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* They tend to have moderately high performance on large datasets, both in

terms of speed and accuracy:.

Limitations

The fact that decision trees are among the simplest of tree-based models, however,

also results in a few significant limitations:

* As a result of the greedy model commonly used to decide the optimal
decision at each node, they are only able to perform local rather than global

optimizations.

* They are prone to overfitting in the case of deep trees, and suffer from decreased
accuracy for shallower trees when compared to more complex tree-based

models.

5.1.2 Random Forest

Random forests are an ensemble learning method which combines bootstrap
aggregating[46] (“bagging”) and decision trees. They operates by first generating
multiple decision trees by continually resampling the training data with replacement,
then performing either voting or averaging over the output of each tree to obtain
the final classification or regression 