
An Index Structure for Fast Range Search in Hamming Space

by

Ernesto Rodriguez Reina

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master in Computer Science

in

Faculty of Science
Computer Science

University of Ontario Institute of Technology

November 2014

c© Ernesto Rodriguez Reina, 2014

Abstract

An Index Structure for Fast Range Search in Hamming Space

Ernesto Rodriguez Reina

Master in Computer Science

Faculty of Science

University of Ontario Institute of Technology

2014

This thesis addresses the problem of indexing and querying very large databases of

binary vectors. Such databases of binary vectors are a common occurrence in domains

such as information retrieval and computer vision. We propose an indexing structure

consisting of a compressed trie and a hash table for supporting range queries in Hamming

space. The index structure, which can be updated incrementally, is able to solve the range

queries for any radius. Out approach minimizes the number of memory access, and as

result significantly outperforms state-of-the-art approaches.

Keywords: range queries, r-neighbors queries, hamming distance.

ii

To my beloved wife

for being my source of inspiration.

iii

Acknowledgements

I would like to express my special appreciation and thanks to my advisors Professor

Dr. Ken Pu and Professor Dr. Faisal Qureshi for the useful comments, remarks and

engagement throughout the learning process of this master thesis. You both have been

tremendous mentors for me. Your advices on both research as well as on my career have

been priceless.

I owe my deepest gratitude to my college Luis Zarrabeitia for introducing me to

Professor Qureshi and Professor Pu, and also for all your help to came to study to the

UOIT.

A special thanks to my mom. Your prayer for me was what sustained me thus far.

Last but not the least, I would like to express my deeply thanks my lovely wife,

who have supported me throughout entire process, both by keeping me harmonious and

helping me putting pieces together. I will be grateful forever for your love.

iv

Contents

1 Introduction 1

1.1 r-neighbors search using hashing . 3

1.2 r-neighbors search using trie . 5

1.3 A Hybrid Approach to the r-Neighbors Search Problem 6

1.4 Contributions . 6

1.5 Outline . 7

2 Background and Related Work 8

2.1 Background . 8

2.1.1 Binary Vectors . 8

2.1.2 Hamming Distance and Range Queries 10

2.2 Summary of Existing Techniques . 11

2.2.1 Trie-Based Approaches . 11

2.2.2 Hierarchical Decomposition of the Search Space 12

2.2.3 Locality-Sensitive Hashing by Random Projections 14

2.2.4 Locality-Sensitive Hashing by Non-Overlapping Subvectors 16

2.3 Summary . 18

v

3 r-Neighbors Query Processing Using Hybrid Index Structures 20

3.1 Preliminaries . 20

3.1.1 r-Variations . 21

3.1.2 Computing All r-Variations . 22

3.2 Solving the r-Neighbors Search Problem Using a Trie 23

3.2.1 Reducing Space Requirement Using Compressed Bitwise Trie . . . 27

3.3 Hybrid Trie-Hash Table Index Structure for the r-Neighbors Search Problem 30

3.3.1 Multi-Hybrid Index . 34

4 Experimental Evaluation 35

4.1 Hash Table Lookups . 36

4.2 Runtime Comparison . 39

4.3 Practical Considerations . 41

5 Conclusion 43

5.1 Algorithms . 44

5.2 Performance Evaluation . 45

5.3 Contribution . 46

5.4 Future Work . 47

Bibliography 48

Appendix 55

A Implementation Details 56

vi

A.1 Pipeline and Instruction Cache Performance 56

A.1.1 Trie Implementation Using Array to Increase Instruction Cache

Performance . 56

A.1.2 Avoiding Instruction Branching on Left-Right Trie Decision When

Traversing the Trie . 57

A.2 Bit Manipulation Functions . 58

A.2.1 Accessing Bit Positions . 58

A.2.2 bitScanForward . 59

A.2.3 Hamming Distance and popCount 60

vii

List of Figures

1.1 Size of the r-variations set for 64 bits vectors 3

3.1 Example of bitwise trie . 25

3.2 Node child splitting example on a bitwise trie. 26

3.3 Example of compressed bitwise trie . 29

3.4 Nodes traversed when r > 0 vs r = 0 on a trie. 32

4.1 Number of lookups performed by MIH vs MIH+Trie on 1 million 128-bits

vectors and m=4 . 36

4.2 Number of lookups performed by MIH vs MIH+Trie on 1 million 128-bits

vectors and m=6 . 37

4.3 Number of lookups performed by MIH vs MIH+Trie on 1 million 64-bits

vectors and m=4 . 38

4.4 Linear scan vs Trie vs MIH vs MIH+Trie on 1 million 128-bits vectors,

1000 queries and m=4 . 39

4.5 Trie vs MIH vs MIH+Trie on 1 million 128-bits vectors, 1000 queries and

m=6 . 40

viii

4.6 Trie vs MIH vs MIH+Trie on 1 million 64-bits vectors, 1000 queries and

m=4 . 41

ix

List of Algorithms

3.1 Algorithm to generate all possible r-variations of a given vector 23

3.2 Algorithm to query a Bitwise Trie . 27

3.3 r-neighbor search using a trie . 28

3.4 Lazy-evaluation algorithm for r-neighbor search using a compressed bit-

wise trie . 30

3.5 Algorithm for r-neighbor search using a compressed bitwise trie 31

3.6 Algorithm for r-neighbor search using hybrid index 33

A.1 testBit algorithm . 59

A.2 flipBit algorithm . 59

A.3 bitScanForward algorithm for 64 bits . 60

A.4 popCount algorithm for 64 bits . 63

x

Chapter 1

Introduction

Increasingly many applications in domains ranging from image matching to information

retrieval generate and analyze very large number of multidimensional feature descriptors.

These feature descriptors are often encoded as binary vectors because binary vectors can

be efficiently stored and indexed. Furthermore, many schemes exist to search a binary

vector in a given collection. To search over a set of binary vectors it is necessary to define

a distance (or dissimilarity) metric over binary vector space. A common technique for

computing “distance” between two binary vectors (of equal length) is to use Hamming

distance. The Hamming distance between two vectors is equal to the the number of

positions in which they differ.

Given a set of binary vectors D and a query vector q, finding exact matches is often

not sufficient. Rather most applications seek to find the subset of D that are within some

distance (say, Hamming distance) of the query vector q [32]. We refer to the problem of

finding vectors inD that are within some Hamming distance of q as the r-neighbors search

problem. Another way to state this is that we want to find all r-neighbors (present in set

1

Chapter 1. Introduction 2

D) of the given query vector q. Here, we define that a binary vector is an r-neighbour

of a query vector q if it differs from q in r bits or less. In some domains, this problem is

known as Approximate Query problem [18], the Point Location in Equal Balls (PLEB)

problem [20], and Hamming Distance Range query problem [26]. The r-neighbour search

problem arises in many different applications, such as, image search [24, 23, 39, 38],

image classification [5], object segmentation [22], parameter estimation [36], chemicals

search [15], audio and video content retrieval & preference matching [40, 29, 33, 12], iris

matching [41], web-pages duplication detection [28, 37], to name a few.

Here’s a concrete example of how r-neighbors search is used for image matching,

search, and retrieval [24]. First, each image in the collection is encoded as a set of local

binary descriptors [34, 8, 1]. Next, binary descriptors collected over the entire collection

are indexed into a data structure that supports fast r-neighbors queries or k-nearest-

neighbors queries. An inverted index matches each stored vectors (descriptors) to the

image that contains it. Binary descriptors computed from the query image are compared

against the database to find the set of “closest” vectors in the database. Each of these

vectors point to an image in the collection and voting is performed to identify the image

(stored in the collection) that best matches the query image. Details can be found in

Landré & Truchetet 2007 [24].

The above example outlines a common strategy used for image retrieval using binary

descriptors. The key challenge here is one of scale. For example, say we encode each image

using 1,000 128-bit binary vectors. This suggests that even a moderate size collection of

one million images will have 1,000,000,000 binary vectors. At query time, for each image,

a naïve approache would require 1,000,000,000 × 1,000 comparisons. Clearly, we need

Chapter 1. Introduction 3

0

2e+10

4e+10

6e+10

8e+10

1e+11

1.2e+11

1.4e+11

0 1 2 3 4 5 6 7 8 9 10

Si
ze

of
th
e
r-
va
ri
at
io
n
se
t
|Q

(q
,r
)|

Search radius r

Size of r-variation sets for 64 bit vectors (l=64)

Figure 1.1: Size of the r-variations set for 64 bits vectors. Notice the size grows expo-
nentially with increasing values for r.

efficient methods to deal with this problem. The work presented here is a step in that

direction.

1.1 r-neighbors search using hashing

Hamming distance can be computed efficiently via the xor operation followed by a bit

count ; however, a linear scan could be prohibitively expensive for large databases. Binary

vectors can be used as direct indices (addresses) into a hash table yielding a dramatic

increase in search speed over that of an exhaustive linear scan [38]. When addressing

the r-neighbors search problem using a hash table populated with the binary vectors

in the database D, the naïve approach examines every hash bucket whose indices are

within r bits of a query q (e.g., [38]). To examine these buckets, a set of queries Q(q, r)

Chapter 1. Introduction 4

is generated and for each vector in that set a hash table lookup is performed. The set

Q(q, r) is called the r-variation of q. For binary vectors of length l, the size of the

r-variation set is:

|Q(q, r)| = L(l, r) =
r∑

z=0

(
l

z

)
, (1.1)

where r ∈ [0, l]. The number of r-variations grows rapidly with the size of the vector l

and the search radius r. Consequently, the naïve approach is only practical when dealing

with small l and r. For large l or r, it is simply infeasible to examine |Q(q, r)| buckets.

Figure 1.1 plots the size of the r-variations set for 64-bit vectors for different values of r.

Notice it grows exponentially with increasing r.

Also, for large l, most of the buckets examined during the above process will be empty.

Say a database has n vectors then in general 2l � n, suggesting that most of the buckets

will be empty. For example, the number of r-variations for l = 64 and r = 10 is more

than 133 trillions (1.33× 1011). If there are 1 million different vectors in the hash table,

the maximum number of non-empty buckets is 1 million (assuming no collisions). That

implies that the great majority of lookups performed using the näive approach will be

go to empty buckets. We will call those r-variations that end up at an empty bucket

as null r-variations. Null r-variations lookups are wasted effort and adversely affect

the performance of r-neighbour searches. A null r-variation points to an empty bucket

and provides no candidates for our query. This thesis presents a novel compressed-trie

based data structure that reduces the number of null r-variations lookups and thereby

improving the performance of r-neighbors search algorithms.

Chapter 1. Introduction 5

1.2 r-neighbors search using trie

The curse of r-variation explosion is due to the fact that hash tables, as a data structure,

do not support efficient local search. The remedy is to explore other data structures

for indexing binary vectors. Say D is a set of Binary vectors and I(D) is the indexing

data structure that represents D then an “ideal” indexing structure will have following

properties:

1. lookup efficiency: I(D) can efficiently answer a membership query: q ∈ D, given

some query vector q; and

2. local searchability: Two vectors d,d′ ∈ D should be indexed closely in I(D) if they

are close in Hamming space. This means that a search algorithm can locate both

d and d′ with minimal effort.

Hash tables excel at lookup efficiency; however, they fail at local searchability. A trie (to

be described in detail in Section 3.2) is an indexing data structure that provides a more

balanced performance characteristics. A trie organizes the binary vectors in D into a

hierarchy (or a tree) based on their prefixes, so that if two binary vectors d and d′ share

a common prefix, then they will be closely positioned in the hierarchy, thus allowing a

search algorithm to quickly locate d′ from the location of d and vice verse.

A trie based approach to solve the r-neighbour problem is to locate the query q,

allowing local search in the neighbourhood of q. While a trie is great at satisfying

local searchability, it is inferior to the hash table with respect to lookup efficiency. The

motivation of our work is to harness the power of hash tables (thus providing lookup

Chapter 1. Introduction 6

efficiency) and tries (thus providing local searchability) to create a more efficient index

for processing r-neighbors queries.

1.3 A Hybrid Approach to the r-Neighbors Search Prob-

lem

We are interested in hybrid indexing structures that can merge the hash table and the

trie to index a set of binary vectors D. To this end, we propose to index D using both

Hash(D) and Trie(D). Rather than processing r-neighbors queries using only one of the

two data structures, we propose a query processing algorithm that switches between the

two indexing structures back and forth.

The index Trie(D) permits us to use local-search to find a small, but sufficient r-

variations, and the much reduced set of r-variations will generate a small number of

lookup queries for Hash(D). Thus, the overall algorithm achieves the following:

• the trie only provides r-variation pruning using local-search and does not need to

resolve full lookup queries; and

• the hash table only needs to handle a small number of lookup queries thanks to the

pruning power of a trie index.

1.4 Contributions

In this thesis, we study the problem of r-neighbors searches and propose two techniques

for addressing this problem. First, we present a compressed-trie based approach for r-

Chapter 1. Introduction 7

neighbors searches. We noticed that this approach was unable to achieve the desired

performance. After studying the shortcomings of this method, we developed a hybrid

compressed-trie plus hash table based approach for r-neighbors searches. We are able to

achieve state-of-the-art results using our hybrid approach.

The scientific and algorithmic contribution of this thesis is: a new hybrid compressed-

trie + hash table data structure, and the associated query processing algorithm, for

indexing binary vectors to support fast r-neighbors searches in Hamming space. The

thesis also makes system development and engineering contributions, details of which are

listed in the appendix.

1.5 Outline

The remainder of this thesis is organized as follows. We review related work in the next

chapter. There we focus on existing schemes that deal with r-neighbors and k nearest

neighbors searches using hashing, trie data structures, and hierarchical decomposition

methods. The related work, we hope, does an adequate job of juxtaposing our work

with the existing techniques. We will also discuss mathematical preliminaries in this

chapter. Chapter 3 develops the proposed algorithms. Results are presented in the

following chapter. We compare our method with a recent scheme [32] and demonstrate

that our method achieves state-of-the-art results. Chapter 5 concludes the thesis with a

brief discussion about the strengths and limitations of our method. Relevant technical

and implementation details are provided in the appendix.

Chapter 2

Background and Related Work

Here we present the technical background necessary to understand this work. We also

summarize existing literature that deals with r-neighbors and nearest neighbors queries

on collections of binary vectors.

2.1 Background

2.1.1 Binary Vectors

We begin by defining binary vectors and common operations on these vectors.

Definition 1. A binary vector (also known as Boolean vector) v is a sequence of 0’s

and 1’s. The length of v is denoted as |v|, and the element at i-th position (0 ≤ i < |v|)

is denoted as v[i]. The set of all binary vectors of length l is denoted as 2l. The special

case of the binary vector of length 0 is named empty vector and we will denote it as ε.

Definition 2. Given x ∈ 2n and y ∈ 2m. The concatenation of the vectors x and y

8

Chapter 2. Background and Related Work 9

denoted x‖y is the binary vector z where:

i) |z| = n+m

ii) ∀i ∈ Z+, i < n : z[i] = x[i]

iii) ∀i ∈ Z+, i ≥ n ∧ i < n+m : z[i] = y[i− n]

Note that the concatenation of any vector x with an empty vector is equal to x.

Example 2.1.1. If x = 10 and y = 11 then z = x‖y = 10‖11 = 1011.

Definition 3. Given x ∈ 2n and z ∈ 2m. The binary vector x is called prefix of z if:

i) n ≤ m

ii) ∃y ∈ 2m−n : x‖y = z

Given a vector x, its prefix of length i is denoted as x[: i]. Note that x[: 0] = ε. The

empty vector is prefix of any vector.

Example 2.1.2. If z = 1011, then the vectors 1, 10, 101 and 1011 are all prefixes of z.

Definition 4. Given x ∈ 2n and z ∈ 2m. The binary vector x is called suffix of z if:

i) n ≤ m

ii) ∃y ∈ 2m−n : y‖x = z

Given a vector x, its suffix of length |x| − i is denoted as x[i :]. Note that x[|x| :] = ε.

The empty vector is suffix of any vector.

Example 2.1.3. If z = 1011, then the vectors 1, 11, 011 and 1011 are all suffixes of z.

Chapter 2. Background and Related Work 10

Definition 5. Given D ⊆ 2m and x ∈ 2n, n ≤ m. The binary vector x is a prefix of the

set of binary vectors D if ∀z ∈ D, ∃y ∈ 2n−m : x‖y = z

Example 2.1.4. If D = 1011, 1010, 1000, then the vectors 1 and 10 are all prefixes of

the set D.

Definition 6. Given D ⊆ 2m and x ∈ 2n. The vector x is called the maximum prefix of

the set of binary vectors D if x is a prefix of a set of binary vectors D, and ¬∃z ∈ 2q, q > n

where z is also prefix of the set of binary vectors D. We denote the maximum common

prefix of the set D as p(D).

Example 2.1.5. If D = 1011, 1010, 1000, then p(D) = 10. Note that the vector 1 is also

prefix of the set D, but the vector 10 is the largest prefix of that set.

2.1.2 Hamming Distance and Range Queries

Hamming distance between two binary vectors of equal length is the number of positions

at which they differs. Formally: .

Definition 7. Let x ⊕ y = 0 if x = y or 1 otherwise (⊕ is the xor operator). The

Hamming distance between two vectors x,y ∈ 2l is defined as:

H(x,y) =
l−1∑
i=0

(x[i]⊕ y[i])

Example 2.1.6. If s = 1011 and t = 1000 then H(s, t) = 2. Note that the vectors differs

in the last two bits.

Chapter 2. Background and Related Work 11

The r-neighbors search problem is defined as finding all vectors in D at Hamming

distance r or less of a query vector q:

Definition 8. The r-neighbors search over a set of binary vectors D ⊆ 2l given the

query binary vector q ∈ 2l and a radius r ∈ Z+ is defined as finding all vectors in D at

Hamming distance r of q:

Nr(D,q) = {d ∈ D : H(d,q) ≤ r}

Example 2.1.7. If D = 1011, 1010, 1001, for q = 0001 and r = 2 the result set would be

the vector 1001 that is at Hamming distance 1 and the vector 1011 that is at Hamming

distance 2.

There are two variants of r-neighbors search problem: when r is known in advance

(all queries use the same value of r) and when r is part of the input. The first case is

known as the static problem and the second case is known as the dynamic problem [26].

This thesis focuses on the solution of the dynamic problem.

2.2 Summary of Existing Techniques

2.2.1 Trie-Based Approaches

There have been several approaches that use the trie [16] data structure for the r-neighbor

search in Hamming space. The first algorithm that used a trie was proposed by Brodal

and Gasieniec [7], it only supported r = 1. This algorithm had O(l) query time complex-

Chapter 2. Background and Related Work 12

ity (l refers to the length of the vector) and O(ln) space complexity (n is the number of

vectors in the dataset).

For larger values of r, Arslan and Egecioglu [4] proposed a trie-based algorithm with

query time complexity O(lr+2). This method was later improved by Arslan reducing the

query time complexity to O(l(log 4
3
n− 1)r(log2 n

r+1)) [2]. MaaB and Nowak[27] reduced

the query time complexity to O(l) but with space complexity O(n logr n).

The fundamental limitation of these methods is that they require that binary vectors

fit in a machine word1, and these methods cannot be used for long vectors. The same

author extend this trie-based algorithm to be used for arbitrary vector size achieving

O(l2r(log2 n− 1)r log2 n
r+1) query time complexity [3].

2.2.2 Hierarchical Decomposition of the Search Space

For the r ≤ 1 problem, Yao and Yao proposed a binary-search-like tree algorithm with

O(l log log n) query time complexity and O(ln log l) space complexity [42]. They first

divide the query vector in two halves and search for the exact matches for each half. For

each matched candidate, if it was found by only by one half of the query, their algorithm

recursively apply this binary search strategy on the non-matching half until they reach

the leaf of the tree (query vector has length 1).

For the general case, Brin [6] proposed a data structured called GNAT (Geometric

Near-Neighbor Access Tree) that create a hierarchical decomposition of the search space

and works with any metric distance included Hamming distance. Based on this data

1A machine word is the natural unit of data used by a particular processor. A word is a fixed-sized
group of bits that are handled as a unit by the instruction set or processor hardware.

Chapter 2. Background and Related Work 13

structure, Muja and Lowe [31] proposed an algorithm based on a k-medoids decompo-

sition of the search space. K-medoids is an adaptation of the k-means algorithms that

choose data points as centers, minimizing the sum of pairwise dissimilarities (distances)

between the points in the cluster. A medoid can be defined as that member of a cluster

whose average dissimilarity to all other members of the cluster is minimal. Intuitively it

is the most centrally located member of the cluster.

The k-medoids algorithm uses a parameter k that is the number of clusters to form.

Firstly it selects k random elements of the dataset as clusters center, and then it assigns

the remaining dataset elements to the cluster where they are closest to its center. This

process is repeated recursively inside every cluster until a maximum-leaf size is reached,

forming a tree.

The algorithm of Muja and Lowe [31] repeats the k-medoid algorithm multiple times

from different random cluster centers, creating multiple trees. The k-medoid tree is

traversed starting from the root node. The child subtree with the closest center to the

query is selected and the process is repeated on that that subtree. When a leaf is reached,

all dataset elements on that node are scanned, using a linear search algorithm to find

the Hamming distance to the query. This process is run in parallel on all trees. This

algorithm does not give an exact answer and some r-neighbors to the query could be

missed. The algorithm of Liu et al. [26] extends the idea of Muja and Lowe [31] by

searching not only the query but perturbations of the query (variations of 1 bit, 2 bits,

. . ., p bits).

Chapter 2. Background and Related Work 14

2.2.3 Locality-Sensitive Hashing by Random Projections

Locality-Sensitive Hashing (LSH) [20] is a widely used hashing technique based on a

projection operator. A projection proj : 2l → 2n is a set of distinct numbers k =

{p0, p1, . . . pk−1} selected such as 0 ≤ pi < l and n < l. Using the projection, any vector

x ∈ 2l is transformed to proj(x) ∈ 2n where proj(x)[i] = x[pi].

LSH methods are builds upon a simple idea: assume two binary vectors that are

close in the Hamming space, then the probability of a projection of those vectors to be

equal is very high. Using this idea, vectors are divided in subvectors which are stored in

individual indices. Each index is queried proving a set of id (candidates) to be answer of

the original query. That set of ids is linearly scanned to find the answer to the query.

Randomly Selected Subvectors

LSH methods based on a random selection of subvectors uses a set K of m random

projections (called keys in this case). All subvectors vi generated form a specific key

ki ∈ K are stored in the hash table.

To search for the elements at distance r of the query q, the same set of keys K is

used to form subvectors of the query q1, q2, . . . , qm. Each subvector of the query is then

searched in its corresponding hash table and all elements of the database having the same

hash value are selected as candidates. The final result set for the query is computed from

those selected as candidates by performing a linear scan and discarding those vectors with

Hamming distance to the query greater than r. This last stage, known as the verification

stage, has O(n) time complexity with respect of the number of candidates.

Chapter 2. Background and Related Work 15

Using the LSH with random selected subvectors, a single candidate can be retrieved

multiple times form different hash tables. Hao et al. [17] take that into consideration to

reduce the number of candidates to be verified. Their algorithm only considers as candi-

date those dataset vectors that have occurred at least a specific number of times (they

call this parameter collision count). This algorithm significantly reduce the number of

candidates in the verification stage, but it also discards lot of true candidates, decreasing

the accuracy.

Moreover, in classic LSH with random selected subvectors, if none of the subvectors

of the query is identical to those of a r-variation, this r-variation will not be retrieved as

candidate in any hash table and then the algorithm will fail to include it as one of the

solutions. This problem is known as false rejection (rejecting to select a true candidate)

[13]. This probability of failure increases with the increase of the search distance r.

To address the above problem, Esmaeili et al. [13] proposed to also search for pertur-

bations of the query subvectors. When searching for a query subvector in a hash table,

they search also for variations of 1 bit, 2 bits, . . ., p bits. This variation significantly

reduces the number false rejections, but increases the amount of candidates to verify.

The algorithm of Esmaeili et al. [13] avoids using a full scan for verification by assigning

weight to every variation in decreasing order of the number of bit changes, and computing

final candidate selection from those of high overall sum of weights.

Other way to address false rejection has been to select appropriately the keys instead

of using random keys. In his Ph.D. thesis, Shakhnarovich [35] proposed to learn multiple

semi-supervised hashing keys using boosting technique. Multiple hash keys are learned

sequentially with boosting to maximize hashing accuracy of each hash key. The miss-

Chapter 2. Background and Related Work 16

hash samples in the current hash table will be penalized by large weights and then the

algorithm uses the new weight values to learn the next hash key. Given a query, the true

candidates missed from the active hash table are more likely to be found in the next hash

table.

2.2.4 Locality-Sensitive Hashing by Non-Overlapping Subvectors

Instead of using random subvectors for applying the LSH method, it is possible to divide

the vectors in m non-overlapping subvectors of
⌊

l
m

⌋
or
⌈

l
m

⌉
bits. Then, if two binary

vectors differ in r bits, there are at least p = m −
⌊

r
b r
m
c+1

⌋
subvectors that differ in at

most r′ = b r
m
c bits [43].

In the work of Liu et al. [26] they choose m = r + 1 and with that there will be at

least one exact match (where Hamming distance is 0) since r′ =
⌊

r
r+1

⌋
= 0 and p = 1.

Manku et al. [28] choose m =
⌊
r
2

⌋
+ 1 entailing at least p = 1 subvector with Hamming

distance r′ <= 1. Zhang et al. [43] proposed to use m =
⌊
r+3
2

⌋
and defined tighter

conditions for candidates to be valid derived from that selection of m.

One common problem of those approaches [28, 26, 43] is that they need to know in

advance the radius parameter r in order to calculate the number of partitions m and

create the hash tables. This could be a problem for applications requiring to query the

dataset using different radius dynamically. Norouzi et al. [32] propose a method that can

deal with dynamic search radius by fixing the number of partitions m and calculating

the radius to search every subvector r′ =
⌊

r
m

⌋
.

To deal with arbitrary r′, Norouzi et al. [32] proposed to search not only in the bucket

Chapter 2. Background and Related Work 17

corresponding to the key in the hash table, but all buckets whose indices are within r′

bits of the key bucket. That creates a compromise between the number of hash tables to

use m (subvectors) and the performance of the algorithm.

To find all neighbors within a radius r of a binary vector of size l using only one hash

table, all buckets whose indices are within r bits of the query bucket has to be examined.

But, when splitting the vectors in m subvectors instead of searching L(l, r) buckets in a

single hash table, the number of buckets to search is:

m× L
(
l

m
,
⌊ r
m

⌋)
. (2.1)

It can be seen that there is a reduction in the number of buckets to search within when

using m > 1 hash tables (see Equation 1.1).

Recall that the candidate vectors found from each index are merged into a single list

of candidate answers to the query. This list of candidates is linearly scanned to find

the answer to the original query. The size of the subvector determine the size of the

candidate list to be verified, and m determines the number of subvectors constructed

from a vector. m also specifies the number of indices created to store (and match) these

subvectors. When m is small, each index contains more information; however, in this

case, more hash buckets will be explored (Equation 1.1). For larger values of m, on the

other hand, the number of buckets explored at each index is small (Equation 1.1). See

[32] for details.

Finding a good value form is central to the efficiency of multi-index hashing with non-

overlapping subvectors. When the value of m is too large or too small the approach will

Chapter 2. Background and Related Work 18

not be effective, In the case of uniformly distributed codes, using the analytic cost model

discussed in [32], the value of m = log2(|D|) yields a near-optimal search cost. This

method effectively reduces the number of bucket to search, but implies more memory

consumption.

In their work, Zhang et al. [43] define an extended condition that can filter some false

candidates before the verification stage. The set m equal to
⌊
r+3
2

⌋
, and their filtering

mechanism uses the following two rules. When r is even, at least one subvector that is

an exact match (with Hamming distance 0) or at least two subvectors with Hamming

distance 1 are found in its index. When r is odd, valid candidates will have one subvector

that is an exact match and one that is at most at Hamming distance 1, or at least

three subvectors that are at Hamming distance 1. This condition reduces the number of

candidates to be verified because having several conditions to fulfill effectively reduces the

probability of false candidates progressing to the next stage. This is the only enhanced

filtering technique that have been used to successfully reduce the number of candidate

to be verified without removing true candidates.

The main problem with this condition is that the number of partitions m depends

on knowing in advance the search radius, so this method is not viable for dynamic

applications where searches with different radius are performed.

2.3 Summary

This chapter has presented a review of existing methods to solve the r-neighbors problem.

As have been seen, existing trie techniques can only deal with very small radii (usually

Chapter 2. Background and Related Work 19

r ≤ 1). Although these methods are time-efficient, they are not practical for answering

r-neighbors searches in very large databases due to their high storage requirement.

Methods based on hierarchical decomposition of the search space are not designed

to address range queries in Hamming space. These methods are also not practical for

very large databases due to their high query time complexity. Hashing based method are

designed to deal with larger radius and larger database sizes. To reduce the complexity of

dealing with large vectors, these methods divide the vectors in several smaller subvectors,

which are used during the search. Search results obtained using subvectors are combined

to construct the overall solution. Vectors can be divided using random projections or a

non-overlapping subdivision. Random projections present the problem of false rejections

when none of the subvectors of the query is identical to those of a valid candidate.

Additionally, both schemes of dividing the vectors tend to generate lots of candidates to

be tested during the verification stage, which is time consuming.

Hash table based methods that use non-overlapping subvectors need to construct

r-variations for each subvector and match it in the hash table. While the number of

r-variations for the set of subvectors computed from query vector is much smaller than

the r-variations for the query vector itself, the total number of hash table lookups is too

large, affecting the scalability of these methods. In the next chapter we will describe an

approach that dramatically reduces the number of hash table lookups by using a hybrid,

trie plus hash table, data structure.

Chapter 3

r-Neighbors Query Processing Using

Hybrid Index Structures

In this chapter we describe two methods that use bitwise trie data structure to address

the r-neighbors search problem (for arbitrary values of r). We first demonstrate that

it is possible to identify r-neighbors of a query vector in a set of vectors stored in a

bitwise trie. Traversing trie is time consuming, and trie based approach for resolving

r-neighbors queries is slower when compared to existing techniques. This observation led

us to propose a hybrid (trie + hash table) data structure that achieves state-of-the-art

query processing times for r-neighbors queries.

3.1 Preliminaries

We begin by formally introducing r-variations.

20

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 21

3.1.1 r-Variations

Definition 9. Given a binary vector q ∈ 2l and a value r ∈ Z+, we define the r-variations

of q denoted as Q(q, r) as all possible vectors of equal size of q at Hamming distance

equal to r or less to q:

Q(q, r) = {q′ ∈ 2l : H(q,q′) ≤ r}

Example 3.1.1. Given the binary vector q = 0001, for the radius r = 2 the set of r-

variations of q are: Q(q) = {1001, 0101, 0011, 0000, 1101, 1011, 1000, 0111, 0100, 0010}.

The definition of r-variations is closely related to the definition of the r-neighbors

search problem. It is necessary to remember that this problem is defined as finding all

vectors in D at Hamming distance r or less of a query q (See definition 8):

Nr(D,q) = {d ∈ D : H(d,q) ≤ r}

The r-neighbors search problem can be also be defined as the r-variations that are in

D:

Nr(D,q) = Q(q, r) ∩D

.

Those r-variations that are not in D are called null variations. Formally:

Definition 10. Given a set of binary vectors D ⊆ 2l, a binary vector q ∈ 2l and a value

r ∈ Z+, all vectors x ∈ Q(q, r) \Nr(D, q) are called null variations.

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 22

Example 3.1.2. Given the set of binary vectors D = {1011, 1010, 1000}, the answer of

the r-neighbors search problem for q = 0001 and r = 2 is N2(D,q) = {1011, 1000} (see

Example 2.1.7). Those vectors are 2-variations of q that are in D (see example Example

3.1.1), the other 2-variations of q, vectors 1001, 0101, 0011, 0000, 1101, 0111 and 0010 are

all null variations.

The reader should notice that the number of variations is directly dependent on both,

the length of the vector and the radius. The total number of r-variations of a vector q

is equal to:

|Q(q, r)| =
r∑

i=0

(
|q|
i

)

3.1.2 Computing All r-Variations

To compute the set of r-variations of a vector q, the followed recursive approach can be

followed: we generate all prefixes of q that is at Hamming distance 1 and then the process

is recursively repeated for the remaining suffix of q but this time with using radius r−1.

Formally it can be defined as a recursive expression:

Base cases:

Q(q, 0) = {q}

Q(ε, r) = {ε}

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 23

Inductive case:

Q(q, r) = {q[0]‖v : v ∈ Q(q[1 :], r)} ∪ {¬q[0]‖v : v ∈ Q(q[1 :], r − 1)}

Algorithm 3.1 shows the pseudo-code for generating the r-variations using the above

recursive expression.

Algorithm 3.1 Algorithm to generate all possible r-variations of a given vector
procedure generateAllVariations(q, r)

V ← ∅
if r = 0 then

return {q}
if |q| = 0 then return {ε}
else

p← q[0]
s← q[1 :]
for all s′ ∈ generateVariations(s, r) do

V ← V ∪ {p‖s′}
for all s′ ∈ generateVariations(s, r − 1) do

V ← V ∪ {(¬p)‖s′}
return V

3.2 Solving the r-Neighbors Search Problem Using a

Trie

In this section we are going to present a trie based index structure to solve the r-neighbors

search problem. This index structure is inspired by the way Algorithm 3.1 works. The

goal of this index structure is to find all non-null r-variations of a given query. Algorithm

3.1 works by fixing a prefix of Hamming distance k to q and then generating all possible

(r − k)-variations that have that prefix. At every recursive call it adds one more value

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 24

to that fixed prefix.

A trie [11] is a tree data structure where all the descendants of a node have a common

prefix of the vector (string) associated with that node, and the root is associated with

the empty vector (string). Each node at level l represents the set of all keys that begins

with the same sequence of l characters called its prefix; the node defines a branching

depending on the l + 1 character of the keys. The trie for the special case of the binary

vectors (called bitwise trie) is a binary tree since the values at each position are 0 or 1.

Figure 3.1 shows an example of a bitwise trie.

A bitwise trie can be formally defined as:

Definition 11. Given D ⊂ 2l. A bitwise trie of D denoted as TD is defined as follow:

i) All nodes n ∈ TD represent a subset of vectors of D denoted as V (n) that share a

common prefix p(V (n)).

ii) All node n ∈ TD is divided in two subtree named left(n) and right(n) (see Figure

3.2):

• The left subtree represents a subset of the vectors associated with n that has a

bit equal zero in the position after the common prefix. Formally V (left(n)) =

{x ∈ V (n) : x[|p(V (n))|] = 0}.n

• The right subtree represents a subset of the vectors associated with n that has a

bit equal one in the position after the common prefix. Formally V (right(n)) =

{x ∈ V (n) : x[|p(V (n))|] = 1}.

iii) For all nodes n, the length of its prefix is one bit less than the length of the prefix of

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 25

00000000

0

0

0

00000100

0

0

00000110

0

1

1

0

0

00010000

0

0

0

0

00011100

0

00011101

1

0

1

1

1

0

0

01010000

0

0

0

0

1

0

1

0

Figure 3.1: Bitwise trie for D = { 01010000, 00010000, 00011100, 00011101, 00000110,
00000100, 00000000 }

each subtree. Formally |p(V (n))| = |p(V (left(n)))|+ 1 = |p(V (right(n)))|+ 1.

Nodes with the two children equal to the empty set are called leaf nodes. Nodes with at

least one non-empty child are called tree nodes.

The root node corresponds to the whole set D. Each tree node corresponds to the

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 26

0 1

1

{
V = {1011,1010,1000,1111,1100}
p(V) = 1

{
V = {1111,1100}
p(V) = 11

V = {1011,1010,1000}
p(V) = 10

}

Figure 3.2: Node child splitting example on a bitwise trie.

common prefix of its leaf nodes. Furthermore, the common prefix of a child is strictly

longer than that of its parent. Thus, the length of the trie built from D ⊂ 2l must be at

most (exactly) l.

Given a bitwise trie TD, it is possible to know if a vector x is in D by traversing the

trie. If a leaf is reached, x ∈ D, otherwise x /∈ D. Algorithm 3.2 shows the pseudo-code

to query a bitwise trie.

Using a similar idea to Algorithm 3.2, we can traverse the trie searching for r-

variations. In this case, at every node we are going to visit both children keeping track of

the hamming distance of the maximum common prefix of the visited node with the query.

However, since a child of an internal node can be empty, no non-null r-variation can be

generated from that child, which is an effective pruning of null r-variations. Since an

r-variation is reported when reached a leaf, no null r−variation is generated. Algorithm

3.3 shows the pseudo-code for generating all non-null r-variations of q given TD:

Lemma 1. Algorithm 3.3 does not generate null variations.

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 27

Algorithm 3.2 Algorithm to query a Bitwise Trie
procedure search(TD,q)

if TD = ∅ then
return False

node← root(TD)
level← 0
while not isLeaf(node) do

if q[level]) = 1 then
node← rightChild(node)

else
node← leftChild(node)

level← level + 1

if isLeaf(node) then
return True // Found

else
return False // Not found

Proof. Since Algorithm 3.3 only return vectors when reaching a leaf node (line 10), all

variations returned are in D.

3.2.1 Reducing Space Requirement Using Compressed Bitwise

Trie

An space-optimized variant of the trie (called compressed trie) is where each node with

only one child is merged with its parent. This way, all internal nodes have at least 2

children.

For this particular case, E. G. Coffman and J. Eve [9] propose to store at each internal

node the first bit position where its vectors differs. All vectors containing a 1 at that

position will be in the right child and all with 0 in the left child. This type of trie is what

we will call compressed bitwise trie. Formally speaking:

Definition 12. Given D ⊂ 2l. A compressed bitwise trie of D denoted as CTD is defined

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 28

Algorithm 3.3 r-neighbor search using a trie
1: procedure rangeQuery(TD,q, r)
2: if TD = ∅ then
3: return ∅
4: return rangeQueryAt(root(TD), 0,q, r)
5:
6: procedure rangeQueryAt(node, i,q, r)
7: if node = NIL or r < 0 then
8: return ∅
9: if isLeaf(node) then
10: return {q}
11: else
12: if q[i] = 0 then
13: V ariationsLeft← rangeQueryAt(left(node), i+ 1,q, r)
14: V ariationsRight← rangeQueryAt(right(node), i+ 1,q, r − 1)
15: else
16: V ariationsRight← rangeQueryAt(right(node), i+ 1,q, r)
17: V ariationsLeft← rangeQueryAt(left(node), i+ 1,q, r − 1)

18: return V ariationsLeft ∪ V ariationsRight

as follow:

i All nodes n ∈ CTD represent a subset of vectors of D denoted as V (n) that share a

common prefix p(V (n)). The value |p(V (n))| is called split position (splitPos).

ii When the split position of a node is l, it is a leaf node, otherwise it is an internal

node.

iii All internal nodes N ∈ CTD have two subtree named left(N) and right(N).

• The left subtree represents a subset of the vectors associated with n that has a

bit equal zero in the position after the common prefix. Formally V (left(n)) =

{x ∈ V (n) : x[|p(V (n))|] = 0}.

• The right subtree represents a subset of the vectors associated with n that has a

bit equal one in the position after the common prefix. Formally V (right(n)) =

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 29

splitPos=1

splitPos=3

splitPos=5

00000000

0

splitPos=6

00000100

0

00000110

1

1

0

splitPos=4

00010000

0

splitPos=7

00011100

0

00011101

1

1

1

0

01010000

1

Figure 3.3: Compressed bitwise trie for D = { 01010000, 00010000, 00011100, 00011101,
00000110, 00000100, 00000000 }

{x ∈ V (n) : x[|p(V (n))|] = 1}.

Figure 3.3 shows an example of the compressed bitwise trie.

Algorithm 3.3 can be revised to proces r-neighbors queries using a compressed bitwise

trie (see Algorithm 3.4).

In a compressed trie, a pair of parent-child nodes could represent a compression of

several nodes in the trie that has only one child. It is obvious that the only bits with

two options to explore when searching for r-variations are those at the split position,

but the query vector could have different bit values of those bit that has only one child.

For example, if the common prefix of a node is 01, and the query is 111, when the

split position of that node is 2, the first value of the query (0) differs from the prefix.

Algorithm 3.4 uses a lazy evaluation strategy since it does not verify that all bits of the

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 30

Algorithm 3.4 Lazy-evaluation algorithm for r-neighbor search using a compressed
bitwise trie
1: procedure rangeQuery(CTD,q, r)
2: if TD = ∅ then
3: return ∅
4: return rangeQueryAt(root(CTD),q, r)
5: procedure rangeQueryAt(node, i,q, r)
6: if node = NIL or r < 0 then
7: return ∅
8: if isLeaf(node) then
9: if H(q, V (node)) ≤ r then
10: return {q}
11: else
12: if q[splitPos(node)] = 0 then
13: V ariationsLeft← rangeQueryAt(left(node),q, r)
14: V ariationsRight← rangeQueryAt(right(node),q, r − 1)
15: else
16: V ariationsRight← rangeQueryAt(right(node),q, r)
17: V ariationsLeft← rangeQueryAt(left(node),q, r − 1)

18: return V ariationsLeft ∪ V ariationsRight

query match the common prefix (bit 0 in our example). Those bits will be checked once

a leaf is reached.

Algorithm 3.5 is a non-lazy evaluation version of the Algorithm 3.4. The main differ-

ence between those two algorithms is that the second algorithm verifies the full prefix of

the query before flipping the bit at the split position.

3.3 Hybrid Trie-Hash Table Index Structure for the r-

Neighbors Search Problem

There are two main group of algorithms for solving the r-neighbors search problem. On

one hand, Hash-based r-neighbors search methods uses a algorithm to generate all r-

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 31

Algorithm 3.5 Algorithm for r-neighbor search using a compressed bitwise trie
1: procedure rangeQuery(CTD,q, r)
2: if TD = ∅ then
3: return ∅
4: return rangeQueryAt(root(CTD),q, r)
5: procedure rangeQueryAt(node, i,q, r)
6: if node = NIL or r < 0 then
7: return ∅
8: if isLeaf(node) then
9: return {q}
10: r ← r −H(q[: splitPos(node)], p(V (node)))
11: q← p(V (node))‖q[splitPos(node) :]
12:
13: if q[splitPos(node)] = 0 then
14: V ariationsLeft← rangeQueryAt(left(node),q, r)
15: q[splitPos(node)]← 1
16: V ariationsRight← rangeQueryAt(right(node),q, r − 1)
17: else
18: V ariationsRight← rangeQueryAt(right(node),q, r)
19: q[splitPos(node)]← 0
20: V ariationsLeft← rangeQueryAt(left(node),q, r − 1)

21: return V ariationsLeft ∪ V ariationsRight

neighbors and use a hash table to check if they are on D. Checking a hash table is

relatively inexpensive, but the exponential number of r-variations to check, most of them

null r-variations, makes those algorithms computationally expensive for large vector sizes

and large radii.

On the other hand, trie based algorithm traverses the trie avoiding generating null

r-variations. The major disadvantage of this method is that when r reaches 0 during

trie traversal, the traversal must continue to see if non-null r-variation exists in the trie.

This adversely affects the performance of the overall algorithm. Figure 3.4 highlights this

observation. Paths shown in blue refer to traversals after r reaches 0. Clearly, there are

many more blue paths than there are red paths, which refer to traversal corresponding

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 32

to r > 0.

Figure 3.4: This image shows the nodes traversed when r > 0 (in red) and when r = 0
in blue on a trie of 1 million 64 bit vectors searched with r = 2. This suggests that a
mechanism to avoid traversal when r = 0 is reached may lead to significant performance
gain.

We have developed a novel strategy that uses a hash table to avoid subsequent traver-

sals when r = 0 is reached. This results in a substantial reduction in the number of nodes

explored during candidate r-variations generation. The proposed scheme stores the col-

lection of binary vectors in both a trie and a hash table. Given a query vector, trie

data structure is used to generate the candidate r-variations. This is accomplished by

traversing the trie. During traversal, when r reaches 0, the current candidate is looked

up in the hash table; we refer to it as the membership check. This determines in constant

time if the current r-variation candidate is in the collection. No further traversals are

needed below this node. Choosing hash table lookup at r = 0 is simply a design decision.

It is indeed possible to extend the idea of using hash table for membership checks to

r > 0; however, we would like to remind the reader the exponential growth of member-

ship checks for values of r greater than 0 (see Equation 3.1.1). Thus choosing r > 0 may

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 33

result in little or no performance gain.

The hybrid index structure consist of a hash table HT and a compressed bitwise trie

CT . All elements of D will be inserted in both structures. Algorithm 3.6 shows the

pseudo-code to query the hybrid index. The reader should notice that when comparing

the function rangeQueryAt between Algorithm 3.5 and Algorithm 3.6, the only sig-

nificant change is that in the later recursion terminates when r = 0 (lines 13 and 14 of

Algorithm 3.5).

Algorithm 3.6 Algorithm for r-neighbor search using hybrid index
1: procedure rangeQuery(HTD, CTD,q, r)
2: if TD = ∅ then
3: return ∅
4: V ariations← rangeQueryAt(root(CTD),q, r)
5: Result← ∅
6: for all v ∈ V ariations do
7: if v ∈ HTD then
8: Result← Result ∪ {v}
9: return Result
10: procedure rangeQueryAt(node, i,q, r)
11: if node = NIL or r < 0 then
12: return ∅
13: if isLeaf(node) or r = 0 then
14: return {q}
15: V ariationsAtNode← ∅
16: if H(q[: splitPos(node)], p(V (node))) > 0 then
17: r ← r −H(q[: splitPos(node)], p(V (node)))
18: q ← p(V (node))‖q[splitPos(node) :])
19: if q[splitPos(node)] = 0 then
20: V ariationsLeft← rangeQueryAt(left(node),q, r)
21: q[splitPos(node)]← 1
22: V ariationsRight← rangeQueryAt(right(node),q, r − 1)
23: else
24: V ariationsRight← rangeQueryAt(right(node),q, r)
25: q[splitPos(node)]← 0
26: V ariationsLeft← rangeQueryAt(left(node),q, r − 1)

27: return V ariationsLeft ∪ V ariationsRight

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 34

3.3.1 Multi-Hybrid Index

The hybrid index structure is proposed as a replacement of a pure hash table index.

However, for large vectors and large radius r, the best approach is to use a multi-index

schema like the locality-sensitive hashing methods (see Section 2.2.3). Since the the work

of Norouzi et al. [32] is the best algorithm to date that deal with the dynamic r-neighbors

problem, we propose to use their scheme but using our hybrid index. Instead of using

only a hash table, each index in the multi-index scheme would be a hybrid trie + hash

table data structure.

The multi-index approach using the proposed hybrid index structure is as follows.

Given D ∈ 2l and m < l:

1. Vectors of D are divided in non-overlapping subvectors v1,v2, . . .vm of size b l
m
c or

d l
m
e such as

∑m
i=1 |vi| = l (see Section 2.2.4).

2. m hybrid indexes are created denotes as I1, I2, . . . Im, and on each one is inserted

one chunk of each subvector of D (all v1 are inserted in I1, all v2 are inserted on

I2, etc)

To search for a query q and radius r using the multi-index, q it is also divided in

q1,q2, . . .qm in the same way vectors of D were divided. Then each subvector of the

query is searched on the corresponding index (q1 is searched on I1, q2 is searched on I2,

etc), but using radius r′ = b r
m
c. The result on every index is then tested to see if its

corresponding vector on D is at Hamming distance r of the query q (see Section 2.2.4).

Chapter 4

Experimental Evaluation

Norouzi et al. [32] multi-index hashing implementation is available to the research com-

munity. Our compressed trie index implementation is added to their system. This enables

us to compare our algorithm with theirs in a fair manner. From hence forth we refer to

their algorithm as MIH; whereas, our technique that uses both a hash table and a com-

pressed trie to index binary vectors is referred as MIH+Trie.

Experiments are run on a workstation with a 2.9 GHz quad-core Intel Xeon processor,

20 MB of L2 cache, and 64 GB of RAM. It is worth noting that large L2 cache significantly

improves the performance of linear scan [32]. For our experiments, we only used a single

core to simplify runtimes measurements. The runtimes reported in this work are the

result of five runs of the algorithm in exactly the same conditions. The datasets used for

evaluation are uniformly-distributed randomly-generated vectors.

35

Chapter 4. Experimental Evaluation 36

Figure 4.1: Number of hash table lookups for MIH and our hybrid approach (MIH+Trie)
for a database of 1 million 128-bits vectors and using m=4 indexes. The number of
lookups is an average over 1000 queries. Here every index manages vectors of 32 bits.

4.1 Hash Table Lookups

Since the goal of our hybrid approach is to improve runtime by reducing the number

of hash table lookups that need to be performed, we compare both methods on the

number of hash table lookups performed. MIH uses the naïve approach to compute all

r-variations, and the total number of lookups that it will perform can be computed using

Equation 1.1 for every block (parameter m). MIH+Trie, however, skips null r-variations,

reducing the number of lookups to perform.

Figure 4.1 shows the difference in terms of the number of lookups performed between

these two methods for a dataset of one million 128-bits vectors using 4 indexes (parameter

m). In this scenario, each index will deal with 128/4 = 32 bits vectors. Notice that the

Chapter 4. Experimental Evaluation 37

Figure 4.2: Number of hash table lookups between MIH and our hybrid approach
(MIH+Trie) for a database of 1 million 128-bits vectors and using m=6 indexes. The
number of lookups is an average over 1000 queries. Here every index manage vectors of
21 bits.

number of hash table lookups for the propose approach, MIH+trie, is much smaller than

the lookups for MIH. Furthermore, this differences increases quickly for increasing values

of r.

Figure 4.2 repeats the experiment with 6 indexes. m = 6 is the theoretical “best”

value for this scenario as determined by MIH [32]. Again, observe the hash table lookups

savings obtained by our method over MIH. This time, however, the savings obtained are

not as good as those obtained in the previous case (m = 4). When using 6 indexes to

store 128 bit vectors, each index stores 128/6 ≈ 21 bit vectors. The total number of

21 bit vectors is 221, which is ≈ 106. Since we are indexing 1 million vectors, the trie

corresponding to each index are nearly full. When trie is full, it looses its ability to prune

Chapter 4. Experimental Evaluation 38

Figure 4.3: Comparison in the number of lookups between MIH and our hybrid approach
(MIH+Trie) for a database of 1 million 64-bits vectors and using m=4 indexes. The
number of lookups is an average over 1000 queries. Here every index manages vectors of
16 bits.

null r-variations—indeed, there are no null r-variations in this case. Consequently, every

r-variation will be checked in the hash table. In such cases, our hybrid index is actually

slower due to the extra processing costs associated with generating r-variations using a

trie.

Figure 4.3 illustrates this issue further. Here we index 1 million 64 bit vectors using

4 indexes. Each index, therefore, stores (64/4 =)16 bit vectors. The total number of

64 bit vectors is 65536(� 106total number of vectors). Each trie stores 1 million 16-bit

vectors. In this case each trie is almost full. Consequently there is no null r-variations

to prune, so both method performs the same number of lookups. This suggests that the

choice of m is an important consideration when our method. A large value of m can

Chapter 4. Experimental Evaluation 39

Figure 4.4: Comparison in time between Linear scan, Trie, MIH and our hybrid approach
(MIH+Trie) for a database of 1 million 128-bits vectors, 1000 queries, using m=4 indexes.
Here every index manages vectors of 32 bits.

make the tries dense while small values of m can makes them sparse tries.

4.2 Runtime Comparison

In the previous section (Section 4.1) we studied the number of hash table lookups gen-

erated by our method in comparison with the number of lookups performed by MIH. It

was observed that, when the tries are not full, there is a reduction in the number of hash

table lookups generated by our method. In this section we want to explore if there is

empirical evidence that this reduction implies improved runtimes.

Figure 4.4 shows a comparison of the runtime on 1000 queries for the linear scan

method (that serves as baseline), the MIH scheme, and our method MIH+Trie. The

linear scan method does not depend on the radius, while both MIH and MIH+Trie

Chapter 4. Experimental Evaluation 40

Figure 4.5: Comparison in time between Trie, MIH and our hybrid approach (MIH+Trie)
for a database of 1 million 128-bits vectors, 1000 queries and using m=6 indexes. Here
every index manages vectors of 21 bits.

methods depend upon r. Specifically, the processing times for all three increase sharply

for increasing r. This behavior is to be expected. As can be seen, MIH+Trie outperforms

both methods, while the MIH method perform worse than the linear scan for radii greater

than 20 in this scenario.

The difference in speed is closely related to the difference in the number of hash table

lookups performed. When the 64-bits vectors are divided into 6 indexes (i.e., m = 6), the

difference in the number of hash table lookups is less than (Figure 4.2) the lookups when

the vectors are divided into 4 indexes (Figure 4.1). This reduction in the difference of

the number of hash table lookups dramatically reduces the difference in runtime between

the two method. Even when MIH+Trie outperforms MIH for all radii, the difference in

speed is only noticeable on very large radius (r ≥ 24) as shown in Figure 4.5.

When both methods perform the same number of hash table lookups (see Figure 4.3),

Chapter 4. Experimental Evaluation 41

Figure 4.6: Comparison in time between Trie, MIH and our hybrid approach (MIH+Trie)
for a database of 1 million 64-bits vectors, 1000 queries and using m=4 indexes. Here
every index manages vectors of 16 bits.

our method performs worse than the MIH method, see Figure 4.6. This is due to the

fact that trie is slower at generating r-variations.

4.3 Practical Considerations

In Section 4.1, we saw the reduction in the number of lookups performed by our method

in comparison with a pure hash table when the trie is not full. On sparse tries, this

reduction can be of several orders of magnitude as Figure 4.1 shows. In Section 4.2 we

get that this reduction of lookups implies a substantially reduction in the search time

(see Figure 4.4).

However, in a full trie there is no reduction in the number of lookups (see Figure 4.3).

Chapter 4. Experimental Evaluation 42

When generating the lookups using the trie traversal, there is an additional overhead.

This overhead, without accompamying reduction in the number of lookups, makes the

runtime of our algorithm is worse than a pure hash method when the trie is full (see

Figure 4.6).

This observations are empirical evidences that shows that there is a positive cor-

relation between the number of lookups generated and the runtime of the algorithm.

Traversing the trie to generate lookups has an overhead, but this is much smaller than

the performance gain from avoiding hash lookups. This re-enforces our design principle

of minimizing the number of lookups to increase search speed.

Practically, the trie will be very sparse for large vectors even with very large datasets.

For example, a trie of a dataset of 1-billions 64-bits vectors is much less than 1% full.

Therefore, as our experiments indicates, our approach outperforms the MIH for real-life

datasets.

Chapter 5

Conclusion

In this thesis, we have studied the r-neighbor search problem within a finite radius in

high dimensional Hamming space. Formally, the problem is defined as: given a collection,

D, of binary vectors, a query q which is also a binary vector, and a radius r > 0, find all

vectors in X that is at most r distance away from q. Namely, {x ∈ X : H(x,q) ≤ r}.

The state-of-art solution to our problem in the existing literature is the multi-index

hashing (MIH) approach proposed by Nozouzi et al. [32]. We have identified that the

bottleneck of using MIH index structure is the exponentially many hash lookups that must

be generated when searching for r-neighbors. The effect of the bottleneck is exasperated

with longer vector length (namely the dimensionality of the Hamming space). The root

cause of the bottleneck is that the hashing nature of MIH does not support local search.

43

Chapter 5. Conclusion 44

5.1 Algorithms

Our proposal is to augment the hash-based MIH data structure so that it is possible for

a search algorithm to perform limited local search, reducing the number of hash lookups

needed. To this end, we augment the MIH index with a compressed trie. A compressed

trie is a data structure that organizes the binary vectors according to their common

prefixes. The compressed trie offers two important features that alleviate the bottleneck

of MIH:

1. the organization by common prefix allows efficient local search (by prefix), thus it

can guide the search by pruning. This allows much faster convergence to the final

query answer.

2. as part of the compression for storage, compressed trie records important bits that

partitions the dataset into two nonempty sets. Unlike the naïve candidate query

generation used in MIH, we are able to limit the bit-flipping to only these important

bits. This significantly reduces the number of hash lookups needed.

We have formalized the improved efficiency by introducing the concepts of r-variations

of a query q and null r-variations of q with respect to a dataset D. An r-variation of q

is a candidate query that is generated by MIH, while a null r-variation is one that fails

to locate any neighbors in D. So, all generated null r-variations are undesirable as they

are wasted computations. A key difference between the naïve MIH and our approach is

that we are able to control the amount of null r-variations generated by the algorithm.

In this thesis, we have presented two query processing algorithms:

Chapter 5. Conclusion 45

1. r-neighbor range query processing using only the compressed trie. [Algorithm 3.5]

2. a hybrid r-neighbor range query processing using both the compressed trie and

MIH. [Algorithm 3.6]

We have proven that Algorithm 3.5 generates no null r-variations, so that every

lookup guarantees to produce some query result. However, the compressed trie lookup

requires extensive tree traversal which is several times more costly than hash table lookup.

Algorithm 3.6 is a hybrid approach that utilizes the compressed trie to identify the

important bits to flip, but still relies upon MIH for the eventual lookup. This means that

we benefit from the strengths of both index structures. The result is that we can reduce

the number of hash lookups with minimal amount of tree traversal. One can show that

Algorithm 3.6 still generates null r-variations, but far fewer of them.

5.2 Performance Evaluation

We have implemented and evaluated the algorithms using the C programming language.

The compressed trie and MIH are both maintained as main memory data structures. In

order to thoroughly evaluate the performance characteristics of the algorithms, we have

generated synthetic datasets (up to 1 million vectors) and query workload (up to 1000

queries). Our experiments compares the performances of:

1. linear search;

2. naïve MIH; and

3. our approach.

Chapter 5. Conclusion 46

Our experiments show that Algorithm 3.6 reduces the number of hash lookups by

orders of magnitude [Figure 4.1, 4.2], while incurring minimal overhead. We also observe

that the overall performance is improved by a factor of 2 at times. The performance

gain is the most significant when the dataset is sparse, namely the dimensionality N of

the binary vectors (actually sub-vectors stored in different indexes for MIH) is such that

|D| � 2N . This is typically the case in practice (with binary vectors of length > 100).

Even at the extreme case when |D| ' 2N (i.e., the dataset is dense), we see that our

approach is very comparable to the naïve MIH (Figure 4.2) due to the minimal overhead

of the compressed trie.

5.3 Contribution

The contributions of this thesis work can be summarized as follow:

Scientific contribution:

1. A trie-based algorithm for solving the r-neighbors search problem; and

2. A hybrid trie+hash algorithm for solving the r-neighbors search problem.

System engineering contribution: Appendix A provides the implementation details

and optimization techniques used to produce fast implementations of the proposed al-

gorithm. We did not invent these implementation tricks. Still putting them together to

speedup our proposed algorithm is an engineering contribution.

Chapter 5. Conclusion 47

5.4 Future Work

There are a number of extensions to this thesis we would like to explore in our future

research.

1. Nearest neighbors queries

This thesis is limited to the range query with radius r. A closely related query is

that of the k-nearest neighbor (NN) queries. To answer the k-NN queries using

hash based index structure, one must resort to the naïve approach of successively

expanding the range r until at least k neighbors have been discovered. With the

augmentation of a trie, we believe that it’s possible to speed up the k-NN queries

by utilizing the added local searchability.

2. Disk based index and query processing

Currently all index structures exist in main memory, thus the dataset is limited

by the size of the physical memory available to the algorithm. We would like to

investigate the issues and solutions of designing disk based index structures. We

foresee that there are some interesting issues associated with merging the MIH and

compressed trie data structure with well known disk based hashing using B+ tree.

Bibliography

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 510–517, Providence, RI, USA, June 2012.

[2] A. N. Arslan. Efficient approximate dictionary look-up over small alphabets. Tech-

nical report, University of Vermont, 2005.

[3] A. N. Arslan. Efficient approximate dictionary look-up for long words over small

alphabets. In Proceedings of the 7th Latin American Symposium on Theoretical

Informatics (LATIN), volume 3887 of Lecture Notes in Computer Science, pages

118–129. Springer Berlin Heidelberg, Valdivia, Chile, March 2006.

[4] A. N. Arslan and O. Egecioglu. Dictionary look-up within small edit distance. In

Proceedings of the 8th Annual International Computing and Combinatorics Confer-

ence (COCOON), pages 127–136, Singapore, August 2002.

[5] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. Picodes: Learning a compact

code for novel-category recognition. In Proceedings of the Conference on Neural

Information Processing Systems (NIPS), pages 2088–2096, December 2011.

48

Bibliography 49

[6] S. Brin. Near neighbor search in large metric spaces. In Proceedings of the 21th Inter-

national Conference on Very Large Data Bases (VLDB), Berlin, Germany, Septem-

ber 1995.

[7] G. Brodal and L. Gasieniec. Approximate dictionary queries. In Combinatorial

Pattern Matching, volume 1075 of Lecture Notes in Computer Science, pages 65–74.

Springer Berlin Heidelberg, 1996.

[8] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent

elementary features. In K. Daniilidis, P. Maragos, and N. Paragios, editors, European

Conference on Computer Vision (ECCV), volume 6314 of Lecture Notes in Computer

Science, pages 778–792. Springer Berlin Heidelberg, September 2010.

[9] E. G. Coffman, Jr. and J. Eve. File structures using hashing functions. Communi-

cations of the ACM, 13(7):427–432, July 1970.

[10] N. G. de Bruijn. A Combinatorial Problem. Koninklijke Nederlandsche Akademie

Van Wetenschappen, 49(6):758–764, June 1946.

[11] R. De La Briandais. File searching using variable length keys. In Proceedings of the

IRE-AIEE-ACM Western Joint Computer Conference, pages 295–298, San Fran-

cisco, California, March 1959.

[12] M.M. Esmaeili, M. Fatourechi, and R.K. Ward. A robust and fast video copy detec-

tion system using content-based fingerprinting. IEEE Transactions on Information

Forensics and Security, 6(1):213–226, 2011.

Bibliography 50

[13] M.M. Esmaeili, R.K. Ward, and M. Fatourechi. A fast approximate nearest neighbor

search algorithm in the hamming space. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 34(12):2481–2488, 2012.

[14] R. Fisher. General-purpose SIMD with a register: parallel processing on consumer

microprocessors. PhD thesis, School of electrical and computer engineering. Purdue

University, 1997.

[15] D. R. Flower. On the properties of bit string-based measures of chemical similarity.

Journal of Chemical Information and Computer Sciences, 38:379–386, 1998.

[16] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[17] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on

dynamic collision counting. In Proceedings of the 2012 ACM International Confer-

ence on Management of Data (SIGMOD), pages 541–552, Scottsdale, Arizona, USA,

May 2012.

[18] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval.

In Proceedings of the 35th Annual Symposium on Foundations of Computer Science

(FOCS), pages 722–731, Santa Fe, NM, USA, November 1994.

[19] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley, and M.G. Harmon. Bound-

ing pipeline and instruction cache performance. IEEE Transactions on Computers,

48(1):53–70, January 1999.

Bibliography 51

[20] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the

curse of dimensionality. In Proceedings of the T13th Annual ACM Symposium on

Theory of Computing (STOC), pages 604–613, Dallas, TX, USA, May 1998.

[21] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 0: Intro-

duction to Combinatorial Algorithms and Boolean Functions (Art of Computer Pro-

gramming). Addison-Wesley Professional, 1 edition, 2008.

[22] D. Kuettel, M. Guillaumin, and V. Ferrari. Segmentation propagation in imagenet.

In European Conference of Computer Vision 2012 (EECV), volume 7578 of Lecture

Notes in Computer Science, pages 459–473. Springer Berlin Heidelberg, October

2012.

[23] J. Landré and F. Truchetet. Fast image retrieval using hierarchical binary signatures.

In Proceedings of the 9th International Symposium on Signal Processing and Its

Applications (ISSPA), pages 1–4, Sharjah, United Arab Emirates, February 2007.

[24] J. Landré and F. Truchetet. Image retrieval with binary hamming distance. In

Proceedings of the 2nd International Conference on Computer Vision Theory and

Applications (VISAPP), Barcelona, Spain, March 2007.

[25] C. E. Leiserson, H. Prokop, and K. H. Randall. Using de bruijn sequences to index

a 1 in a computer word. MIT Laboratory for Computer Science, 1998.

[26] A.X. Liu, Ke Shen, and E. Torng. Large scale hamming distance query processing. In

IEEE 27th International Conference on Data Engineering (ICDE), pages 553–564,

Hannover, NI, Germany, April 2011.

Bibliography 52

[27] M. G. MaaB and J. Nowak. Text indexing with errors. Technical report, Institut

für Informatik, Technische Universit ät München, 2005.

[28] G. S. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates for web crawling.

In Proceedings of the 16th International Conference on World Wide Web (WWW),

pages 141–150, Banff, AB, Canada, May 2007.

[29] M.L. Miller, M.A. Rodriguez, and Ingemar J. Cox. Audio fingerprinting: nearest

neighbor search in high dimensional binary spaces. In IEEE Workshop on Multimedia

Signal Processing (MMSP), pages 182–185, St. Thomas, VI, USA, December 2002.

[30] F. Mueller and D. B. Whalley. Avoiding conditional branches by code replication.

In Proceedings of the ACM Conference on Programming Language Design and Im-

plementation (PLDI), pages 56–66, New York, NY, USA, 1995. ACM.

[31] M. Muja and D. G. Lowe. Fast matching of binary features. In Proceedings of

the 2012 Ninth Conference on Computer and Robot Vision (CRV), pages 404–410,

Toronto, ON, Canada, May 2012.

[32] M. Norouzi, A. Punjani, and D.J. Fleet. Fast search in hamming space with multi-

index hashing. IEEE Transaction of Pattern Analysis and Machine Inteligence

(TPAMI), (6), 2014.

[33] J. Oostveen, T. Kalker, and J. Haitsma. Feature extraction and a database strategy

for video fingerprinting. In Proceedings of the 5th International Conference on Re-

cent Advances in Visual Information Systems (VISUAL), pages 117–128, Hsin Chu,

Taiwan, March 2002.

Bibliography 53

[34] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative

to sift or surf. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), pages 2564–2571, Barcelona, Spain, November 2011.

[35] G. Shakhnarovich. Learning Task-Specific Similarity. PhD thesis, MIT, 2006.

[36] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-

sensitive hashing. In Proceedings of the 9th IEEE International Conference on Com-

puter Vision (ICCV), volume 2, pages 750–757, Nice, France, October 2003.

[37] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: robust and efficient near

duplicate detection in large web collections. In Proceedings of the 31st annual in-

ternational ACM SIGIR conference on Research and development in information

retrieval (SIGIR), pages 563–570, Singapore, July 2008.

[38] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8, Anchorage, AK, USA, June 2008.

[39] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proceedings of the

Conference on Neural Information Processing Systems (NIPS), pages 1753–1760,

Vancouver, BC, Canada, December 2008.

[40] Q. Xiao, M. Suzuki, and K. Kita. Fast hamming space search for audio fingerprinting

systems. In Proceedings of the 2011 Conference of The International Society for

Music Information Retrieval (ISMIR), pages 133–138, Miami, FL, USA, October

2011.

Bibliography 54

[41] Hong Y. and Yiding W. A lbp-based face recognition method with hamming dis-

tance constraint. In Proceedings of the 4th International Conference on Image and

Graphics (ICIG), pages 645–649, Chengdu, Sichuan, China, August 2007.

[42] A. C. Yao and F. F. Yao. Dictionary look-up with one error. Journal of Algorithms,

25(1):194 – 202, 1997.

[43] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu. Hmsearch: An efficient hamming

distance query processing algorithm. In Proceedings of the 25th International Confer-

ence on Scientific and Statistical Database Management (SSDBM), pages 19:1–19:12,

Baltimore, Maryland, July 2013.

Appendix

55

Appendix A

Implementation Details

In this section we provide technical details that are needed for achieving the performance

showed in Chapter 4. These details are not our original contribution, but their importance

cannot be underestimated. The first type of optimization is oriented to the instruction

set generated by the compiler (see Section A.1). The second type of optimization is

regarding the optimum implementation of the bit manipulations functions (see Section

A.2).

A.1 Pipeline and Instruction Cache Performance

A.1.1 Trie Implementation Using Array to Increase Instruction

Cache Performance

The most common way to implement a Tree (remember that a trie is also a tree) is to

use pointers. However, the use of pointers is not the most efficient way to implement

56

Appendix A. Implementation Details 57

these. Accessing memory through pointers is expensive because of CPU level caching.

The trie (and trees in general) can be more efficiently implemented using a static

array. Using this implementation, pointers to children are replaced by array offsets.

Using the array offsets has better CPU cache hit rate and with that a better memory

access throughput.

A.1.2 Avoiding Instruction Branching on Left-Right Trie Deci-

sion When Traversing the Trie

The conditional jump machine language instructions (aka branches), may be generated by

many statements, among which there are the if-else. Modern processors handle branches

efficiently only if they can predict them. In case of prediction error, the steps already

done by the pipeline on the subsequent instructions are useless and the processor must

restart from the branch destination instruction [30].

The branch prediction is based on the previous iterations on the same instruction.

If the branches follow a regular pattern, the predictions are successful. The case where

the branch instruction has a random outcome results in the prediction being on average

correct half of the times. However random distribution means that actual results will

vary from being always right to always wrong in a Gaussian shaped distribution [19].

Branching is heavily used while traversing a Trie since at a given node we will move

to the left or right child according to the value of the bit at the splitBit position (see

Section 3.2). The following pseudocode shows this common structure found in all Trie

algorithm:

Appendix A. Implementation Details 58

if q[splitPos] = 0 then

goto node.leftChild

else

goto node.rightChild

Unfortunately, the nature of the Trie makes branches hard to predict. It is better to

replace bad predictions with a slow sequence of instructions that may result in a speed

up [30]. To avoid the branching at instruction level, all nodes instead of having the field

leftChild and rightChild, have a length 2 array called children, this way the branching

can be removing by accessing the child according to the value at the splitBit position by

just doing:

goto node.children[q[splitPos]]

A.2 Bit Manipulation Functions

One essential part in the implementation of the proposed algorithm is the bit manipula-

tion functions since they are the core in all bitwise trie functions. Here we provide the

details of how different bit manipulation functions can be implemented.

A.2.1 Accessing Bit Positions

In the pseudocode of the different functions, accessing the bit at position p of vector x

have been represented as x[p]. However in practice binary vectors are represented in a

compact form in machine words, so you can not access bits as in an array.

Appendix A. Implementation Details 59

Algorithm A.1 shows how to test for a bit at a given position.

Algorithm A.1 testBit algorithm
procedure testBit(x, p)

return (x� p) ∧ 1

Similarly, Algorithm A.2 shows how to change the value of the bit at a given position.

Algorithm A.2 flipBit algorithm
procedure testBit(x, p)

return x ∧ (1� p)

A.2.2 bitScanForward

The function bitScanForward plays a fundamental role in the compressed trie insertion

algorithm. This routine is used to find the index of the least significant 1 bit.

This function can be implemented efficiently based on the principle that a multiplica-

tion with a power of two value acts like a left shift by it’s exponent [21]. If x is non-zero,

x & − x turns all bits to zero except the least significant 1. This operation is called

isolating the least significant 1.

With the isolated the least significant 1 bit, the vector x can only have |x| possibles

values: 20, 21, . . . 2|x|. Those values generates a unique number between 0 and |x|−1 when

multiplied by the a De Brujin sequence of size |x| [10]. With these unique numbers, a

lookup on an array can be performed to get the index of the least significant 1 bit [25].

Algorithm A.3 shows a pseudo-code implementation of the bitScanForward function.

Appendix A. Implementation Details 60

Algorithm A.3 bitScanForward algorithm for 64 bits
index64[64] ← {0, 1, 48, 2, 57, 49, 28, 3,

61, 58, 50, 42, 38, 29, 17, 4,
62, 55, 59, 36, 53, 51, 43, 22,
45, 39, 33, 30, 24, 18, 12, 5,
63, 47, 56, 27, 60, 41, 37, 16,
54, 35, 52, 21, 44, 32, 23, 11,
46, 26, 40, 15, 34, 20, 31, 10,
25, 14, 19, 9, 13, 8, 7, 6}

procedure bitScanForward(x)
debruijn64← 0x03f79d71b4cb0a89

return index64[((x ∧ −x) ∗ debruijn64)� 58]

A.2.3 Hamming Distance and popCount

Testing for the Hamming distance between two binary vectors can be performed by doing

an xor between them and count the number of ones bits. The function to determine how

many one bits exists in the given vector is know in the literature as popCount. Recent

x86-64 processors (AMD K10 - SSE4a, Intel Nehalem - SSE4.2) provide a built-in 64-bit

popCount instruction. However, it is possible to implement a better alternative to the

built-in.functino.

One efficient way to implement the popCount function is to use the Fis97 technique

[14]. This approach deals with counting bits of duos, to aggregate the duo-counts to

nibbles and bytes to finally sum all bytes together [21].

A bit-duo (two neighboring bits) can be interpreted with bit 0 = a, and bit 1 = b as

duo := 2b+ a

Appendix A. Implementation Details 61

The duo population is

popCount(duo) := b+ a

which can be archived by

(2b+ a)− (2b+ a)/2

The bit-duo has up to four states with population count from zero to two as demon-

strated in table A.1.

Table A.1: States for bit-duo popCount
x x/2 x− x/2 = popCount(x)
00 00 00
01 00 01
10 01 01
11 01 10

As can be seen, only the lower bit is needed from x/2. SWAR-wise, one needs to clear

all “even” bits of the div 2 subtrahend to perform a subtraction of all duos. For a 64-bit

architecture, the mask would be:

0x5555555555555555 = 101010 . . . 10

Then, obtaining all duo-count can be done doing:

x = x− ((x� 1) ∧ 0x5555555555555555);

The next step is to add the duo-counts to populations of four neighboring bits, the

nibble-counts, which may range from zero to four. SWAR-wise it is done by masking odd

Appendix A. Implementation Details 62

and even duo-counts to add them together. For a 64 bit architecture, the mask would

be:

0x3333333333333333 = 11001100 . . . 1100

All nibble-counts can be obtained by doing:

x = (x ∧ 0x3333333333333333) + ((x� 2) ∧ 0x3333333333333333)

In the same way it is possible to get the byte-populations from two nibble-populations.

The mask for a 64 bit architecture would be:

0xf0f0f0f0f0f0f0f = 11110000 . . . 11110000

Then the byte-wise sum can be obtained by:

x = (x+ (x� 4)) ∧ 0x0f0f0f0f0f0f0f0f

The last step is to sum all bytes to get the final population count. This can be done

by multiplying the vector of byte-counts with the fraction -1/255 to get the final result

in the most significant byte [21]. For a 64 bit architecture, this fraction is:

−1/255 = 0x0101010101010101 = 10000000 . . . 10000000

Since the count is in the most significant byte, it can be shifted right to get the final

Appendix A. Implementation Details 63

count. For a 64 bit architecture it would be:

x = (x ∗ 0x0101010101010101)� 56

Putting all pieces together we get the algorithm A.4.

Algorithm A.4 popCount algorithm for 64 bits
procedure popCount(x)

x = x− ((x� 1) ∧ 0x5555555555555555)
x = (x ∧ 0x3333333333333333) + ((x� 2) ∧ 0x3333333333333333)
x = (x+ (x� 4)) ∧ 0xf0f0f0f0f0f0f0f
return (x ∗ 0x101010101010101)� 56

