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Abstract

Analysing Atomic Structure in Nano-scale Imagery

David M. Nemirovsky

M.Sc.

Faculty of Science

University of Ontario Institute of Technology

2017

This thesis presents methods for both detecting atoms and reconstructing single layer molecular

geometry depicted within high resolution nanoscale imagery. Nanoscale imaging is a common

method of analysing molecular structures produced through self-assembly. The second deriva-

tives of the nanoscale images are then computed and used to aid in analysis of the depicted

molecules. Peaks from the derivative images are used as the locations of the atoms and using

those locations we derive the molecular geometry. In order to efficiently determine the per-

formance of our proposed methods, a system to synthesize HRTEM imagery and ground truth

data was developed. We demonstrate and compare the effectiveness of our system to other

proposed systems using both experimentally produced nanoscale images and the synthetic data

that has been produced.
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Chapter 1

Introduction

Molecular self-assembly has been a topic of interest for many years due to its ability to produce

materials that are lightweight and microscopic but also tensile and otherwise useful. These ma-

terials are also difficult and cost ineffective to produce through means other than self-assembly,

i.e. lithography [1]. Lattices are of particular importance as some forms of lattices are capable

of producing nanoscale circuitry that can be used within computational units. These lattices

can decrease the size of transistors within silicon chips thereby enabling the development of

faster, smaller and denser processing units. However molecular self-assembly is not perfectly

understood [2], often it is unclear whether specific structures or defects within self-assembled

molecules will arise and the mechanism driving the defects is often misunderstood. In order

to study molecular self-assembly, material scientists often must image the materials via atomic

scale imagery, such as Transmission Electron Microscopy (TEM) or Atomic Force Microscopy

(AFM), in order to inspect the atomic structure of the resulting material. Inspection of these

materials is typically a manual process [3] and is often tedious and time consuming to extract

meaningful data from the image. Fig. 1.1 is an example of a manually annotated image for

the purposes of highlighting the polygons formed by tris(4-bromophenyl)benzene (TBPB). In

this figure someone has manually identified all important vertices within the image and an-

notated the image with colour coded rings based on the number of vertices within the ring.

1
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As the amount of data increases the time needed and costs of manual inspection may become

prohibitive and slow the progress of research. Due to the possibly increasing costs of manual

inspection and analysis of these image a method is needed to automatically identify the atoms

and important segments within these images.

Figure 1.1: Example of a manually annotated image create in order to highlight the rings
present within the tris(4-bromophenyl)benzene (TBPB) lattice with each ring being colored
according to the number of vertices it has [3].

In this thesis, we have created a method of automatically detecting atoms within atomic

scale imagery, produced via AFM and TEM, and extracting the molecular structure for planar

lattices. This has been done using image processing techniques and computer vision methods

on the atomic scale imagery. The field of computer vision offers many possible image pro-

cessing techniques that can aid in the analysis of images that possess both an orthogonal view

or a perspective view of the data. Since both AFM and TEM imagery are comprised of two

dimensional views of the sample surface, it is possible to use image processing techniques in

order to extract the necessary data.

However, many challenges exist that make it difficult to not only detect these atoms but also

develop efficient testing methods. For example, the high levels of noise present in nanoscale

imagery makes it difficult to use simple methods for atomic detection. It is also difficult to find
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a large enough number of TEM images to perform machine learning. In this paper we propose

a robust and efficient method of detecting atoms within nanoscale imagery produced through

Electron Microscopy methods as well as creating a forward model, based on the appearance of

atoms, to create images with ground truth data.

1.1 Self-Assembly

Self-assembly refers to “the spontaneous formation of organized structures through a stochastic

process that involves pre-existing components,...”[4]. Self-assembly is interesting because the

organized structures that it can produce can be used for many purposes. In biological systems,

self-assembly drives the creation of several structures including DNA, micelles, ribosomes and

even viruses, like the tobacco mosaic virus [5]. Self-assembly within biology can be driven by

various forces. These forces include, but are not limited to, concentrations of materials, weak

interacting forces, and enzymes. The process of protein folding within cells is also driven

by self-assembly. The weak interacting forces between each branch on the protein cause the

protein to fold into a functioning unit. The cell structure that combines amino acids to create

proteins, the ribosome, also experiences self-assembly during its creation. It has been shown

that the ribosome can be created in two portions with each portion created in a solution within

separate test tubes. After combining the solution from each test tube, a ribosome will self-

assemble from its two parts. The widespread use of self-assembly within organic systems to

produce functioning microscopic structures has inspired scientists from many fields — physics,

chemistry and biology — to pursue the study of self-assembly.

As described by Pelesko [4], self-assembly requires four enabling features, structured par-

ticles, binding forces, an environment, and a driving force. If we use protein folding as our

example of self-assembly, the branches of the protein molecule are the structured particles.

These branches of the protein when split are amino acids. The order of the amino acids within

the protein dictate the shape of the final structure. The weakly interacting forces between the
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protein branches provide the driving force for the folding. The binding force in this case is

the same as the driving force. The weak forces between the branches eventually enter a global

minima for the system as the protein enters its final shape. The environment, the cytoplasm of

the cell, allows the protein molecule to freely move into its final shape.

Self-assembly has also been shown to work on not only microscale structures, such as those

within biological systems, but also on macroscale and nanoscale structures. Several experi-

ments have been conducted on macroscale self-assembly. These experiments were conducted

using entirely differing forms of the four features that enable self-assembly. The driving forces

of these experiments included magnetic, electromagnetic, and the capillary forces of water, as

well as manual excitation of the self-assembling system.

The bubble raft was an early experiment created in order to model nanoscale crystalline

structures [6][7]. During the bubble raft experiment, bubbles were created by forcing air

through a small pipette into a soapy solution by use of a motor. This method of bubble creation

ensured that the bubbles created during the experiment were similar in size, which was neces-

sary in order to properly model atoms within a crystalline structure. Due to the nature of the

soapy solution and the capillary forces between the bubbles, the bubble raft would naturally

form a triangular tiling as shown in Fig. 1.2. It is of note that the structure formed by the bubble

raft closely resembles the structure of aluminum in the same figure.

An example of using magnetism and electromagnetism as the driving force for self-assembly

can be shown by the experiments of Golosovsky et al.. In Golosovsky et al.’s experiments, disk

shaped magnets were placed inside larger styrofoam disks. These disks were then placed on

the surface of a liquid held within a cylindrical container. These disks would eventually form

triangular packings on the surface of the liquid due to the repulsion between disks. A current

carrying wire was wrapped about the container holding the liquid in order to apply a repulsive

magnetic force to the disks, forcing them inwards. As more current was applied to the wire,

which created a stronger repulsive force, the disks closest to the walls of the container, form-

ing the perimeter of the disks, took the shape of a hexagon. In this experiment, the driving
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forces, the magnetism from the disks, and the external force from the wire, allowed the disks

to self-assemble into a hexagonal shape.

(a) Bubble Raft (b) STM of Aluminum

Figure 1.2: Example of patterns formed by self-assembly. (a) shows a bubble raft formed using
soap water and a air pump [9]. (b) shows an STM image of aluminum [10] overlaid with bonds
in the bottom right showing the triangular pattern. Here we can see that both the bubble raft
and the aluminum form very similar tightly packed arrangements.

In the nanometre scale, self-assembly occurs very similarly to the macroscale methods

presented above. However, instead of bubbles or disks, the structured particles in question are

atoms or small molecules. Self-assembly on this scale is often driven by electrostatic forces.

In the presence of gold or platinum plating, along with other molecules, carbon has been found

to assemble into Graphene sheets, using platinum as a catalyst [11]. The resulting Graphene

sheets, or lattices, have a regular pattern. An example of the hexagonal tiling can be seen in

Fig 1.3. Other molecular lattices have also shown the ability to self-assemble in the presence

of catalysts, such as hexagonal Boron Nitride (h-BN) on Ruthenium [12].

Designing a self-assembling system can be broken down into three problems: (i) given the

final structure of the system how do we design our four features; (ii) given an initial configu-

ration of a system can we predict the final structure; and (iii) given a self-assembling system

what is the yield of the self-assembled structures. We can illustrate these 3 problems using
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proteins folding as an example. The first problem can be stated as “If given a protein, what was

sequence of folds that produced its shape?” and a question to represent the second problem

could be “When given a sequence of amino acids, what will the shape of the resulting protein

be?”.

In the case of protein folding, the issue of yield cannot be posed as a meaningful question as

each sequence of amino acids will produce a folded protein unique to that sequence. However,

the yield problem is still of particular interest within most self-assembled systems. The yield of

self-assembly in biology can be easily altered by a number of different factors present within

the cell structure. For example, the concentrations of the amino acids within the cell can greatly

affect the formation of a protein.

In macroscale experiments conducted by the Whitesides group [13] involving the assembly

of chains of straws, the group found that when more than a single chain was allowed to self-

assemble, longer assembled chains could hinder the process of self-assembly for shorter chains

by blocking access to single structured particles. This is a perfect example of the yield problem.

In this case, due to the design of the system, larger chains hindered the growth of smaller

chains. In the case of the bubble raft, it is possible that the experiment could yield a bubble

with multiple grain boundaries or none.

Understanding molecular self-assembly is of great importance to the materials science com-

munity. As mentioned previously, atoms have the ability to form regular patterns within the

presence of catalysts. The resulting structures from these methods can be greatly useful. For

example, Graphene, single layer graphite, has several properties which make it a valuable ma-

terial. Graphene is not only one of the thinnest materials discovered, being a single atom thick,

but also one of the strongest and the best conductors of electricity that is currently known [14].

It has been used, in conjunction with other materials, to produce nanoscale circuits and flash

memory. Self-assembly allows for these materials to be produced in very efficient ways that

would otherwise be overly costly where such costs would be prohibitive [1].
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1.2 Lattices

Lattices are arrangements formed by either atoms, ions, or molecules. These arrangements can

take on various shapes or patterns. Two dimensional planar lattices can be an interesting subject

of investigation, especially within the context of self-assembled lattices. These lattices, created

through molecular self-assembly, can form materials that are stronger or more tensile than

traditionally used materials within the manufacturing industry [15]. In particular, Graphene

and hexagonal boron nitride (h-BN) are of interest due to their properties and potential uses.

Graphene is a single layer of carbon atoms that can exhibit several differing properties

based on the condition of the environment. It can be produced by “peeling” layers off of

graphite using mechanical exfoliation [16], and via self-assembly by chemical vapor deposi-

tion on various substrates [17]. Graphene’s properties are of interest in the field of materials

science due to its ability to be used as a conductor and insulator in nanoscale circuitry through

the application of differing voltages [16][18]. The applications of Graphene within nanoscale

circuitry are not only limited to conductors, Graphene is also capable of being used as capac-

itors [19] and transistors, and within biomedical applications Graphene has been used for cell

growth control, mass spectrometry and stem cell differentiation [20][21].

Hexagonal boron nitride (h-BN) is another material that can have various nanoscale appli-

cations due to its properties. h-BN, like Graphene can be made via chemical vapour deposition

[12] and via mechanical exfoliation [25]. h-BN can be used for compact lasing devices [26],

however when used as a substrate for Graphene, h-BN allows Graphene to provide improved

device performance when compared to devices using other substrates [27][28].

These two monolayer lattice materials can both be used to create nanoscale circuitry and is

currently the subject of research and study. It is for these reasons that monolayer lattices are

of importance and worth investigation. This thesis uses these materials for testing purposes as

they are relevant to further research within the field of nanoscale circuitry and they can provide

real world applications of the methods proposed within this thesis.
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(a) HiRes Graphene [22] (b) Blurry Graphene [23]

(c) High Background h-BN [24] (d) High Distortion Graphene [24]

Figure 1.3: Experimental images from TEM. The images in the top row and left column are
of planar Graphene lattices while the image in the bottom right is a planar hexagonal Boron
Nitride lattice.

1.3 Atomic Scale Imagery

Atomic scale imaging is the process of creating images of materials where the atoms com-

prising the materials within the image are individually distinguishable. Atomic scale imaging

helps characterise molecular and other nanoscale structures by allowing people to view the

exact atomic structure present within the image. These images in particular help the study of

and help improve the process of self-assembly by allowing researchers to view the structures

prior to and after the self-assembly process has occurred. There are many methods of creat-

ing atomic scale imagery, however, these methods can generally be divided into two “camps”,

which are Scanning Probe Microscopy (SPM) and Electron Microscopy (EM). Currently, the

two most popular methods of the two camps are Atomic Force Microscopy (AFM) and High-
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Resolution Transmission Electron Microscopy (HRTEM). Note that from here on the “M” in

SPM, EM, TEM and AFM can stand for “Microscope” and “Microscopy” interchangeably.

1.3.1 Atomic Force Microscopy

Atomic Force Microscopy (AFM) is a method of imaging materials and structures with nanoscale

resolution by capturing the amount of force applied near the surface of those materials. AFMs

use a probe to scan the surface of the material. This method of imaging is called Scanning

Probe Microscopy. AFMs have several methods of operation, they are able to capture either

the height of a surface or the force applied to the probe by the surface of the sample depending

on if the user chooses to either maintain a constant level of force applied to the tip or a constant

level of height from the surface.

Figure 1.4: A simplified schematic of an STM [29]. A tip is scanned over the surface of a
sample. The tip uses quantum tunneling and the voltage is measured at each point along the
scan. The feedback loop provides the measuring device for the quantum tunneling as well as
informs the microscope of how the tip should move heightwise along the sample.

The precursor to Atomic Force Microscopy was Scanning Tunneling Microscopy (STM).

The STM is another SPM that used the tip of the probe to send a current through the sample to

scan the surface of the material. Due to the nature of the capture process, the STM could only

capture information from conductive materials. By using force to measure the surface, instead
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of current, AFMs are able to measure insulators as well as conductors and can also perform sur-

face measurement in many different mediums, which include liquid and gas mediums. Since

AFMs and STMs are both SPMs and are similar in construction and operation, occasionally

AFMs are equipped with the components necessary to perform the quantum tunnelling neces-

sary for STM captures. An example of the construction and method of operation of an STM is

shown in Fig. 1.4.

Construction

An AFM consists of several very key components. Most atomic force microscopes are con-

structed such that the probe, depicted in Fig. 1.5 sits above the sample where its fine movement

is controlled by piezoelectric ceramics which lay above the probe.

Below the probe lies the sample stage. The sample stage allows for any specimens or

samples to be laid upon it as well as control the coarse movements along the width and length of

the sample. Below the sample stage exists the motors necessary to perform coarse movements

perpendicular to the sample’s surface. All these components, plus the rigid body that supports

them is called the mechanical loop of an AFM.

The resolution from the AFM and the noise produced during the capture process of the

AFM are both directly related to the rigidity of the mechanical loop. The more rigid the loop

is the less noise is produced within the resulting image. As a result, the resolution for the AFM

increases along with rigidity. It is typically easier to make the mechanical loop more rigid by

making the microscope smaller. It is for this reason that AFMs are usually small, however

the size of an AFM limits the maximum size of the specimen that is able to be captured. A

schematic of the mechanical loop is shown in figure Fig. ??.

Movement of the probe is controlled using piezoelectric ceramics. Piezoelectric ceramics,

or piezoelectrics and piezos for short, allow the AFM to function as it does. Piezos enable the

the AFM to perform the fine movements necessary to scan the probe. In order to perform the

movements, piezos in the shape of cylinders can be grown or shunk through the application of
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Figure 1.5: The tip of an Atomic Force Microscopy which is used to record the amount of force
applied to it by a sample surface [30].

voltage through the piezoelectrics. Depending on the construction of the piezo, it is possible

that for every volt applied to the piezo, the piezo will grow by one nanometer. This resolution

for the growth of the piezoelectric ceramic allows for the precise movement of the probe tip

across the surface. During the growing process of the piezo, the volume of the piezo will

remain the same throughout the process. By measuring the amount of voltage applied to the

piezo, the amount the piezoelectric has been grown or shrunk, and by extension how much the

probe tip has moved, can be determined.

However, the growth of the piezoelectrics are not perfectly linearly related to the voltage

applied. Often there is an amount of error which can be cause by several different factors. Two

factors that cause errors are hysteresis and creep. Hysteresis is the tendency of the peizo to

maintain its shape despite the changes in voltage applied. Creep is the tendency of piezos to

continue growing or shrinking past when a large voltage is applied. Creep often occurs when

attempting to scan a different part of the sample that is distant from the original scanning loca-
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Figure 1.6: The Schematics of an Atomic Force Microscope [31]. The laser is used to measure
the deflection of the cantilever caused by the forces of the sample’s surface applied to the
probe’s tip.

tion. Calibration of the AFM using a well known material can be done to solve the problems

of hysteresis however they do not solve the problem of creep. External sensors, possibly an

optical sensor, can be used to direct the probe and detect both hysteresis and creep. Using an

optical sensor however can create noise, have misalignment problems and can cause thermal

drift.

1.3.2 High Resolution Transmission Electron Microscopy

High Resolution Transmission Electron Microscopes, or HRTEM/HREM, pictured in Fig. 1.7,

are tools that are capable of imaging an object’s atomic structure via the use of projected elec-

trons. Transmission Electron Microscopy (TEM), differs from other methods of Electron Mi-

croscopy, for example Scanning Electron Microscopy, through its ability to capture electrons
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that have passed through the sample instead of those that have been reflected off the sample. By

transmitting the electrons through the sample, microscopists have been able to achieve higher

resolutions and magnifications than other forms of electron microscopy.

Figure 1.7: A Scanning Transmission Electron Microscope on desk with a workstation to the
right of the device [32].

Prior to the existance of HRTEM, biologists used phase-contrast microscopes in order to

view cells and study cell division [33]. However, as the thickness of samples decreased, phase-

contrast microscopy failed to portray the sample with sufficient contrast. Using improved

sample preparation techniques, the electron microscope is capable of providing similar levels

of constrast as earlier phase-contrast microscopes.

Most implementations of TEMs contain several common components. These include con-

densing and imaging lenses, in order to focus the electrons used to capture sample information,

an electron gun, in order to fire the electrons at the specimen, a specimen stage to hold the

samples, and an aperture in order to record the intensities of the captured electrons.
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Types of HRTEM

There are several different forms of HRTEM, however only two forms will be discussed. Con-

ventional microscopy will be described due to its historical meanings and Scanning Transmis-

sion Electron Microscopy (STEM), will be described because of its relevance to the topic of

focus. It is worth it to be aware that there are other notable forms of TEM such as cryoTEM.

Conventional TEMs, Fig. 1.8 function more similarly to an optical microscope than the

STEM does. In a conventional TEM, a beam of electrons pass through several lenses in order

to focus the beam to illuminate a sample. The electrons which transmit through the sample

projected onto a viewing screen or capture by a camera sensor. The electron beam, or primary

electrons, functions similarly to the light beam of an optical microscope. Using an electron

beam we can gather information from the sample in many ways. There can be electrons that do

not interact with the sample and pass directly through it, and there are also electrons that are

elastically and inelastically scattered. Backscattered electrons are electrons from the electron

beam that have had elastic interactions with the specimen which has altered their trajectory and

sent the incident electron back. Secondary electrons are produced when there is an inelastic

collision with the specimen and an electron from the specimen is ejected from an atom due

to acquiring energy from the incident beam. Finally, auger electrons can also be ejected from

the specimen, they are caused by an atom attempting to reach equilibrium after a secondary

electron has been ejected from the same atom. The electron beam can also produce x-rays

when interacting with the sample. These sources of information can all be used to extract

details from the sample and the primary, secondary, backscattered and auger electrons can both

be used to create images. Samples being examined by a TEM must be very thin, around 100

nanometres.

The STEM uses a very fine, highly focused beam of electrons, more so than the conven-

tional TEM, to scan over a sample. In an STEM, an image is constructed by scanning the

sample slowly using the beam of electrons and capturing the transmitted electrons at each

point in the scanning process. An STEM, being a variety of TEM, also produce the same
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Figure 1.8: The Schematics of a Transmission Electron Microscope[34].

secondary electrons and x-rays that conventional TEMs produce, albeit on a much finer level.

This confers to the STEM the same analytical abilities that a TEM has but on a larger or higher

resolution. Due to the nature of the STEM, the STEM can provide higher resolutions than

conventional TEMs while also being able to image thicker samples, 2 micrometres thick at
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200 keV instead of 0.5 micrometres thick. The ability of the STEM to image thicker samples

allows for easier sample preparation.

STEM provides many advantages over TEM, higher resolution, easier sample preparation,

etc., however STEMs function much more slowly than conventional TEMs as TEMs image

the entire sample at once. This means that TEM can provide more information of an ongoing

process than an STEM can provide. Table 1.1 gives an overview of some of the capabilities of

TEMs and the other microscopy methods.

1.3.3 Analysing Atomic Imagery

Due to the nature of the capture processes and the resulting imagery of both Atomic Force

Microscopy and High-Resolution Transmission Electron Microscopy, the imagery from both

methods can be analysed similarly to 2 dimensional grayscale images that are produced via

optical methods such as those from an everyday digital camera. All three methods, AFM,

HRTEM and optical, produce a grid of coordinates with corresponding values which can be

regarded as pixels. The x and y coordinates can be likened to the width and height of an image.

The third value, or z coordinates, can be compared to the pixel’s intensity.

In most cases, a height map of a surface using regularly spaced points can be viewed as an

image and vice versa. The output of an AFM can be likened to the height map of a surface

because they map a discrete grid above the sample by measuring or maintaining the force

applied to the tip of the cantilever.

A grayscale image can also be viewed more similarly to the height map of a surface if we

take the z coordinate to be the height of the image and the x and y coordinates to be the width

and length of the image. By viewing the output of both AFM and HRTEM imagery in this

manner we can use traditional computer vision methods to analyse the image.
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Type STM TEM AFM STEM
Capture Method Probe Based Electrons Probe Based Electrons
Media Vacuum, Gas, Liquid Vacuum Vacuum, Gas, Liquid Vacuum
Image Conductors Yes Yes Yes Yes
Image Non-Conductors No Yes Yes Yes
Image Dimensions 2D, 3D 2D 2D, 3D 2D

Table 1.1: Capabilites of each of the nanoscale imaging methods presented earlier.

1.4 Computer Vision

Computer vision is a subfield of computer science that specializes in the application of com-

puter science to images and video as well as the study of image processing methods. Computer

vision methods are able to extract descriptions of the world, or a system, through a picture

or a sequence of pictures. There are many uses of computer vision present throughout many

industries, examples of which are depicted in Fig. 1.9. For example, the film industry has used

digital reconstruction in order to reproduce buildings and scenes to aid in the development of

computer generated imagery used in films. Motion capture is also used extensively within the

film industry and video gaming industry to accurately represent realistic human movements in

those media. Several industries use computer vision to perform inspection of produced prod-

ucts before their sales. Each of these cases use different setups in order to perform their task.

Motion capture and digital reconstruction typically use several cameras in order to produce

digital representations of real objects, however if data from another source is present a single

camera can be used [35, 36]. For the industrial inspection of products, typically a single cam-

era is used along with a model for the expected appearance of the product [37]. This method

of industrial inspection closely resembles the requirements for the problem of detecting atoms

within atomic scale imagery. We have an input image and a model for the appearance of an

atom within that imagery.

Computer vision has been a field of study since the 1960s after Larry Roberts discussed the

possibilities of acquiring three dimensional information from two dimensional perspectives of

polyhedra [42]. As researchers realised that images taken from non laboratory conditions were
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(a) Face Detection [38]

(b) 3D Scene Reconstruction [39]

(c) People Tracking [40] (d) Motion Capture [41]

Figure 1.9: Various applications of Computer Vision. (a) uses Haar cascading classifiers in
order to detect faces and its components, (b) is a 3-dimensional reconstruction of a building
using stereo vision, (c) is the output of a people tracking algorithm and (d) is the outputting a
3-dimensional skeleton of the person in order to capture his motion.

often more complex than the initial block images used by Roberts, research was directed into

understanding scenes on a lower level, such as detecting edges within an image and segmen-

tation. These low level scene understandings provided the basis for a bottom up approach to

better understanding scenes in both images and video. David Marr later proposed a bottom

up framework for understanding scenes that still has much use today [43]. It argued that the

description of an information processing system had three levels, the computational theory

level, the representations and algorithms level and the hardware implementation level. The
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computational theory level describes the goal and the constraints of the system. The represen-

tations and algorithms level describes how the input and output are represented as well as the

algorithms used to calculate the result. The hardware implementation level describes how the

representations and algorithms are mapped onto actual hardware.

Computer vision today is capable of many applications, such as facial recognition, object

tracking in video across complex backgrounds [44], Optical Character Recognition, and 3D re-

construction using stereo vision. Each of these applications have several possible solutions that

can be used to implement the application. Facial recognition can be done using a combination

of skin color detection and simple features or it can be done using cascading classifers which

are able to identify the individual components of a face, eyes, nose, etc., as well as the entire

face. Object tracking also can be done using several methods. Color histograms, background

subtraction, and complex features such as SIFT[45], SURF[46], and ORM[47], have all been

used to perform object tracking. With so many applications having such a large variety of

implementations and solutions, it is sensible to consider computer vision methods in order to

perform atomic detection.

1.5 Contributions and Outline

In this thesis, we study the problem of detecting atoms within High Resolution Electron Mi-

croscopy (HREM) images and the problem of automatically and digitally reconstructing molecules

from within said images. We present two techniques for segmenting the HREM images. The

first is an adaptive thresholding based method. It was noticed that this method loses perfor-

mance on images with a large range of varying intensities. The second is a curvature based

method which uses the second order derivatives of the image. We also address the problem of

creating synthetic TEM images for the purpose of testing the automated system.

The contributions of this thesis are as follows: (i) a method of quickly synthesizing TEM

images from pre-existing atomic coordinates, (ii) a method of detecting atoms within HREM
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images and (iii) a method of reconstructing a lattice from a set of 2D coordinates.

The remainder of this thesis is organised as follows. In the next chapter, we review back-

ground knowledge necessary to understand the work and review related work. There we focus

on understanding the components used in the system in order to accurately reproduce it. Chap-

ter 3 presents our proposed system and a method for synthesizing Electron Microscopy images.

Implementation details, testing details and results are then shown in Chapter 4. Implementa-

tion details include the platform used and the interfacing of different technologies. The testing

details explain how the constructed images were tested and the tests’ purpose. In the results

section we compare our works with the existing work in the field. Chapter 5 concludes the

thesis and presents possible future work on the subject.



Chapter 2

Background and Related Work

In this chapter we will review both the background work necessary in understanding the atomic

detection algorithm proposed in this thesis, as well an existing solution currently in the field.

The proposed method in this thesis uses several image processing and image analysis methods

that could be their own subject of discussion. After discussing important background knowl-

edge, a brief review of the existing work will be presented.

2.1 Computing Image Derivatives

Derivatives are a method of mathematically describing the rate in which a given function will

change as its input changes. Taking the derivative of an image can reveal more complex patterns

within the image and make image processing easier. Due to the discrete nature of images, exact

image derivatives cannot be computed and usually are approximated using finite differencing

methods, i.e., methods of the form

df

dt
=
f(x2)− f(x1)

x2 − x1
(2.1)

this function only applies to 1D images and functions, most images have 2 dimensions that

must be considered and therefore we must compute partial derivatives of the image in both

21
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dimensions, i.e.

∂f

∂x
=
f(x2, y)− f(x1, y)

x2 − x1
,
∂f

∂y
=
f(x, y2)− f(x, y1)

y2 − y1
(2.2)

In computer vision, it is possible to approximate these finite differencing methods through

the use of convolution. Fig. 2.1 shows a number of different forms of image derivatives for a

given image.

Convolving an image with a Sobel filter is a common method of calculating the derivative

of an image. A Sobel filter, Sx or Sy, convolves an image with a kernel that typically has the

form

Sx =


−1 0 1

−2 0 2

−1 0 1

 (2.3)

for the x direction, and

Sy =


−1 −2 −1

0 0 0

1 2 1

 (2.4)

for the y direction, assuming we are using a 3x3 filter. It is worth noting that sobel filters have

a slight smoothing effect on the resulting derivative images.

A Laplacian filter, L, is a useful method for calculating the second derivative of an image.

Approximations of the Laplacian filter can take the form of

L =


0 −1 0

−1 4 −1

0 −1 0

 (2.5)
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(a) Original Image (b) Laplacian

(c) 2nd Order x Derivative (d) 2nd Order y Derivative

Figure 2.1: Possible second order derivatives of an electron microscopy image [48] with (a)
being the original input image. (b) is the laplacian of the image which is a form of discrete sec-
ond order derivative. The laplacian gives us an example of what information can be extracted
from the second derivatives of an image. (c) and (d) are second order derivatives computed
using finite difference methods with (c) and (d) being computed with respect to the y and x
axes, respectively.
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or of the form

L =


−1 −1 −1

−1 8 −1

−1 −1 −1

 (2.6)

which also includes the information from the diagonals.

In our work we found Sobel and Laplacian filters did not provide the smoothing necessary

in order to produce suitable derivatives. Instead we used a simple discrete representation for

the kernel in conjunction with convolution with a Gaussian kernel to calculate the derivative

of an input image. The reason for this discrete representation is to remove the possibility of

over smoothing or unwanted smoothing from the derivative images. This approximation of a

derivative is based on first principles of derivatives. The kernel for this derivative takes the

form

Dx =


0 0 0

−1 0 1

0 0 0

 (2.7)

for the x direction, and

Dy =


0 −1 0

0 0 0

0 1 0

 (2.8)

for the y direction.

2.2 Segmentation

Segmentation is the act of grouping components of an object with respect to features within

the image. The purpose of segmentation is that the resulting groupings will contain similar

features and can provide a higher level understanding of the object as a whole [49].

In the context of image processing, segmentation often means grouping pixels of the image

based on their features, such as color, intensity and location. These groupings can also provide
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(a) (b)

Figure 2.2: Example segmentation of a gray scale image [24] created by flagging pixels that are
higher than a single intensity value. This intensity thresholding method was applied uniformly
throughout the image.

information about the objects within the image and distinguish objects from other objects and

the background. Image segmentations are usually represented as images themselves as it pro-

vides the most accurate representation of the groupings. A binary segmentation image is an

image segmentation that classifies objects as either belonging to an object or the background.

The image only uses two values to achieve that goal. A value of 1 for an object and a value of 0

for the background. Fig. 2.2 shows a binary segmentation of a TEM image where several areas

within atoms do not have values of 1. This figure highlights both the importance of selecting

an appropriate method for segmentation as well as output of an inadequate method.

2.3 Finding Image Contours

The act of finding image contours is a fundamental method in image processing. From a binary

segmentation image, one can use methods to derive a sequence of coordinates that represents

a border between the background and an object.

There are two components to finding image contours, detecting borders and following bor-

ders. Border detection searches for borders within the binary image based on specific criteria.

This criteria can change based on the algorithm used, however most border detection methods

begin by scanning each individual pixel of the image sequentially and halting the algorithm
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whenever a border is found [50]. Once a border pixel is detected, the rest of the border is iden-

tified by following the normal of the gradient around the border. The normal of the gradient

is followed in both directions to ensure that the entire contour is followed in the case that the

contour is not closed.

2.4 Calculating Moments

Contour and image moments are a gross measure of a contour, which is computed by integrat-

ing over all points in a contour. For example, these moments contain several key characteristics

about the object in question. The zeroeth moment is the area of the contour and by combining

the zeroeth moment and the first order moments we can compute the centroid of the contour.

The moments of an image are calculated using the integral

Mpq =

∫∫
I(x, y) xpyq dxdy (2.9)

where p is the order of the x axis elements and q is the order of the y axis elements. We can

derive the integral used to calculate the image moments of a contour using Green’s Theorem

[51]. For example, in order to calculate the zeroeth moment of a contour the integral becomes

M00 =

∫∫
I(x, y) dxdy =

∮
C

x dx− y dy
2

(2.10)

where C is the contour that is being integrated. Since the images and contours are discrete

objects, rather than continuous, the integrations can be treated as summations across the image

or contour.
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2.5 Convex Hull

The convex hull of a set of points is the smallest convex region enclosing the set of points.

In mathematical terms, a subset plane S is considered convex if for any points p,q ∈ S the

line segment pq is contained within S. The convex hull, Q(S) is the smallest convex set that

contains S [50].

Eddy [52], proposed a method for computing the convex hull of a set of points using a tree

structure and partitioning. Eddy partitions the input polygon based on lines between its points.

These subsets of the polygon are used as nodes in the tree. The algorithm continues to partition

the polygon until there are no more partitions to be made. At this point, all partitioning lines

that have a null subset are considered to be lines within the convex hull. It was reported that

the alogrithm has a time complexity of O(n4/3) by empirically testing the algorithm.

Graham and Yao proposed LeftHull, a method to find the convex hull of a simple polygon

[53]. A simple polygon is a polygon that does not have any intersections. Graham and Yao’s

algorithm uses the points of the polygon directly and move counterclockwise along the polygon

in order to find the convex hull. Graham and Yao reported that the LeftHull algorithm has a

linear time complexity.

In 2010, Zhang et al. proposed a method of calculating the convex hull within binary im-

ages. This method begins by scanning the image for extremal points in the x and y axes of

the polygon. This is in order to reduce the number of points being analysed by the algo-

rithm. Once all extremal points have been identified, scanning continues in varying directions

in order to identify other points within the convex hull and to establish a temporary convex

hull. A complex scanning technique is then applied to the temporary convex hull and retrieves

the convex hull from the image. Zhang et al. reported that this algorithm completes within

O(n2 − s) + O(n) time, where n is the size of the image and s is the number of pixels within

the polygon.
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2.6 Ellipse Fitting

Fitting ellipses to contours is neccessary to determine several key characteristics about con-

tours. These characteristics can later be statistically analysed and used to determine outlying

or exceptional contours. The greatest advantage to fitting an ellipse to a contour is that it can

calculate the eccentricity of the resulting ellipse parameters and use that value to perform anal-

ysis on the ellipses and detect outliers. There are several algorithms for fitting ellipses, such as

the algebraic distance, geometric distance and approximate mean square [55]. In our work it

was found that the algebraic distance was sufficient for our methods.

The algebraic distance algorithm minimizes the objective function, ε2(x) =
∑n

i=1 δ(C(x),pi)

where x is a vector that contains parameters for a family of curves C(x) and pi = (xi, yi) is a

point within the contour. In the case of the algebraic distance algorithm the objective function

can be rewritten as

ε2(x) =
n∑
i=1

F (x,pi) = ‖Ax‖2 (2.11)

where

F (x,pi) = [Axx Axy Ayy Ax Ay 0] · [x2i xiyi y2i xi yi 1] (2.12)

= ai · x (2.13)

and whereA is an nx6 matrix where the rows are the individual ai vectors and has the constraint

‖x‖2 = 1. We can constrain the objective function, E = ‖Ax‖2 − λ(‖x‖ − 1) = xTATAx−

λ(xTx− 1) , and minimize it to form the eigenvector problem

∇E = 0 <> 2ATAx− 2λx = 0 (2.14)

where λ is a Lagrange multiplier. The best fit for the ellipse would be the eigenvector of ATA

corresponding to the smallest eigenvalue, which can be easily found by finding the single value

decomposition of ATA.
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2.7 Connectivity and Neighbourhoods

The terms connectivity and neighbourhood varies depending on the object in question. This

paper uses the word neighbourhood in the context of both pixels and atoms. In the context

of pixels, a neighbourhood can either be the 4-connected neighbourhood about a pixel or the

8-connected neighbourhood. Fig. 2.3 contains a visual representation of the concepts.

0 0 0 0 0
0 0 1 0 0
0 1 2 1 0
0 0 1 0 0
0 0 0 0 0

(a) 4-connected neighbourhood

0 0 0 0 0
0 1 1 1 0
0 1 2 1 0
0 1 1 1 0
0 0 0 0 0

(b) 8-connected neighbourhood

Figure 2.3: Shows the appearance of the two kinds of connected neighbourhoods. Within each
image the pixel with the value 2 is the pixel of focus, and pixels with a value of 1 are within
the neighbourhood.

A 4-connected neighbourhood about a pixel includes only the pixel’s immediately adjacent

pixels along the x or y axis of the image while an 8-connected neighbourhood includes the

diagonals as well. In the context of a molecular lattice, the neighbourhood of an atom refers to

the atoms that are bonded to the atom in question. Knowing the neighbourhood of each atom

within a lattice is important for inferring the structure of the lattice within a nanoscale image.

2.8 N-Patch Disk Model

The N-Patch Disk Model is a method of simulating atomic behaviour during molecular self-

assembly [3][2]. This model demonstrates the creation and growth of varying forms of planar

lattices by modelling atoms as disks. These disks are given a uniform number of areas in which

they can connect to other disks. By varying the number of connective areas and their sizes,

the disks can form several different kinds of planar lattices, as shown in Fig. 2.4. Using this

technique it is possible to prepare an output set of coordinates and connectivity representing a

lattice.



CHAPTER 2. BACKGROUND AND RELATED WORK 30

(a) (b) (c)

(d) (e) (f)

Figure 2.4: This figure shows several outputs for the N-Patch Disk simulation. (a), (b), and (c) show
the exact output from the simulations. (d), (e) and (f) show the same output from the above rows but
where rings within the lattice are indicated and color coded according to number of disks in the rings.
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2.9 Image Analysis on the Atomic Scale

Advances in both atomic scale imaging and computer vision have made this problem only

recently capable of being relevant and addressed. As this problem has only been recently

addressed, investigation into the issue has been limited.

An existing method by Ophus et al. [56] for inferring the structure of a planar lattice within

an electron microscopy image begins by first identifying all the minima within the image.

Once the minima are identified the Voronoi tessellation of the minima is computed [57]. A

weighted version of the Voronoi tessellation is then reapplied to the minima but excludes any

minima within a boundary cell, a cell that is open and extends beyond the frame of image.

This version of the Voronoi algorithm weighs intermediate tessellations based on length of the

edges and ensures that all edges are similar in length. The method used by Ophus et al has the

benefit of being able to quickly compute the atomic locations for a large number of atoms, as

is shown in Fig. 2.5. While this method is sufficient for analysing grain boundaries, it excludes

atoms bordering the edge of the image which can provide more information about the system

in general.

Figure 2.5: A visual representation of the steps involved in Ophus et al.’s [56] algorithm. (a)
is the original image of the graphene grain boundary. (b) is the same image as in (a) but after
applying image processing methods. (c) contains the graphene ring centers and which grain
each ring belongs to. (d) is a graphical representation of the image which includes the graphene
ring centers and highlight rings which are part of any defects.
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Method

In this chapter, an algorithm for analysing and inferring structure from a Transmission Electron

Microscopy (TEM) image is introduced. We first describe a method of determining an initial

set of atomic locations from a nanoscale image and of detecting and removing potential false

detections from the initial set of atomic locations. We then describe how atomic bonds, and

neighbourhoods, are inferred from the locations of detected atoms and how to find rings within

the generated neighbourhoods. Towards the end of this chapter, a forward model is presented

in order to generate images for the purpose of evaluating our algorithm.

3.1 Atomic Detection and False Detection Removal

In order to accurately detect atoms within a TEM image, we use a process that includes three

steps. The first step is to perform initial segmentation of the image. The second step is to anal-

yse the detected regions and identify preliminary atom locations. The final step removes any

erroneous detections found within the crude detections. During the second step several kinds

of errors can occur. There can be errors where there are several detections in a large area that

are part of a single atom, which are called fractured detections. There can be detected regions

which are not part of any atoms, which are false positives. There can be detections where two

atoms are encapsulated within a single detected region, which are called merged detections.

32
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The third and final step in the process rectifies all three of these errors by constraining the

detections and refining them into more accurate approximations.

3.1.1 Segmentation

Upon initial inspection of a TEM image one might believe that the local maxima within the

image could be used to locate atoms. However, as shown in Fig. 3.1, using the local maxima is

not enough to accurately locate atoms. A more complex method, called segmenation, is needed

to retrieve the atomic locations.

A segmentation of a nanoscale image is the separation of the image into regions that rep-

resent whether a pixel belongs to an atom or the background. The image is segmented in this

fashion in order to later identify atomic locations. Segmentation of the image is achieved by

smoothing the image, then creating a binary mask of the image and flagging each pixel that

belongs to an atom. In this subsection we present two methods used for the segmentation pro-

cess. The first is an intensity based method which is loosely based on an adaptive thresholding

method implemented by Bradski [58]. The second method uses the second derivative of an

image calculated using finite differencing methods. Fig. 3.2 shows the output of both these

methods along with the original image for comparison.

Let I denote an input TEM image, where I(x, y) is a pixel within the image where x ∈

[0..w] and y ∈ [0..h] where w and h are the width and height, respectively. We convolve I

with a Gaussian filter g(µ, σ) that smooths the image. This is in order to remove noise from

the image and ensure that the input image is as continuous as possible. For clarity, we will let

Ig be a shorthand notation for I ∗ g(µ, σ).

Intensity based algorithm

The adaptive threshold method segments a greyscale image on a per pixel basis based on the

intensity value of the pixel and its surrounding 8-connected neighbourhood. The image is

transformed into a binary image by determining if the mean of the pixel and its neighbourhood
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Figure 3.1: Displayed above is a TEM image [23] annotated with local maxima in red. The
image is upscaled using a nearest neighbour method to more accurately portray pixel values.
Here we can see that attempting to use the local maxima to find atoms is insufficient as there
are too many local maxima in within the image.

is greater than the value of the pixel itself. This can be shown using the equation

S(x, y) =


1 Ig(x, y) > T (x, y)

0 otherwise

(3.1)

where

T (x, y) =
1

9

y+1∑
j=y−1

x+1∑
i=x−1

Ig(i, j) (3.2)

T (x, y) can be simply stated to be the mean of the 8-connected neighbourhood of Ig(x, y).

The resulting binary image is taken to be the segmentation image for the later parts of

the algorithm. This method assumes that any point on a 3D surface with positive curvature

should be equal to or higher than the mean of its surrounding points. However with many

TEM images, it was found that this is not the case. Noise presents a difficult obstacle for this
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(a) Experimental TEM image for analysis (b) Intensity Based Segmentation

(c) Second Derivative Based Segmentation

Figure 3.2: Sample segmentations of a TEM image. (a) is the TEM image [24] that is being
segmented. (b) Segments the image using an intensity based method and (c) segments the
image using the second order derivative of the image. The TEM image is of hexagonal Boron
Nitride (h-BN). One can see the differences between the different kinds of atoms within the
lattice in the second derivative based segmentation. Segmentation is the first step in the atomic
detection process.

algorithm and in order for the algorithm to function an extreme amount of smoothing is needed.

The advantage of this method is that the segmentation image is simple to compute with time

complexity of O(N ∗K) where N is the number of pixels in the image and K is the size of the

kernel. Since this method only uses the 8 connected neighbourhood for a kernel, K is fixed to

a value of 9. This means that this algorithm has a linear time complexity.



CHAPTER 3. METHOD 36

Second Derivative Based Algorithm

The second derivative based method also segments a greyscale image on a per pixel basis.

However, segmentation is based on the computed discrete second derivative of the target pixel’s

intensity instead of the original intensity value. The second derivative of the smoothed Ig is

taken along the direction of Ig’s axes and diagonals, ∂
2(Ig)

∂x2
, ∂

2(Ig)

∂y2
, .... The first derivative images

are calculated by convolving the image with a derivative kernel, as explained in Section 2.2. In

order to calculate the second derivative, the image is convolved a second time with the same

kernel. In order to compute for the x axis (∂
2(Ig)

∂x2
), the kernel

Dx =


0 0 0

−1 0 1

0 0 0

 (3.3)

would be used and to compute the kernel for the xy diagonal (∂
2(Ig)

∂xy
), the kernel

Dxy =


0 0 1

0 0 0

−1 0 0

 (3.4)

would be used. We compute second derivative images for each direction, including diagonals,

and construct binary images from them.

These binary images indictate any areas of the derivative images that have negative second

derivatives, i.e. Bxx = ∂2Ig
∂x2

< 0. Per pixel information from the binary images are then

aggregated using the ∧ operator, Bxx ∧ Byy ∧ ..., to keep only the areas that have negative

second derivatives across all directions. Any remaining noise in the resultant binary image

is removed by means of a morphological opening, ◦, of the segments in the image using a

small 3x3 or 5x5 structuring element, E. The resultant binary image S is taken to be the

segmentation of pixels that belong to atoms from background pixels, where S(x, y) = 1 are
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pixels that belong to atoms and S(x, y) = 0 are pixels that belong to the background. The

entire equation for the process is as follows:

S =

(
Bxx ∧Byy ∧Bxy ∧B−xy

)
◦ E (3.5)

where

Bnm(x, y) =


1 ∂2(Ig)

∂n∂m
(x, y) < 0

0 ∂2(Ig)

∂n∂m
(x, y) ≥ 0

(3.6)

where n and m can represent either the y or x axis.

3.1.2 Initial Atomic Locations

In order to locate a set of potential atoms, A, from the segmentation image S, we need to first

retrieve the set of contours, C, from S. The contours within C define a set of closed borders

between the background and the atomic regions. We take the centre of the potential atoms to

be the centroids of the contours. These centroids are calculated using contour moments. While

calculating the moments may be computationally expensive, they are reused in the stage of this

algorithm in order to prune incorrect detections within A.

The set of contours within the segmentation image are retrieved using Suzuki and Abe’s

method [59]. We define the set of retrieved contours as C = {ci|i = 1, ..., N} where ci is an

individiual contour defined as ci = {(xj, yj) |j = 1, ..., J ∧ xj ∈ [0..w] ∧ yj ∈ [0..h] ∧ x0 =

xJ ∧ y0 = yJ} where N is the number of contours in the retrieved set and J is the length

of the ith contour in the set. Moments Mi are then calculated from the ith contours in C,

using Green’s Theorem [51]. The centroids are then calculated from the spatial moments of

the contours such that A = {ai|ai =
(
Mi

01

Mi
00
,
Mi

10

Mi
00

)
∧ i = 1, ..., N} where A is the set of points

that represents the set of centres of possible atoms.
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3.1.3 Merging Fractured Detections

Fractured detections are a group erroneous detections within the set of potential atoms A that

should be represented as a single atom. These fractured detections can arise as a consequence

of incorrect parameters being chosen during the initial segmentation. In order to fix fractured

detections, we locate all pairs of detections where the distance between centroids is smaller than

d
2

where d is a scalar value representing the distance between atomic centres. Once all pairs

have been found, we then merge the pairs using the convex hull [53] of the pairs’ contours. If a

detection is fractured into more than two separate detections, they are merged as a consequence

of the merging process.

It is assumed that the distance, d, between any two adjacent atoms within the lattice is

relatively similar for all adjacent pairs in the lattice. It is also assumed that the size of d,

in pixels, is known a priori and that d
2

is the approximate radius of an atom in the image.

The method begins by finding all pairs of contours where the distance between their centroids

is smaller than d
2
. We define this set of pairs, the set of fractured detections and incorrect

detections, as V = {vi|vi = (ai, aj)∧ai, aj ∈ A∧ |ai−aj| < d
2
∧ i 6= j}. If f(x) is a function

that retreives a contour from A using its centroid as input, we can then define a fractured point

within V to be any point that satisfies the equation

f(vi0)

f(vi0) + f(vi1)
< T ∧ f(vi1)

f(vi0) + f(vi1)
< T , (3.7)

where T ∈ [0, 1] and is a scalar value that represents the threshold that controls the maximum

percentage of the total area between the pair of contours that one of the contours may possess.

If the equation evaluates to false we assume that the detection with the smaller contour area

is likely to be noise and is removed. Though T can exist within the interval [0, 1], T should

not be set within several subintervals. One should not use the [0, 0.5) interval as, due to the

nature of the equation, it will ensure that the equation will evaluate to false. Higher values of

T , on the scale [0.8, 1], will cause the evaluation of equation to present a bias towards true. In
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these cases, with higher values of T , it is more likely that detections arising from noise will be

preserved. Upon identification of a fractured detection, the convex hull [53] of both contours

is drawn onto S. After all pairs of detections have been evaluated we recompute A from S.

The resulting A from the computation is a set of potential atoms that is devoid of fractured

detections. Fig 3.3 illustrates correct, fractured, and merged detections.

Figure 3.3: Example of a TEM image of graphene being analyzed by the system. The image
on the left shows the initial detections from the atomic detection system [60]. The bottom right
image shows the output from the second stage of the system where points that are red have
been removed from the previous set of detections. The top right image shows the output from
the third stage of the system.

3.1.4 Splitting Merged Detections

Merged detections are considered to be any contours within C that contain two or more real

atoms. Though it is impossible to know for sure whether or not a contour contains more than

one atom, it is possible to use statistical analysis and several criteria in order to determine the

likelihood of a contour being a merged atom.

In our method, three criteria are used for the purpose of determining merged detections.

The first criterion is the area of the contour. This can be retreived from the zeroeth moment of

a contour,M00. This criterion is employed because we expect merged detections to be larger
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than correctly identified detections. It is assumed that all atoms are of similar size with a small

amount of variance between them. If there is a possible atom that is significantly larger than

others within the image we expect the atom to be incorrectly detected and possibly a merged

detection.

The eccentricity, ε, of the contour is used as the second criterion, where ε is calculated

using the central moments, µ of the contour, ε = 1 −
(
µ20+µ02−

√
4µ211+(µ20+µ02)

2

µ20+µ02+
√

4µ211+(µ20+µ02)
2

)2

. The

central moments of a contour are moments that have been centred with respect to the contour’s

centroids and are calculated from the contour moments using the equation,

µpq =

∫ ∫ (
x− M

i
01

Mi
00

)p(
y − M

i
10

Mi
00

)q
I (x, y) dxdy (3.8)

ε can be used to show the elongation of a contour and it is assumed that the more elongated

a contour, the more likely it is to be a merged detection. Our last criteria was the Euclidean

distance between the highest intensity pixel within the contour and the centroid of the contour.

We expect the centroid of the contour to be near the maximum intensity pixel within the contour

due to the nature of nanoscale imagery. Within nanoscale imagery, the centre of an atom is

expected to have the highest intensity value of the entire atom. If the calculated value from the

contour has a positive difference of more than one standard deviation from each of the means

of the values detailed earlier, we assume that the contour is a merged detection.

If a merged detection has been found, we fit an ellipse to the contour and split the contour

in half by drawing a line on S along the fitted ellipse’s minor axis, in order to split the contour

into two separate regions. These seperate regions will represent the likely contours of the atoms

existing within the image. Similar to step 2, we then recompute A from S to get our final set

of atoms within the image. Fig. 3.4 shows a comparison between the output of our method and

the local maxima used as a baseline comparison.
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Figure 3.4: Comparing Local Maxima to the system’s initial detections. On the left is an
experimentally produced image of graphene (non synthetic) [23] overlayed with a square rep-
resenting a region of interest. The bottom right image is the region of interest overlayed with
the local maxima in yellow and the top right is the region of interest overlayed with the output
set of points from our system.

3.2 Generating Neighbourhoods and Finding Rings

3.2.1 Generating Neighbourhoods

The neighbourhood of an atom defines the bonds between a detection and other detections in

the set. The bonds within each atom’s neighbourhood are important for inferring the structure

of the molecule depicted within the input nanoscale image. In order to generate an initial

neighbourhood of atoms, our algorithm first begins by selecting a single atom, and finding

the closest atom to our selected atom. These will be called the target atom and the closest

neighbour respectively. The closest neighbour is retrieved by calculating the euclidean distance

between the target atom and all other atoms in the set of atomic coordinates and finding the

atom with the smallest distance.

If r is a scalar value representing the euclidean distance between the target atom and its

closest neighbour, then all atoms within 1.5r are considered to be possible nieghbours of the

target atom for the initial neighbourhood. It was found that within TEM images, neighbouring

atoms often do not occupy the exact same radius as other neighbours, using 1.5r as the max-

imal distance for potential neighbours, instead of r, allows our the neighbourhood generation
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Algorithm 1: An Algorithm to generate a set of neighbourhoods for a set of atoms.
Input : An ordered set of 2 dimensional points A
Output: An ordered set of neighbourhoods N with indices matching A

1 Function GetInitialNeighbourhood(A):
2 N ← ∅
3 foreach ~ai ∈ A do
4 r ←∞
5 foreach ~aj ∈ A | i 6= j do
6 d← ‖~ai − ~aj‖
7 if d < r then
8 r ← d
9 end

10 N ← N ∪ {Ni | Ni = {(~ai, ~aj) | ‖~ai − ~aj‖ < 1.5r}}
11 end
12 end
13 return N

algorithm to account for any small errors in the locations of the atoms. Algorithm 1 shows the

pseudocode for neighbourhood generation.

To account for any incorrect neighbours within the initial neighbourhood, we eliminate

possible neighbours based on the distance between the target atom and its neighbours. To

eliminate possible incorrect neighbours based on distance the mean and the standard deviation

of the possible neighbours for all possible target atoms is calculated. Using the mean and stan-

dard deviation, we check to see if the distance from each target atom to its possible neighbours

are within three standard deviations of the mean of all distances between target atoms and their

neighbours. If they are not within three standard deviations they are then removed from the set

of possible neighbours. This prevents the possibility of a neighbourhood being generated for

an atom that is unbonded to any others.

To ensure that there are no incorrect neighbours that happen to exist within the remaining

possible neighbours, we evalute the angles formed between possible neighbours using the tar-

get atom. Since we are working with a 2-dimensional image, a connecting vector between a

target atom and a neighbour will have two angles associated with it. One on the clockwise side

of the connecting line between a target atom and a possible neighbour and one on the counter
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Algorithm 2: The Algorithm to calculate the angles between atomic neighbours for all
atoms, A, and neighbourhoods, N .

Input : An ordered set of 2D points A and associated neighbourhoods N
Output: A set of angles representing the angles between two neighbours in the

neighbourhoods of N
1 Function GetInnerAngles(A, N):
2 angles← ∅
3 foreach Ni ∈ N do
4 P ← ∅
5 foreach (~ai, ~aj) ∈ Ni do
6 foreach (~ai, ~ak) ∈ Ni | ~aj 6= ~ak do
7 ang ← GetAngle(~ai − ~aj , ~ai − ~ak)
8 P ← P ∪ Pi | Pi = {ang, ~ai, ~aj, ~ak}
9 end

10 end
11 sn, n← Ni0 // sn, n has the form (~ai, ~aj)

12 while True do
// This loop reorders the angles for later usage

13 Q← {Qi | Qi ∈ P, Pi3 = n1} // Qi has the form {ang, ~ai, ~aj , ~ak}
14 t← argminx f(x) = {x|Qx0}
15 angles← angles ∪Qt

16 n← (Qt1 , Qt2)
17 if n = sn then
18 break
19 end
20 end
21 end
22 return angles
23 Function GetAngle(l, s):
24 ang← arctan(ly/lx)− arctan(sy/sx)
25 if ang < 0 then
26 return 2π+ ang
27 end
28 return ang
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Algorithm 3: The Algorithm to remove incorrect neighbours from a set of neighbour-
hoods.

Input : An ordered set of 2D points A and associated neighbourhoods N
Output: N with all incorrect neighbours removed

1 Function Prune(A, N):
2 angles← GetInnerAngles(A, N)

3 µ←
∑

v∈angles vi0
|angles|

4 σ ←
√∑

v∈angles(v0−µ)2

|angles|
5 edgesToRemove← ∅
6 foreach v ∈ angles do
7 if v0 < 2σ − µ ∧ µ+ 2σ < v0 then
8 if v2 /∈ edgesToRemove then
9 edgesToRemove← edgesToRemove ∪v2

10 else
11 remove (v1, v2) from N
12 end
13 if v3 /∈ edgesToRemove then
14 edgesToRemove← edgesToRemove ∪v3
15 else
16 remove (v1, v3) from N
17 end
18 end
19 end
20 return N
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clockwise side. As in Algorithm 2, the mean and standard deviation of the angles is calculated.

We define an outlier angle to be three standard deviations from the mean. All connecting vec-

tors which are found to have both of their associated angles, clockwise and counter clockwise

sides, considered to be outliers are removed from the set of possible neighbours, as shown in

Algorithm 3. What is left is considered to be the final set of neighbours for the lattice.

Figure 3.5: Sample output from the neighbourhood generation process for a TEM images [48].
In green, the detected atoms. The yellow lines connecting atoms represent the neightbours.
The red lines are the connections from the initial neighbours that have been removed.

Fig. 3.5 shows sample output for the neighbourhood generation algorithm. The final set of

neighbours are represented using yellow lines. As stated previously, neighbours are removed

based on the angles between them. The neighbours that have been removed are outlined in

red. Upon inspection, one can ascertain that most of the angles, in Fig. 3.5, between the

final set of connections are approximately 120 (degrees) and that the neighbours which have

been removed, have angles that are either much larger or smaller than the angles formed by

neighbours. This demonstrates the principles on which our method of eliminting possible

neighbours is based.
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3.2.2 Finding Rings

A ring is a connecting path of three or more atoms that begins and ends with the same atom.

Identifying rings allows a higher level view of the nanoscale image that can highlight defects

within the lattice. Rings are found using a modified version of the floodfill algorithm to identify

atomic detections that belong to the ring we are currently attempting to find. This is followed

by a validation step that verifies that the atomic detections that have been found create a valid

ring.

Algorithm 4: A modified version of the floodfill algorithm used to find atoms belonging
to rings.

Input : I , A binary image with lines drawn to represent neighbours. A, all atomic
locations. ~x0, a starting point.

Output: vertsFound, the verteces found that are part of the ring.
1 Function FindInitialVertices(I , A, ~x0):
2 vertsFound← ∅
3 pointsToCheck← ∅
4 pointsToCheck.push( ~x0)
5 while |pointsToCheck| 6= 0 do
6 ~x← pointsToCheck.pop()
7 if I(~x) = 1 then
8 skip
9 else

10 I(~x)← 1
11 foreach p in 8-connected neighbourhood of ~x do
12 if p ∈ A then
13 vertsFound.push(p) break
14 end
15 end
16 foreach p in 3-connected neighbourhood of ~x do
17 pointsToCheck.push(p)
18 end
19 end
20 end
21 return vertsFound

The ring finding algorithm begins by creating a binary image, the same size as the input

TEM image, and setting all pixel values to zero. Lines are then drawn on the binary image that

match the vectors connecting atoms to their neighbours.
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After the preparation of the binary image, the ring finding algorithm then applies the mod-

ified floodfill algorithm to the image. The ring finding algorithm first scans the binary image

for any zero pixels. When a zero pixel is found the location of the pixel is given as input to the

modified floodfill algorithm. The input pixel is then used as the first pixel to be inspected, as

is shown in Algorithm 4. The floodfill algorithm first checks to see if the pixel being inspected

has been set to one. If a pixel has been set to one, the pixel has either already been inspected

or is part of a line separating rings. If the pixel being inspected is set to one, we then end this

iteration of the algorithm. If the inspected pixel is zero, we then check the 8-connected neigh-

bourhood of pixels about the inspected pixel and compare their locations to the set of atomic

detections. If any detections match the locations in the 8-connected neighbourhood, we record

that detection within a set. We then set value of the inspected pixel to one and all pixels in its

4-connected neighbourhood are added to the set of pixels to be inspected. The floodfill portion

of this algorithm then repeats until zero pixels can no longer be found.

Algorithm 5: Reorders a set of vertices found by the floodfill algorithm to determine
whether or not a valid ring has been found.

Input : N , the set of Neighbours. V , A set of atoms representing a potential ring
Output: path, An ordered set of atoms representing a ring or an empty set in the case of

an invalid potential ring.
1 Function ReorderVertices(N , V ):
2 path← {v0}
3 remain← {vi | vi ∈ V, vi 6= v0}
4 while |remain| 6= 0 do
5 if last atom in path has a neighbour in remain then
6 Add neighbour to path
7 Remove neighbour from remain
8 else
9 return ∅

10 end
11 end
12 if last atom in path is not a neighbour of the first atom then
13 return ∅
14 end
15 return path

Once there are no longer any zero pixels left to be inspected, the algorithm then checks to
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see if the set of recorded detections form a ring. Algorithm 5 shows the pseudocode for the the

ring validation and reordering code. In the code, a detection is removed from the input set of

detections and an attempt is made to match any neighbours of the removed detection to other

atoms within the recorded detections. If a match is made we remove the match and look for

its neighbours in the recorded detections. This process is continued until there are no longer

any recorded detections in the set. We then ensure that the last detection removed from the

set matches is a neighbour of the first detection removed. If all matches are found, the set of

detections is flagged as a cycle. This method of verifing the validity of this set as a ring also

has the advantage of ordering the detections for display.

(a) (b)

(c)

Figure 3.6: This figure shows the input and output for the modified floodfill algorithm used
to find rings using the neighbourhood of each atom. (a) visualises the input for the system
overlayed on the TEM image [48], and (b) visualises the associated output. Only rings with 6
atoms are coloured in this image. (c) is the visualised output from our algorithm but with the
neighbourhood and atoms removed for clarity.
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The algorithm then checks for zero pixels and iterates continuing to apply the floodfill

algorithm until there are no remaining zero pixels left. What is now produced by the algorithm

is all rings found within the lattice. Fig. 3.6 shows the output rings of our system for the given

input. There we see that each ring has been colour coded in order to identify it as a ring.

However, since there are no rings with less than 6 atoms all rings acquire the same colour. The

large ringless area within the center of the image is detected as a ring though it is not coloured

for illustrative purposes as it includes a large number of atoms within itself. Large rings, like

in the figure, could be highlighted in order to illustrate possible defects within lattices.

3.3 Parameter Learning

It was found that the output of our method relied heavily upon the parameters used during the

segmentation process. A correct or near correct set of parameters would allow the segmentation

process to produce a set of results that was as close to ground truth as possible, with little to

no split or merged detections. However an incorrect set of parameters would create a binary

image where the correct set of points are irretrievable. It is for this reason that it was decided

that parameter learning should be used within our method.

The parameter learning process consists of testing a range of possible input parameters for

the Gaussian smoothing and the morphological operations. These parameters are the σ and k

of the Gaussian smoothing function and the kernel size for the morphological operations. For

each test a set of parameters is selected from the range. The set is then used to create a binary

image using one of the segmentation processes details earlier in subsection 3.1.1. Contours are

then extracted from the binary image and used as input to a cost function.

Two separate cost functions have been tested for parameter learning. The first cost function

used the root mean squared error of of the zeroth moment of the contours. As a reminder, the

zeroth moment of a contour is the area of the contour. The purpose of this cost function was

to ensure the area of all contours were as similar as possible, which would be the expected
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appearance for a lattice. We discovered that this measure was insufficient and did not properly

learn the correct parameters.

The second cost function used bond lengths generated using the same method that gener-

ates our initial neighbourhoods. The error is taken to be the root mean squared of the set of

retrieved bond lengths. It was found that this measure not only produced an ideal cost function

for producing output results with minimal error but also had the advantage of producing an

approximate value for d to be used in merging split detections. By taking d to be the mean of

the bond lengths generated where the cost function is at a minima and using the value as the

input for merging split detections we are able to add more automation to the atomic detection

process.

This cost function however is not without its drawbacks. Our bondlength based cost func-

tion uses the assumption that in the given lattice all bondlengths are of similar lengths. The cost

function also has a large runtime for each execution of the function, which greatly increases

the overall execution time for the algorithm. While this method does work for the given test

set there is no guarantee that it will work for all given planar lattices.

3.4 Forward Model

Due to the lack of available experimental nanoscale images, a method of synthesizing TEM

images was necessary in order to test our system. In Fig. 3.7, we see a TEM image of graphene

3.7(a), in addition to 3-dimensional, 3.7(b), 3.7(c), and 2-dimensional, 3.7(d) plots of the im-

age. There are several distinct notable features in the plots that are neccessary to duplicate

when attempting to synthesize a TEM image: (I) atoms within the lattice do not share identical

peak intensities and can vary greatly; (II) as we move further away from the centre of an atom

intensity values fall in a non-linear fashion; (III) due to errors within the electron microscopy

capture process, atoms can have multiple smaller peaks. Feature (I) can be seen by inspecting

Fig. 3.7, particularly in 3.7(a,b,c). In these images you can see that the peaks are not all iden-



CHAPTER 3. METHOD 51

(a) (b)

(c)
(d)

Figure 3.7: Example TEM image along with corresponding 3D plots and Line Plot. (a) is the original
experimental image of aberration corrected (AC) Graphene[60] overlaid with the region of interest that
is plotted by (c) in cyan and the line plot of (d) in yellow. (b) is the image projected to into a 3D mesh
using intensity as the z axis. (c) is the projected image displaying that smaller local maxima exist on an
atom.

tical and in 3.7b you can see that peaks have a large range in size and height. We can see that

feature (II) exists by inspecting 3.7(d), where we see that the intensity drop off as a function

of distance from the atom is non-linear and resembles more closely a Gaussian function. The

third feature, (III), is shown in 3.7(c) and 3.7(d) where we see a slight change in the rate of
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intensity increase as we go closer to the peak on the right of the images. 3.7(d) shows this more

clearly as it indicates where the smaller peak is on the image. In order to accurately synthesize

a lattice each of these characteristics need to be replicated.

Our process of synthesizing a TEM image of a lattice has three steps. The first step is a

process of inputting a set of 2D or 3D coordinates. The second step is the replication of the

coordinates to fit within our image at a given input resolution. The third step is the addition of

noise and defects into the lattice prior to drawing.

Coordinates are first input into our synthesizing program by means of an XYZ file. This

file contains the 3D coordinates, in angstroms, of a set of points that represent a set of atoms.

These atoms can be either free atoms or part of a larger molecule. In the case of the image

synthesizer, the coordinates should represent a planar (or near planar) lattice. The assumption

is made that the lattice to be synthesized is planar with respect to the Z axis. The Z axis is

then removed from the 3D coordinates to convert our 3D lattice to a 2D lattice which allows us

easily represent the 2D atomic coordinates within an image.

The coordinates are scaled to our desired resolution using a given Angstrom to pixel ratio.

If the coordinates represent a lattice we can choose to duplicate the coordinates in other areas

of the image in order to fill the image. Defects within the generated lattice, i.e. missing atoms,

can be given to the lattice by omitting or shifting coordinates before drawing.

Using the resulting image coordinates we represent the atoms by drawing overlapping con-

centric filled circles about each of the atomic coordinates. Each of these concentric circles are

drawn with an intensity dictated by the function

f(r, R) =
1

R
√
2π
e−

r2

2R2 (3.9)

which is loosely based off of the Gaussian function, where r is the distance from the center

of the circle and R is the radius of the circle. This will ensure that intensity values fall as

the points are further away from the atoms. The height of the peak intensity of the atom can
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be controlled by limiting the intensity value of the smallest circle. To ensure the simulation

of charge between two atoms, the concentric circles are drawn to be overlapping with their

neighbours. To add the smaller peaks detailed earlier, we add noise into the image and then

apply smoothing. Our justification for using this function is illustrated in Fig. 3.8. In Fig. 3.8

you can see that when plotting the output of the function, the synthetic data closely resembles

the experimental data provided.

(a) Plot of grayscale data from a synthesized image (b) Plot of grayscale data from a captured image

Figure 3.8: Comparing a line plot of real data from a grayscale image to the synthetic data produced by
our foreward model. The line is of two bonded atoms in a graphene structure. The two peaks represent
the centres of carbon atoms and the minima at the extremes of the plot are the holes in the hexagonal
structure of graphene. Even though the peak values for the data vary, the shape of the peak and data are
visually similar.

We can also supplement this system with N-Patch Disk Model simulations[3][2], which

was incorporated during the testing phase of our system. The N-Patch Disk Model uses Monte

Carlo methods to generate 2 dimensional structures that mimic self-assembled lattices. Using

this model, we can create lattices with irregular patterns similar to those that exist in experi-

mental TEM images. Fig. 3.9 shows the process of generating one of these lattices and shows

the given synthesized image for a 3-Patch Disk Simulation.
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(a) (b) (c)

(d) (e)

Figure 3.9: Using a 3-Patch Disk model to simulate a hexagonal lattice and compare our image syn-
thesis output with an experimental image. (a) contains an image of a complete 3-Patch Disk simulation
of a lattice and (b) contains a color coded version where complete rings are colored. (c) is a synthesized
TEM image using the coordinates from (a). (d) shows the bonds output by our system and (e) is an
annotated version of the image with color coded rings.



Chapter 4

Experiments

This chapter will discuss implementation details of the proposed system as well as discuss the

testing methods used and the results of the tests. Implementation details include the program-

ming languages used as well as the libraries used in order to facilitate the implementation. The

constructed testing methods will be described and explained as well as the composition and

importance of the selected images used within the tests. Results from the proposed solution

and other solutions to the atomic detection problem will be provided and discussed.

4.1 Implementation

Leucippus, our system, is implemented as a plugin for the ImageJ image processing package.

The front end of the program was written using Java which interfaces with a Python process

running in the background that starts at the initialisation of the Java plugin. The Python process

contains all the necessary functions and methods needed to implement the proposed algorithms

and perform the atomic detection and the molecular reconstruction algorithms.

The main algorithms of our system were implemented in Python in order to rapidly pro-

totype and develop the system. The algorithms leverage many common mathematical and

scientific libraries available for the Python language. These include NumPy [61] and the SciPy

[62] software stack supplemented with the OpenCV library [58].

55
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Figure 4.1: The complete implementation of the proposed system as a plugin within ImageJ.
At the top left of the image is the main ImageJ toolbar and menu. At the right is the image
being analysed overlaid with the output of our proposed system. At the left is the systems main
interface.

Due to the implementation of the system as a ImageJ plugin, the possible programming

languages that could be used to write the plugin was limited. It was decided that Java would be

used because of extensive API and the available documentation for Java within the ImageJ API.

The Java front-end for this plugin leverages many Java libraries in order to create a Graphical

User Interface (GUI) for the user in order to communicate with the main algorithms written in

Python. Results from the main algorithms are then displayed in the main ImageJ GUI. Fig. 4.1

shows an example of the Leucippus GUI along with ImageJ.

4.2 Testing

The detection system was evaluated on several experimentally produced high-resolution TEM

images and synthesized high-resolution TEM images. The experimentally produced images

were divided into two sets. The first set is composed of planar graphene lattices which is

comprised of carbon atoms. The images of graphene have varying amounts of defects within

the lattice and the images themselves varied from clear to noisy. Since graphene is composed of
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carbon atoms each atom within the lattice should have similar properties allowing us to acquire

a baseline performance of the system. The second set is composed of planar hexagonal boron

nitride (h-BN). Like the images of graphene, the h-BN have varying amounts of defects and

noise within them. The second set, the h-BN images, was designed to determine if the system

could recognise both atoms within the lattice as atoms. Ground truth data was produced by

hand for each image and is used as a basis of comparison for the performance of the system.

In order to compare the results of Ophus et al.’s [56] method with our own an implementation

of the method was created in Python so it could be integrated with the testing system. While

the results from this method may not be the exact same as those presented in [56] they should

still provide similar results to the original implementation.

The synthesized TEM images are created using our forward model, which was detailed in

Section 3.4. Using the forward model we can create different sorts of lattices with varying

conditions within them. The test images can be generated to have several kinds of defects

and variations. These variations can include missing atoms, noise and atoms with variable

intensities. Since we are generating the lattice programmatically we can easily output the

ground truth for each output image. This allows us to quickly and efficiently create tests to

evaluate the performance of our system.

The performance of each atomic detection method was evaluated using three metrics, the

precision, the recall, and the F1 score. The precision of a method’s results is the ratio of the

number of correct detections divided by the total number of detections by the system. The

recall of a method’s results is the ratio of correct detections identified by the method divided

by the total number of atoms within the image. Both the precision and recall give ranges from

zero to one, where a value of one means a method is performing well and a value of zero means

the method is failing entirely. If both the precision and recall of a method has a value of one,

that means that the method has correctly identified all the correct detections while not reporting

any incorrect ones. The F1 score combines the precision and recall in a manner that represents

the performance of the system as a single value. For most tables we use the F1 score as it can
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compare the results of each method in a meaningful way.

4.3 Results

Images within the performance tables are separated into two sets. The first set is a group

of experimental images that have been collected experimentally. Each experimental image is

listed within the tables demonstrating the results. The second set is the performance of the

system on a large set of synthesized images, —50 images per image type. These values are

averaged to condense the results into one table.

Table 4.1 shows the performance of the raw detections of the system and of the local max-

ima when given different input images and in Fig. 3.4 we see example output of both the local

maxima and our system within a region. We use the local maxima in order to provide a base-

line comparison for all methods being used. Here we see that our system has a relatively high

performance values for most input images. The table also shows that using local maxima tends

to outperform our system in recall. This is due to the simple fact that the centre of an atom

should coincide with a local maxima. However we also see that the precision of the local max-

ima is very low and shows that very few of the local maxima found within the image belong

to atoms. This outlines the advantage of using the F1 score as a metric. Values of the F1 score

takes into account the precision and recall value and is limited by lowest value present which

gives a more accurate representation of the performance of our system. This table also serves

to prove that the naive approach of using local maxima is insufficient for the detection of atoms

within TEM images.

The inclusion of noise within testing was clearly extremely important. In Table 4.2, if we

exclude all real nanoscale images and include only the synthetic images, we see that if not for

the inclusion of noise within the tests we may conclude that our intensity based method out

performs the second derivative based method that our system uses. This noise was added to

existing images by first creating a “noise” image where values were randomly generated on a
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Image LM P System P LM R System R LM F1 System F1

Noisy Synthetic Images 0.2492 1.0000 0.9964 0.9814 0.3987 0.9906
Synthetic Images 0.5597 1.0000 0.9976 0.9805 0.7170 0.9902
High Background h-BN 0.1186 1.0000 1.0000 0.9702 0.2121 0.9849
h-BN Defects 0.3164 1.0000 0.9850 0.9624 0.4790 0.9808
High Distortion Graphene 0.0976 0.9620 1.0000 1.0000 0.1779 0.9806
HiRes Graphene 0.2558 0.9785 1.0000 0.9785 0.4073 0.9785
Blurry Graphene 0.3714 0.9860 0.9828 0.9691 0.5391 0.9775
Small Peak Graphene 0.0582 0.9635 1.0000 0.9778 0.1099 0.9706
AC Graphene 0.0764 0.8283 0.8000 0.9111 0.1395 0.8677

Table 4.1: Comparing results between the local maxima of the image and our System. P is
the precision of the system, where the value is the ratio of ground truth points detected vs
not detected. R is recall, which is the ratio of ground truth points detected vs the number of
detected points. A value of one means that all points are ground truth and a value of zero means
none of the detected points belong to the ground truth.

uniform distribution. In Fig. 4.2 we see the effects of increasing the amount of noise of an

image used as input into our system. The values within the noise image would then be applied

to the original image by performing matrix addition upon the original image and the noise

image. The exact range of values for this noise image was from negative 25 to positive 25.

In order to encompass a larger range of synthetic images we included the ability to ramp the

values within images. This ramping was in part inspired by both Ophus et al.’s [56] method

and to reduce the uniformity of peak intensities within images. Omitting atoms within the

synthesizing process allows us to further introduce defects within the images and more greatly

test the capabilities of our system.

If we compare all methods, as shown in Table 4.2, we see that every method, aside from

local maxima, has decent performance for non-noisy synthetic images, F1 > 0.7. This is

beacuse these images are the ideal conditions for any atomic detection algorithm. As there

is no noise present within the images, each method can more easily identify the maxima that

represents the atomic locations. We also see that the intensity based version of our method

outperforms our proposed system. This is due to the method having been designed for the

ideal case, a noiseless image. However, as we introduce noise and real data into the tests we
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(a) Image that has noised 70 times (b) Image that has noised 140 times

Figure 4.2: Performance Plot of Noised Images with example images. The example images,
(a) and (b), show possible outputs for the noising being done to the original image. As we can
see (b) still has a decent F1 score even though the image is barely recognisable.
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Image LM F1 Ophus et al.’s F1 Intensity Based F1 System F1

Noisy Synthetic Images 0.3992 0.0989 0.0165 0.9940
Synthetic Images 0.7159 0.8797 0.9993 0.9939
High Background h-BN 0.2121 0.1851 0.7943 0.9849
h-BN Defects 0.4790 0.7511 0.4422 0.9808
High Distortion Graphene 0.1779 0.0673 0.9264 0.9806
HiRes Graphene 0.4073 0.6574 0.6075 0.9785
Blurry Graphene 0.5391 0.8872 0.0068 0.9775
Small Peak Graphene 0.1099 0.2977 0.6207 0.9706
AC Graphene 0.1395 0.1243 0.6311 0.8677

Table 4.2: Comparing the F1 scores of all the methods tested.

see the intensity based method fail, in addition to all other methods, excluding our proposed

system.

Fig. 4.3 contains a visual representation of sample output for each of the presented systems

with the Blurry Graphene TEM image as input along with the ground truth data for the image.

Each output has notable characteristics that can be explained. In the local maxima output, we

see that there is an excess of detected atoms. These incorrect atoms detections mostly occur

along the areas of overlapping charge between atoms. This is because when viewing the image

as a surface map, the charge between the atoms form saddle points. These saddle points are

incredibly sensitive to noise. Any noise within these saddle points tend to create miniature

peaks. This can be better seen in Fig. 3.7. Notice that within the saddle point between the

atoms we see small peaks. Fig. 4.3d shows that Ophus et al.’s [56] method output can offset

from the ground truth. This offset is caused by the location of the local minima that represents

the centre of a ring of atoms. When this centre is not equidistant from the surrounding atoms

it causes the aformentioned offset. The output from the intensity based method and the second

derivative based method closely resemble the ground truth points. However the intensity based

method outputs incorrect detections along the left edge of the image. This is because just

outside the image’s left boundary there are more atoms, however they should not be detected

as they are not complete atoms and the resulting points are not accurate atomic locations.

Table 4.4 shows the performance of the stages of the system using the second derivative
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(a) Original Image (b) Ground Truth

(c) Local maxima (d) Ophus et al.’s method (e) Intensity based (f) System

Figure 4.3: Showing the output for all methods presented within the thesis along with the
ground truth for the TEM image [22]. (a) shows the original image and (b) is (a) annotated
with its ground truth data. (c), (d), (e), and (f) are the output for each particular method with
(f) being the output for the second derivative based method.

Image I I+M I+S I+M+S
Synthetic Images 0.9937 0.9937 0.9937 0.9937
Noisy Synthetic Images 0.9866 0.9867 0.9866 0.9867
High Background h-BN 0.9849 0.9849 0.9849 0.9849
h-BN Defects 0.9808 0.9808 0.9808 0.9808
High Distortion Graphene 0.9806 0.9806 0.9806 0.9806
HiRes Graphene 0.9785 0.9785 0.9785 0.9785
Blurry Graphene 0.9775 0.9775 0.9775 0.9775
Small Peak Graphene 0.9706 0.9706 0.9706 0.9706
AC Graphene 0.8511 0.8511 0.8677 0.8677

Table 4.3: F1 scores for each stage of the detection system when using parameter learning. For clarifi-
cation: Stage 1 is the initial atomic locations, Stage 2 is after fixing split detections, and Stage 3 is after
fixing merged detections.
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Image I I+M I+S I+M+S
h-BN Defects 0.9963 0.9963 0.9963 0.9963
High Background h-BN 0.9956 0.9956 0.9956 0.9956
Synthetic Images 0.9937 0.9937 0.9937 0.9937
Noisy Synthetic Images 0.9869 0.9871 0.9869 0.9871
Blurry Graphene 0.9684 0.9684 0.9684 0.9684
HiRes Graphene 0.9648 0.9648 0.9648 0.9648
Small Peak Graphene 0.9247 0.9408 0.9247 0.9408
High Distortion Graphene 0.9075 0.9383 0.9129 0.9383
AC Graphene 0.8083 0.7937 0.8308 0.8229

Table 4.4: F1 scores for each stage of the detection system when not using parameter learning.
For clarification: Stage 1 is the initial atomic locations, Stage 2 is after fixing split detections,
and Stage 3 is after fixing merged detections.

based method without the use of parameter learning. In Table 4.4 we see that for most images,

there is little to no improvment made to the F1 score of the system in subsequent stages. This

is due to the initial detections for many images often present a small amount of error. In

some cases there is a decrease in F1 score during stages 1 and 2. If there is a decrease in

the F1 score during stage 2 this means that either an incorrect bondlength was used for the

method or the resolution of the image is too low to distinguish between areas that do and do not

belong to atoms. If there is a decrease in stage 3 it is incredibly likely that the blobs contained

within the segmentation image are very similar in appearance. Essentially if the features used

to distinguish the erroneous contours have a small standard deviation then the method can

produce incorrect atomic locations. However this problem can be solved by checking the

standard deviation ahead of time and if it is too small we do not perform the third step.

In comparing values from Table 4.3 and Table 4.4 we see that when using parameter learn-

ing in our process, we acheive better results on average. This behaviour is expected due to

the fact that we are attempting to learn the best parameters for the specific data set. However

the increased accuracy of the results is not without its disadvantages. Table 4.5 shows us that

run times increase significantly when using the parameter learning process. Another caveat of

using the parameter learning process is that for some images we see a decrease in the F1 score.

This is most likely due to the parameters used during the testing process fitting the data more
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Image With Learning Without Learning Ophus et al. Intensity Based
Noisy Synthetic Images 32.3426 0.6392 0.1908 0.1770
Synthetic Images 39.8235 0.6255 0.0946 0.1204
High Background h-BN 2.9992 0.1189 0.0189 0.0332
HiRes Graphene 4.3782 0.1036 0.0128 0.0371
Blurry Graphene 1.6788 0.1006 0.0109 0.0017
High Distortion Graphene 2.9880 0.0974 0.0207 0.0278
Small Peak Graphene 2.4643 0.0830 0.0101 0.0457
h-BN Defects 1.2994 0.0686 0.0045 0.0108
AC Graphene 3.1059 0.0655 0.0101 0.0339

Table 4.5: Comparing the runtimes, in seconds, of all valid methods discussed within this
paper.

accurately than the results of the parameter learning process. In this case, it can be said that

the algorithm used for determining error during the learning process can be improved upon or

a new cost function can be introduced.

The cost function used during the parameter learning process can greatly affect the results,

F1 score, of our system. In Table 4.6, the results from both created cost functions is displayed

for each of the experimental images along with the image size and elapsed. The F1 scores for

the system may be the best according to the cost functions used, however it is very likely that

the cost functions that are currently being used are not optimal cost functions for the system

and report less than accurate parameters. For example, even though the bond length based

cost function generally outperforms the area based cost function there are some images where

the performance of both cost functions is equal and there is a case where the area based cost

function outperforms the bond length based cost function by a small margin.

In the same table, Table 4.6, it can be seen that the time cost scales in a roughly linearly

with respect to the number of pixels. The linear nature of the time costs is likely due to the

segmentation portion of the algorithm as it contains the largest number of computations of

entire system. However since the time cost for a single image is so low the time results of this

system may be inconsequential.

Table 4.7 shows the F1 score of the second derivative based atomic detection method and
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Area Based Bond Length Based
Image Pixels Time F1 Time F1

Synthesized 480000 5.5543 0.0044 19.9553 0.9941
HiRes Graphene 203648 2.3232 0.9785 2.5049 0.9785
AC Graphene 144550 1.5523 0.8256 1.6335 0.8511
High Distortion Graphene 114380 1.2497 0.0128 1.4373 0.9806
Small Peak Graphene 113262 1.2306 0.9778 1.3516 0.9742
High Background h-BN 110871 1.2292 0.0118 1.4306 0.9864
Blurry Graphene 62500 0.7238 0.0136 0.9066 0.9775
h-BN Defects 53580 0.6246 0.8125 0.6234 0.9808

Table 4.6: Evaluating the performance of both cost function presented, in both time and F1

score. We see that generally the bond length based cost function generally outperforms the
area based method, however the area based method has less of a time cost.

the Voronoi based detections proposed by Ophus et al. along with the F1 scores of the neigh-

bourhoods produced by both methods. These tests were performed by first matching each

detection to a ground truth point. The match criteria was based on the euclidean distance

between the detection’s coordinates and the ground truth coordinates on the image. If the dis-

tance between a single detection and a atomic location in the ground truth data is smaller than

some predetermined threshold in pixels, we then consider the detection and the ground truth to

match. This matching step is normally performed when generating scores for our data. After

matching the detections to the ground truth data we then check to see if a connection within

the ground truth neighbourhood exists between the detected points. By checking the existance

of matching connections between the ground truth neighbourhood and those generated during

detection, we can produce an F1 score for the generated neighbourhoods. In Table 4.7, the F1

score for the neighbourhoods produced using both our neighbourhood generation method and

our atomic detection method generally outscore the neighbourhoods generated by the Voronoi

based approach. However, whether or not this is due to the initial set of points into the neigh-

bourhood generation portions of each algorithm is arguable.

It is notable that all tables showing the performance, F1, of each method show that the

image “AC Graphene” performs the least favorably compared to all other images by a large

margin. Upon inspection of the “AC Graphene” image it is noticeable that there is distortion in
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System Ophus et al.
Image Point F1 Line F1 Point F1 Line F1

HiRes Graphene 0.9785 0.9985 0.7409 0.6109
h-BN Defects 0.9808 0.9718 0.6762 0.6237
Small Peak Graphene 0.9706 0.9644 0.6265 0.4700
High Distortion Graphene 0.9806 0.9623 0.3785 0.0760
High Background h-BN 0.9849 0.9597 0.7162 0.5116
Blurry Graphene 0.9775 0.9448 0.8270 0.8267
AC Graphene 0.8677 0.8452 0.1864 0.0620

Table 4.7: Comparing the F1 Score of the resulting generated Neighbourhoods to the F1 Score
of the points.

(a) (b) (c)

Figure 4.4: Example TEM image along with corresponding 3D plots and Line Plot. (a) is the original
experimental image of aberration corrected (AC) Graphene[60]. (b) is (a) projected into a surface using
the intensity as height. (c) is the same image as (d) with overlaid with initial uncorrected system output.

the extremities of the image, as one might be able to see in Fig. 4.4(a). This is likely due to the

aberration correction needed to achieve TEM images at this resolution. Upon inspecting the

image as a surface map this becomes more clear as we see that the peak intensities for the outer

edges of the image are unlikely to be at the locations depicted for a clear image of Graphene,

Fig. 4.4(b,c). Furthermore, we see that many of the errors within the detections of the image

coincide with the peaks of the surface map. Testing on this image is useful due to the challenge

it poses and the possibility of using a priori knowledge order to properly reconstruct the lattice

despite the lack of information represented within the image.
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Figure 4.5: Sample output for a STM image [63] of a crystalline-vitreous interface annotated
with the output of the second derivative based atomic detection system. In this image our
system is able to identify most Si atoms within it, however the system is not able to identify O
atoms. Notice that there are areas within the image, especially on the right where the lattice is
irregular, that lack appropriate output.

There are situations where all algorithms can fail to identify atoms completely. Fig. 4.5

demonstrates the conditions under which the atomic detection algorithm fails. The figure de-

picts a STM image of a crystalline-vitreous interface that is composed of both Si atoms and O

atoms. However, the output of the system is only able to identify the Si atoms. This is because

the oxygen atoms do not present a large enough increase in intensity within the STM image.

There is also clearly missing output for Si atoms. Upon inspecting the image we found that

there was not enough of a change within the image to locate the atoms. Whether or not this is

caused by an error within the STM capture process, the nature of the STM image capture pro-

cess, or limitations within the atomic detection algorithms is unknown. However, it is unlikely

that the latter is the case as upon visual inspection of the STM image it can be determined that

there is very little indication of the oxygen atoms present within the image.

Using the images of h-BN there has been some preliminary research into the topic of de-

termining the type of atom depicted within an image. The lattice h-BN, has a very similar

appearance to graphene. In graphene, each carbon atom is bonded to three other carbon atoms

and forms hexagonal rings. In h-BN, there is also hexagonal rings, however each boron atom is
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(a) (b) (c)

Figure 4.6: Example of grouping species of atoms based on the size of their segmentations.
(a) is a cropped image of hexagonal Boron Nitride, (b) is the segmentation of of that cropped
image. (c) highlights the species within the image. The results within (c) were found by using
principal component analysis and k-means clustering.

bonded to three nitrogen atoms and each nitrogen atom is bonded to three boron atoms. Using

this information it may be possible to group each of the atoms in the image with other atoms

of the same species. In Fig. 4.6(b), it is shown that based on the species of atom, the size and

shape of the segmentation for atoms can vary greatly. There we see that atoms corresponding

to one species have a very different appearance, in size, from the other species in the image.

Using this appearance we performed some investigations into using size and shape of the seg-

mentations in order to determine groupings of atoms. Fig. 4.6(c) shows more on this, where

atoms have been grouped simply based on their size. Here we have used both principal compo-

nent analysis on a number of variables calculated from the segmentations along with k-means

clustering in order to find the likely species within the image. However we could not find a

method that was able to find the proper groupings with a large degree of accuracy.



Chapter 5

Conclusion and Future Work

The conclusion will be organised as follows. First a brief summary of the contributions made

within this thesis will be presented. Following the contributions, the evalutions of the per-

formance of our system compared to other existing works and other possible systems will be

compared and shortly discussed. The programming libraries used and other implementation

specifics are described along with their performance. Lastly, the direction of future work into

the problem will be discussed. The discussion will include possible optimisation methods and

possible features to add to the system.

5.1 Contributions

In this thesis, a solution has been presented for the problem of detecting atoms and inferring

molecular structure in electron microscopy images that should be applicable to other forms

of nanoscale imagery. We presented two methods of segmenting and analysing electron mi-

croscopy images for atoms. These methods either use the intensity of an image or second order

derivative of the image in order to perform segementation. Using the segmented images, we

derived the locations for all atoms within the image. From the atomic locations we infer the

structure of the molecule and reconstruct the bonds for each atom. We also demonstrated that

with supervised learning we can improve the performance of the proposed system.

69
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5.2 Performance Evaluation

To evaluate the performance of our approach we have created a system to synthetically pro-

duce high resolution transmission electron microscopy images that mimic those that have been

experimentally produced. All presented algorithms have been implemented using the Python

programming language in conjunction with the established mathematical libraries NumPy [61]

and SciPy [62] and the computer vision library OpenCV [58].

Our experiments have compared the performances of not only our intensity based and sec-

ond derivative based methods but also to the state-of-art approach by Ophus et al. [56] and the

local maxima of the image. We evaluated all methods using the output of both experimentally

and synthetically produced images.

Our experiments have shown that our second derivative based method tend to outperform

all other methods that have been tested. However, results show that the second derivative based

solution is slower than other solutions and can possibly take more than 10 times the amount of

time for a single image. This can be considered acceptable as the time for the completion of the

curvature based method is still smaller than a second. This changes once supervised learning

is applied, as times increase drastically.

5.3 Future Work

There are a number of extensions to this thesis that we would like to explore in future investiga-

tions. These extensions include both extensions in function and design and in implementation.

1. Identifying Types of Atoms

The detection method proposed in this thesis focuses solely on the detection of the ex-

istence of an atom and determines the atom’s location. However in Fig. 3.2 where we

have segmented a Transmission Electron Microscopy image of hexagonal boron nitride

we see that the regions representing the two different kinds of atoms are distinct in size.
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By visually inspecting the image we can differentiate between the two types. One could

extend the approach in this thesis by adding the functionalilty neccessary to perform the

task of differentiating between the atoms within electron microscopy images.

2. Supervised Learning using GPU

Currently the most time consuming portion of the proposed system is where learning

occurs. It may be possible that the time taken for the learning process to complete can

be reduced by implementing the learning process on a graphics proccessing unit (GPU).

However, we forsee that there could exist difficulties with implementing the learning

process on GPU as each learning process has several complex stages included within it,

such as image segmentation and neighbourhood generation.

3. Probabilities of Correct Detection

The system does not take into account the blurriness of the image or other factors and will

perform the entire algorithm even if the image is impossible to process correctly. The

system makes the assumption that not only is there a lattice within the image but also that

any detected atom simply exists. However, it is known that this is not always the case.

Errors exist within the detections. It would be useful to users to present a probability for

each detection that details how likely a detection is to exist. An extension to this thesis

might be the ability to present the likelihood of a correct detection for each atom. A

simple method of implementing this method is to assign all original detections a score

of 1 and decrease that score each time the detection fails during one of the correction

stages. It would also be possible to extend this method to bonds where we could assign

each bond a value of 1 and decrease the value if the atoms do not agree that they are

bonded.

4. Multilayer Analysis

Most lattices do not exist in single layers. Within this thesis we used graphene and

hexagonal boron nitride for testing as they provided a challenge that was simple to per-
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form with the human eye but difficult to perform using computation. The extension of

the thesis in order to analyse atomic lattices with multiple layers would be very useful.

However this extension would not be easy to perform and would not be without it’s own

set of challenges, especially for the analysis of two dimensional nanoscale imagery. The

author of this paper is unsure how to perform multilayer analysis of nanoscale without

the inclusion of a third dimension provided by an Atomic Force Microscope. The in-

clusion of the third dimension would allow similar methods to those in our system to be

performed in 3 dimensions and should be able to perform detection.

The stated future work into the system would aid in the general applicability of the system

as it would be able to provide more information to the user and researchers as well as decrease

the time needed to analyse the specimens.
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