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2013

We present a new scheme for partitioning geo-tagged reference image database in an effort

to speed up query image localization while maintaining acceptable localization accuracy. Our

method learns a topic model over the reference database, which in turn is used to divide the

reference database into scene groups. Each scene groups consists of “visually similar” images

as determined by the topic model. Next raw SIFT features are collected from every image

in a scene group and a FLANN index is constructed. Given a query image, first its scene

group is determined using the topic model and next its SIFT features are matched against

the corresponding FLANN index. The query image is localized using the location information

associated with the visually similar images in the reference database. We evaluate our approach

on Google Map Street View dataset and demonstrate that our method outperforms a competing

technique.

ii



Dedication

I dedicate this thesis to my parents, Hailong Wang and Shuying Fu.

iii



Acknowledgements

I would like to express my thanks to my lab colleagues, and in particular W. Starzyk, N. Parvin,

L. Zarrabeitia and M. Helala—for their support and friendship. Our discussions were most

enjoyable. Special thanks to my supervisor Dr. Faisal Z. Qureshi for his support, guidance and

encouragement.

iv



Contents

1 Introduction 1

1.1 Exploiting Visual Similarity to Localize Images . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Appearance Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Building Facades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Visual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Image Localization using Vocabulary Trees . . . . . . . . . . . . . . . 23

2.1.4 3D Point Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Topic Models for Image Grouping . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Image Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Processing Geo-Tagged Dataset and Localizing an Image 31

3.1 Geo-tagged Dataset Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Collecting Visual Features . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Constructing Vocabulary Tree . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Learning Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.4 Scene Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Localizing a Previously Unseen Image . . . . . . . . . . . . . . . . . . . . . . 39

v



3.2.1 Localizing an Image using Vocabulary Trees . . . . . . . . . . . . . . 41

3.2.2 Localizing an image using Scene Group . . . . . . . . . . . . . . . . . 42

4 Experiments and Results 43

4.1 Scene Groups for Image Localization . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Image Localization using Vocabulary Trees . . . . . . . . . . . . . . . . . . . 49

5 Conclusions and Future Works 51

5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 52

vi



List of Figures

1.1 Reference Database Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Query image localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Google Maps Street View dataset for Pittsburgh, PA . . . . . . . . . . . . . . . 6

2.1 Building outline template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Query result of [Johansson and Cipolla, 2002] . . . . . . . . . . . . . . . . . . 12

2.3 Canonical View in [Robertson and Cipolla, 2004] . . . . . . . . . . . . . . . . 13

2.4 3D database of textured building facade in [Schindler et al., 2008] . . . . . . . 15

2.5 SIFT features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Image localization in [Zhang and Kosecka, 2006] . . . . . . . . . . . . . . . . 20

2.7 Image localization in [Hays and Efros, 2008] . . . . . . . . . . . . . . . . . . 22

2.8 Overview of the framework proposed in [Zheng et al., 2009] . . . . . . . . . . 23

2.9 Visual words constructed from reference image dataset . . . . . . . . . . . . . 25

3.1 Reference image cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 SIFT features extracted from a single cropped reference image for different

parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 SIFT features detected in one cropped reference image . . . . . . . . . . . . . 34

3.4 Examples of visual words detected in reference images . . . . . . . . . . . . . 37

3.5 Representing images as topic vectors . . . . . . . . . . . . . . . . . . . . . . 38

3.6 A sampling of images belonging to different scene groups . . . . . . . . . . . . 40

vii



4.1 A sampling of test images used to evaluate the proposed method . . . . . . . . 44

4.2 Samples of non-landmark image localization results . . . . . . . . . . . . . . . 47

viii



List of Tables

2.1 A comparison of appearance based localization methods . . . . . . . . . . . . 9

4.1 Topic distribution inference times for a query image. . . . . . . . . . . . . . . 45

4.2 Localization performance comparison for landmark images. . . . . . . . . . . 46

4.3 Localization performance comparison for non-landmark images. . . . . . . . . 47

4.4 Image localization performance comparison aggregated over landmark and

non-landmark images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Image localization using vocabulary trees . . . . . . . . . . . . . . . . . . . . 50

ix



Chapter 1

Introduction

The ability to geo-localize an image is an important enabling capability [Agarwal et al., 2009].

Of the billions of images stored in the cloud—Flickr1, Smugmug2, Facebook3, etc.—many are

already geo-tagged. These geo-tagged images constitute a vital source of data for such ap-

plications that require the exact location of an image for subsequent processing. Agarwal et

al., for example, construct a 3D model of Rome from a set of geo-tagged images [Agarwal

et al., 2009]. Many photo-sharing websites—such as Panaromio4—use location information

available for geo-tagged images to visualize these images on a map, say, to support virtual

tourism. Through virtual tourism anyone can experience a famous bazaar or a historic monu-

ment hundreds of miles away from the comfort of their home. Location information embedded

in these images may also be used to help decipher business signs, road names, or other textual

information that appear in these images. There is also a lot of interest in the ability to automat-

ically curate personal photographs. A common scheme there is to organize pictures in spatially

oriented groups, which is a natural way for viewing travel photos.

While it is trivial to find the location at which an image is taken using a Global Positioning

System (GPS) device. GPS information is not always available. For example, a GPS device

1http://www.flickr.com/. Accessed on 03-July-2013
2http://www.smugmug.com/. Accessed on 03-July-2013
3https://www.facebook.com/. Accessed on 03-July-2013
4http://www.panoramio.com/. Accessed on 03-July-2013
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CHAPTER 1. INTRODUCTION 2

might not be present at the time the image was taken.5 Furthermore, a GPS device may not

work under all circumstances. For example GPS devices do not work indoors or in dense

urban centers dominated by tall skyscrapers [Kleusberg and Langley, 1990]. It is fair to say

that thousands of images without any location information are taken every day by people all

over the world and billions of images lacking any spatial information already exist on the World

Wide Web (WWW). Consequently, it is worthwhile to study techniques to geo-localize images

without relying upon the existence of GPS data.

1.1 Exploiting Visual Similarity to Localize Images

A promising scheme for geo-localizing images is to leverage existing geo-tagged images. The

idea is to exploit visual similarities between the image in question and existing geo-tagged

images. The geo-tagged image that appears most “similar” to the query image is used to

estimate the location of the query image. Based on this key idea, Zamir and Shah propose an

image localization scheme capable of using low-level image features to geo-localize an image

using Google Maps Street View data [Google, 2013, Zamir and Shah, 2010].

Finding visually similar geo-tagged images to geo-localize a query image is akin to content

based image retrieval. The primary step here is to find the set of visually similar geo-tagged

images from the reference set and use these to assign the most likely location to the query

image. Given that we are dealing with geo-tagged data comprising hundreds of thousands of

images per city, any proposed scheme must scale gracefully. Currently the dominant approach

is to organize the low-level features—say Shift Invariant Feature Transform (SIFT) [Lowe,

2004] or some variation thereof—computed from the reference geo-tagged data into an index

that supports fast nearest neighbor queries. Such an index, for example, can be constructed

using Fast Library for Approximate Nearest Neighbors Search (FLANN) [Muja and Lowe,

5We note that more and more GPS-enabled cameras are coming to market. It may be the case that in the future
most of the cameras will have a built-in GPS device.



CHAPTER 1. INTRODUCTION 3

Topic model groups GPS-tagged images into discrete scenegroups

Google Street View Dataset

Scene Groups

FLANN 
Index

Figure 1.1: Reference Database Processing. A sampling of images taken from Google Maps
Street View Dataset for Pittsburg, PA, which serve as our geo-tagged reference database. The
reference database is partitioned into scene groups and a SIFT FLANN index is constructed for
each scene group. Partitioning into scene groups is carried out by learning a topic model over
the reference database. Each scene group consists of visually similar images as determined by
the topic model learnt over the entire reference dataset.
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2009]. Features computed from the query image are then matched against those stored in the

index to identify a set of images that are “visually similar” to the query image. The locations

associated with the set of visually similar images are used to estimate the location of the image

in question.

In our experience constructing a single index that contains features from every geo-tagged

image in a reference database (say Google Maps Street View) does not scale. An obvious

solution to address this scalability limitation is to divide the reference database into different

sets and construct an index for each set. Features from the query image can then be processed

simultaneously at each index, improving query times and addressing scalability issues. In this

paper, however, we have taken a different approach. We begin by learning a topic model for

our reference database. Topic model is used to divide the reference dataset into scene groups.

Images within a scene group have similar visual characteristics as determined by the topic

model. Next for each scene group we build a FLANN index over SIFT features extracted from

the images belonging to that scene group. Given a new image that needs to be localized, we

first infer its scene group and then use the corresponding FLANN index to determine the set

of visually similar geo-tagged images. This set is then used to estimate the location of the

query image. Our approach is able to achieve a significant speed increase over the technique

described in [Zamir and Shah, 2010] while achieving similar localization accuracy.6

The reference dataset processing phase of the proposed method is depicted in Figure 1.1,

and the query processing is depicted in Figure 1.2. Our reference geo-tagged dataset comprises

50,000 images from the Google Maps Street View Dataset. The images cover the high-lighted

region of the city of Pittsburgh, PA shown in Figure 1.3. Topic models initially appeared

for statistical analysis of textual documents [Papadimitriou et al., 1998]. Recently these have

been applied to analyze images and videos. Specifically topic models have been used for

6On a philosophical note, our approach is motivated by our observation about how an individual might geo-
localize an image? When presented with an image a human may look for landmarks that might help him narrow
the search space. For instance, if presented with an image showing Toronto’s CN Tower or Agra’s Taj Mahal, the
individual will immediately focus his attention to other images of Toronto or Agra, as the case may be. Scene
groups, perhaps, mimic this behavior.
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G
roup R

eference Im
ages according to scene sim

ilarity

Finding the most similar scene group
and doing search

Doing FLANN
 searching
in feature space

Query image

Doing voting over
GPS coordination to
decide the final GPS
position.

The street view of GPS location detected 

Figure 1.2: Query image localization. Given a query image, topic model analysis is used to
identify the most relevant scene group. Next SIFT features from the query image are matched
against the FLANN index for this scene group to identify the set of visually similar geo-tagged
images. This set is used to estimate the location of the query image.

image annotation [Feng and Lapata, 2010, Putthividhya et al., 2010], scene classification and

modeling [Fei-Fei and Perona, 2005, Bosch et al., 2006, Quelhas et al., 2005a] and image

retrieval [Hörster et al., 2009]. To the best of our knowledge, ours is the first application

of topic models to image localization. We have compared our approach against the method

proposed by Zamir and Shah in [Zamir and Shah, 2010]. Our method outperforms their scheme

in terms of query processing times, while achieving similar localization accuracies. We have

also compared our method against an image localization method that relies upon vocabulary

trees for image matching and our method outperforms the vocabulary tree based localization

method.
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Figure 1.3: Google Maps Street View dataset for Pittsburgh, PA, which serves as our reference
dataset, covers the area high-lighted above. Currently we are not able to localize images taken
outside of this area. Similarly we cannot localize indoor images taken within this area.

1.2 Contribution

This thesis makes the following contributions:

1: To the best of our knowledge, ours is the first attempt to employ topic models for image

localization. Specifically, we use topic models to divided the geo-tagged reference dataset into

visually similar groups. When presented with a query image, the topic model analysis is used to

select the most promising group for searching for visually similar geo-tagged images. Existing

approaches group geo-tagged reference datasets using either location information embedded

in the images or low-level visual features. Neither approach is used to restrict visual similarity

search to a subset of the geo-tagged reference dataset.

2: Most existing image localization methods are concerned with improving localization accu-

racy. We have instead focused on performance. Specifically, we have taken a state-of-the-art

appearance-based image localization technique proposed by Zamir and Shah and demonstrated

how to improve the performance and the scalability of their approach by using topic models.

Our method is roughly 4.5 times faster than the competing approach of Zamir and Shah, while
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achieving comparable accuracy.

3: Vocabulary trees have recently been used for content based image search [Nistr and Stewnius,

2006]. This suggests that we can use vocabulary trees for finding geo-tagged images that are

visually similar to the query image. We have compared our approach with a vocabulary tree

based image localization scheme. Our method achieves 94% accuracy where as the vocabulary

tree based method only achieves 42% accuracy. We also extended the vocabulary tree based

method by developing a new scoring mechanism for visual words. Typically vocabulary tree

based methods score visual words based upon their occurrence frequency. Instead we propose

a new scoring method that also takes into account the spatial extent of a visual word. Using

this scoring scheme, the vocabulary tree based localization method achieves 67% accuracy.

4: Part of the work presented in this thesis appeared in the Tenth Conference on Computer and

Robot Vision (CRV 2013), Regina, Saskatchewan, Canada, 2013.

1.3 Overview

The remainder of this thesis is organized as follows. Chapter 2 reviews the related work. Chap-

ter 3 describes our scheme of processing the reference database and partitioning it into scene

groups. Image localization is discussed in the second half of this chapter. We present experi-

ments and results in the following chapter. Chapter 5 concludes the thesis with a summary and

directions for future research.



Chapter 2

Literature Review

In this chapter we review prior work on image localization methods that rely upon visual sim-

ilarity between the query image and a set of geo-tagged images. In the second half of this

chapter we will also briefly discuss topic models and their uses in appearance based image

grouping.

2.1 Appearance Based Methods

Earlier attempts of appearance based image localization relied upon visible geometric struc-

tures in buildings for matching the query image to the set of geo-tagged images containing

these buildings. [Johansson and Cipolla, 2002, Robertson and Cipolla, 2004, Schindler et al.,

2008], for example, match building skeletons extracted from a query image to those obtained

from the reference geo-tagged images. These methods work well for small image datasets con-

taining images showing frontal views of buildings. However, it is not immediately clear how

to construct an index over building skeletons (facades), so these methods do not scale to larger

reference databases.

More recent appearance based image localization methods rely upon image features—such

as SIFT, GIST [Siagian and Itti, 2007], etc.—to match the query image against geo-tagged

8
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Table 2.1: A comparison of appearance based localization methods

Method Has index or not 2D/3D Features Front view
[Johansson and Cipolla, 2002] No index 2D Building facade Yes
[Robertson and Cipolla, 2004] No index 2D Building facade Yes
[Schindler et al., 2008] No index 2D Building facade No
[Zhang and Kosecka, 2006] FLANN 2D SIFT No
[Zamir and Shah, 2010] FLANN 2D SIFT No
[Hays and Efros, 2008] No index 2D Multiple features No

[Zheng et al., 2009] No index 2D
Visual features
+ image meta-data No

[Schindler et al., 2007] Hierarchical K-means 2D SIFT No
[Kalantidis et al., 2011] Vocabulary tree 2D SIFT No
[Li et al., 2010] FLANN 3D SIFT No
[Li et al., 2008] FLANN 3D SIFT No
[Snavely et al., 2006] ANN 3D SIFT No
Our method FLANN 2D SIFT No

reference images [Zhang and Kosecka, 2006, Zamir and Shah, 2010]. These methods first

collect all features from reference images. For the sake of clarity, lets refer to the features

collected from the reference dataset as reference features. Each reference feature is associated

with the location information of the image containing this feature. When presented with a

query image, these methods use the features computed from the query image to match the query

image against the set of geo-tagged images. In this thesis we refer to the features computed

from the query image as the query features. The subset of matched geo-tagged reference

images is used to estimate the location of the query image. Our method belongs to this category.

Content based image retrieval underpins appearance based image localization. Conse-

quently here we also briefly review techniques that have been developed over the last few

years for the purposes of content based image retrieval. There have been attempts to combine

individual features to construct higher order features to improve the image matching perfor-

mance. [Hays and Efros, 2008], for example, use multiple visual features; where as, [Zheng

et al., 2009] combines visual features with text data embedded in the images for image match-

ing. Vocabulary Trees, first introduced in 2006, is now widely used for content based image

retrieval. [Schindler et al., 2007, Kalantidis et al., 2011, Torii et al., 2011], for example, rely

upon vocabulary trees to match the query image to the set of reference images or to partition
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reference images into visually similar groups. We compare our method with a vocabulary tree

based approach for image localization and note that our method outperforms the competing

approach.

In addition to image features, Three Dimensional (3D) point clouds have also been recently

adapted for image localization. [Li et al., 2008, Snavely et al., 2006] organize reference features

into a 3D point cloud and localize a query image by matching query features against this point

cloud. These methods can not only estimate the location of the query image, but also the

camera viewpoint used for capturing that image. Table 2.1 provides an overview of the existing

methods that perform image localization using geo-tagged reference images.

2.1.1 Building Facades

As stated earlier localizing a query image given a reference image collection is typically done

by evaluating visual similarity between the query image and reference images. The four

decades of work within the computer vision community suggests that image matching is a

non-trivial problem. Transient objects like clouds or pedestrians do not provide any actionable

geographical information, while objects that appear everywhere such as trees, are also not use-

ful for localizing an image. Unique architecture, on the other hand, can be very useful when

localizing a query image.

Johansson and Cipolla propose an approach of estimating camera pose and location by

matching building outlines visible in query and reference images [Johansson and Cipolla,

2002]. Their method first detects building outlines in the reference images and use these to

construct a template for that building. A building template encodes the dominant planes of that

building. These planes, by definition, contain conspicuous edges (see Figure 2.1, left). Figure

2.1 (right) shows an example of a building template constructed for the building shown in the

left. Image matching relies upon matching the lines extracted from the query image against the

building templates stored in the reference database.
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Reference image Facade Template

Figure 2.1: The method proposed in [Johansson and Cipolla, 2002]. (Left) the reference image
and (right) the corresponding building outline template. Image courtesy of [Johansson and
Cipolla, 2002]
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Query image Matched images

Query image Matched images

Figure 2.2: Query results in [Johansson and Cipolla, 2002]. Given a query image, the method
proposed in [Johansson and Cipolla, 2002] finds the reference images having similar camera
viewpoints. Image courtesy of [Johansson and Cipolla, 2002]
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Figure 2.3: Obtaining a canonical view in [Robertson and Cipolla, 2004]. (a) Straight line seg-
ments are detected from an image. (b) After filtering, line segments associated with horizontal
and vertical vanishing points are kept. (c) The image is transformed into a canonical frame
using a rectified view of the dominant plane. Image courtesy of [Robertson and Cipolla, 2004]

Given building templates and a query image, Johansson et al. estimate the camera cali-

bration matrix that best maps a template to the query image. The template that has the best

match is chosen. Figure 2.2 shows some samples of query results. Johansson et al.’s method

utilizes building facades, including windows and doors, to infer a geometric relationship be-

tween a query image and reference images. The geometric relation computed thus defines a

sort of visual similarity between the images. Their method is adversely affected by camera

rotations. A possible solution to this issue is to eliminate such rotations in reference images

before constructing geometric parameters.

Robertson and Cipolla [Robertson and Cipolla, 2004] improve Johansson et al.’s method

by extracting canonical views from original reference images in order to eliminate the effects

of camera rotations. They assume that query images and reference images mostly contain

frontal views of the buildings, so the camera orientation can be estimated by vanishing points
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associated with the horizontal and vertical boundaries of the buildings. Given building outlines

and vanishing points in an image, Robertson et al. determine the orientation of the camera and

further transform the original image into a canonical frame. Figure 2.3 shows an example of

obtaining a canonical view from an input image. First line segments in an image are detected.

Next the line segments that are not associated with the horizontal or the vertical vanishing

points are discarded. The dominant plane of the building is constructed using the line seg-

ments that survive the aforementioned filtering step. Lastly the image is transformed to get the

canonical view of the building.

These methods work well for smaller datasets containing images that show frontal views

of buildings. Furthermore the query image should also contain the (near) frontal views of one

or more of the buildings that appear in the reference dataset. In summary, Johansson et al.’s

method use building facade templates to estimate camera position and orientation. Robertson’s

method further improves Johansson et al.’s method by eliminating image rotations. Both meth-

ods have strict image view limitations that query images must contain nearly frontal views of

buildings viewed in the reference images for a successful match.

Building facades typically exhibit geometric texture patterns in the form of a grid. Schindler

et al. [Schindler et al., 2008] exploit building lattice patterns by using “wallpaper patterns” [Liu

et al., 2004]. Their method automatically localize an image in man-made environments by

matching against texture models constructed from buildings in that environment. To construct a

building texture model, they utilize a variation of the RANdom SAmple Consensus (RANSAC)

based planar grouping method to detect perspectively distorted lattices of feature points. Given

a point dataset extracted from a building image, their method constructs a projection matrix

that maps the image points to a lattice space coordinates. Based on the dataset in the lattice

space, a building texture model is learned. At the search time, a query image is matched against

the database containing building textures. The result of this matching is a set of visually similar

textures. The geographic location of the buildings corresponding to these textures are used to

localize the query image.
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Figure 2.4: 3D database of textured building facade in a Major city used in [Schindler et al.,
2008]. Each texture building model is associated with a geographic tag. Given a textured
3D city model database, such method matches a query image against the texture database and
finds the most likely 3D textured building model. The query image’s location is defined as the
location of the corresponding building model. Image courtesy of [Schindler et al., 2008]
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The methods mentioned above evaluate image similarity by either comparing camera pa-

rameters or using probability models. These methods work well for small image datasets but

may not handle a larger dataset. Since without an efficient index, these methods resort to

exhaustive search when matching the query image against the geo-tagged reference images.

2.1.2 Visual Features

As stated earlier, we propose an appearance based technique for query image localization. The

key ability here is to match the query image against the reference database to identify one or

more visually “similar” images. Image features that are invariant to illumination, rotation and

scale are routinely employed to determine the degree of similarity between two images. The

common intuition being that the features from image 1 will match a larger number of features

from image 2 if the two images are more similar. In this work we use Scale Invariant Feature

Transform (SIFT) for image matching [Lowe, 2004].

SIFT is perhaps the most widely used image feature for image matching and object recog-

nition tasks. Unlike, for example, Speeded Up Robust Feature (SURF), SIFT exhibits stronger

stability under a variety of image transformations—scale, rotation, illumination, etc. [Juan and

Gwon, 2009]. Our choice of using SIFT features for calculating visual similarity between two

images stems from its robustness to viewpoint changes. Remembering that our query images

are taken from very different viewpoints than the geo-tagged images stored in the reference

database. We now briefly introduce SIFT features.

Scale Invariant Feature Transform

SIFT feature extraction consists of four steps: 1) scale-space extrema detection, 2) keypoint

localization, 3) orientation assignment, and 4) keypoint descriptor construction. We refer the

kind reader to [Lowe, 2004] for a detailed description of SIFT. Figure 2.5 illustrate SIFT fea-

tures extracted from four reference images taken at the same location in four different direc-
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Figure 2.5: SIFT features. Four Street View images taken at the same location in four cardinal
different directions.
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tions. The centers of the red rectangle indicates the location of the SIFT features; where as,

their sizes indicate the scale of these features. The orientations of these rectangles refer to the

orientation of the corresponding features.

Each SIFT feature is a 128 dimensional vector. Match score between any two SIFT features

fi and fj is computed as follows:

score(fi, fj) = kfi � fjk. (2.1)

Depending upon the application, a threshold ⌧ is used to decide if the two features match as

seen below

match(fi, fj) =

8
><

>:

1 if score(fi, fj) < ⌧

0 otherwise.
(2.2)

Fast Library for Approximate Nearest Neighbors

The next step is to store the SIFT features extracted from the reference database into an index

that supports fast nearest neighbour queries. Such an index is crucial given the sheer number

of SIFT features that we get from our reference dataset. To provide some context, our dataset

generates roughly 28 million SIFT features. Clearly, naı̈ve methods of searching and matching

SIFT features are not going to work.

k-d tree is a widely used data structure for supporting nearest neighbour queries in high-

dimensional spaces. Hierarchical K-means is another technique that can be used to organize

features to facilitate efficient searching. In practice the actual search performance of either

technique for a given dataset depends upon a number of tunable parameters.

FLANN attempts to construct an efficient index for approximate nearest neighbour queries

for a given feature set. FLANN accomplishes this by identifying the algorithm (and the as-

sociated parameters) best suited to construct the aforementioned index for the feature set in

question. FLANN explores the space of available algorithms—k-d tree and hierarchical K-

means—along with their parameters and selects the most suitable algorithm for constructing
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the index for the given feature set [Muja and Lowe, 2009]. We employ FLANN to construct

efficient indices over SIFT features for our purposes. For further details about FLANN we

refer the kind reader to [Muja and Lowe, 2009].

Using Single Feature

As stated earlier SIFT features have been employed in the past for image matching. When

matching two images, SIFT features extracted from one are matched against those extracted

from the second image. Often times using using Equation 2.2 to match a SIFT feature in

one image with SIFT features from the second image does not give good results. Essentially

Equation 2.2 does not distinguish between the so called weak and strong features. A feature

is considered weak if it matches with a large number of features in the other image. A strong

feature, on the other hand, matches with, ideally, only one feature in the other image. Of

course we can tune parameter ⌧ in Equation 2.2 to control the number of matches for any given

SIFT feature. It does not work in practice, however, since we need a way to automatically

select ⌧ . [Lowe, 2004] suggests an alternative that selects a strong feature as follows. Say

we want to determine if a feature f is a strong feature for matching. Assume that NN(f, 1)

and NN(f, 2) are two features in the second image that are closest to f as determined by

Equation 2.1. Specifically, NN(f, 1) is the first nearest neighbour of feature f and NN(f, 2) is

the second nearest neighbour of feature f.1 Then feature f is strong if

score(f, NN(f, 1))
score(f, NN(f, 2))

< ⌧r, (2.3)

where ⌧r is a user-supplied threshold.

Zhang et al. observe that the above scheme for selecting strong features for matching is

not useful when matching images for localization purposes. Since this scheme does not fair

1This essentially means that score(f, NN(f, 1))  score(f, NN(f, 2))  score(f, NN(f, i)) where i > 2
and i 2 N+. NN(f, i) refers to the i

th nearest neighbour of f.
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Figure 2.6: An example of image localization in [Zhang and Kosecka, 2006]. Top images are
the query images while the bottom is the matched reference images. Image courtesy of [Zhang
and Kosecka, 2006]

well when matching images of buildings that contain repeating patterns. Zheng et al. instead

proposes to use Cosine similarity for matching two features fi and fj:

cos(fi, fj) =
fi · fj
|fi||fj|

� ⌧c, (2.4)

again ⌧c is a user-defined threshold. Using this matching scheme, Zhang et al. identifies the

set of matched images for a given query image. The set of matched images is ranked based

upon the number of actual SIFT feature matches between the query image and the individual

matched images. The highest ranked match image is used to estimate the location of the query

image. This process is akin to voting.

Our method is inspired by the work of Zamir and Shah [Zamir and Shah, 2010] that uses

Google Street View dataset for city scale image localization. Their method collects SIFT fea-

tures from the reference dataset and stores them in a FLANN index. SIFT features from the

query image are matched against the SIFT features stored in the index to select a subset of

matched geo-tagged images, which are used to estimate the location of the query image. A

major drawback of their scheme is that it stores all reference SIFT features in a single index.
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Consequently their method does not scale. Our method addresses this shortcoming of their

scheme.

Zamir and Shah [Zamir and Shah, 2010] note that not all query features are good candidates

for image localization. Query features may come from objects—for example, clouds, etc.—

that lack any geographical information. Clearly only features related to landmark buildings or

objects are useful for localizing an image. The refer to the former type of features as weak

features and the latter type of features as strong features. They propose a pruning scheme to

distinguish strong features from weak features given by the following equation.

accept(fi) =

(
1

kfi�NN(fi,1)k
kfi�NN(fi,min(j))k < 0.8, 8j  kloc(NN(fi, 1))� loc(NN(fi, j))k > ⌧d

0 otherwise

,

(2.5)

where fi is the ith query feature. NN(fi, k) is the kth nearest neighbor of fi, loc(NN(fi, k)) is

the GPS location of the kth nearest neighbor of fi, ⌧d is a GPS distance threshold value selected

manually. Equation 2.5 recognizes a strong query feature by first evaluating its geographic

distance between its 1st nearest neighbor and other nearest neighbors in the reference features.

If there exists a group of nearest neighbor(s) that make the geographic distance bigger than

the value ⌧d, then the query feature fi is kept otherwise is eliminated. Next they select the jth

reference feature with the minimum index, as the 2nd nearest neighbor and follow Equation 2.3

to compute a distance ratio in feature space, if the ratio is bigger than 0.8, then the matched

reference feature is used for geographic voting, otherwise fi is discarded.

Zamir and Shah evaluate their method by using test images downloaded from public web-

sites. The test images have no overlap with the images present in the reference dataset. Their

tests show that around 60% the test images are located within 100 meters of the ground truth.

It confirms the effectiveness of their method.
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Figure 2.7: Image matching using hybrid features [Hays and Efros, 2008]. The hybrid feature
proposed in [Hays and Efros, 2008] matches query images (left) to the set of reference images
(right). Image courtesy of [Hays and Efros, 2008]

Using Hybrid Features

Single features cannot capture all of the visual information contained in an image. For example,

SIFT features neglect color and do not include spatial information. Therefore, there have been

attempts at combining multiple features, such as color histograms, texton histograms, etc., to

construct hybrid features for image matching purposes. The idea being that combining multiple

types of visual features may provide a more complete description of an image, however these

also require more sophisticated strategies for indexing and searching.

Hays and Efros [Hays and Efros, 2008] combine different types of features to construct a

hybrid feature for representing an image. Specifically, they use tiny images, color histograms,

line features, GIST descriptor, plus color and geometric information to represent an image.

The hybrid feature comprising all these elements is extracted from the query image and is

matched against the features from the reference database. Matching two hybrid features con-

sists of matching their constituents parts. For example, tiny image from one hybrid feature

will be matched against the tiny image from the other feature, and so on. In order to normal-

ize the matching scores across the constituents parts, each component of the hybrid feature is

assigned a weight that takes into account the variance of that component computed over the

entire reference dataset.

Figure 2.7 shows image matching using the hybrid feature proposed in [Hays and Efros,



CHAPTER 2. LITERATURE REVIEW 23

GPS-tagged 
photos

Travel guide
 articles

Geo 
clustering

Noise landmark 
names

Noisy landmark 
image set

Visual 
clustering

Validation 
& cleaning

Landmark & 
visual models

Google Image Search

Figure 2.8: Overview of the framework proposed in [Zheng et al., 2009]. This method has two
information sources, geo-tagged photos dataset and travel guide articles. The photo dataset is
clustered based on photos’ geo-tags. The travel articles are used to extract landmark names.
Such landmark name dataset is further used to search for related landmark images using Google
search engine, this step results in another image landmark dataset. Finally, landmark visual
models are learned from both image datasets. Image courtesy of [Zheng et al., 2009]

2008]. Hays and Efros do not address the issue of fast feature matching. There work is focused

more on the quality of matches. Specifically, they do not provide a scheme for indexing hybrid

features to support efficient nearest neighbour queries. Furthermore, matching hybrid features

is also computationally more expensive.

In addition to visual features, metadata associated with images can also be used to estimate

the location of an image. Zheng et al. use geo-tagged image dataset plus tour guides to identify

a list of images containing landmarks [Zheng et al., 2009]. Images containing each landmark

are grouped together and visual features for each image group are extracted and stored in a k-d

tree. Each k-d tree, in a sense, represents a visual model for the corresponding landmark. Pre-

viously unseen images are localized by matching their features against the landmark models.

Figure 2.8 present an overview of their approach. Their approach is noteworthy in that it parti-

tions the reference dataset, albeit around landmarks and using metadata that is not available to

our method.

2.1.3 Image Localization using Vocabulary Trees

Visual Words

Content based retrieval systems or image matching systems rarely deal with raw (local) fea-

tures directly. This is in part because such features, when extracted from a large corpus of
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images, exhibit redundancy. Also the sheer number of features extracted from such image cor-

puses easily overwhelm any attempts at searching or matching query features. A solution is

to represent the image corpus with a smaller set of features by exploiting any redundancies

present in the raw feature set. Visual words is one technique for constructing a (much) smaller

set of representative features from the raw features set. These representative features are com-

monly referred to as the visual words.2 Figure 2.9 illustrate visual words constructed from

SIFT features. SIFT features corresponding to the same visual word are drawn in the same

color.

Visual words are constructed by clustering the raw features (in our case, SIFT features)

and keeping only the cluster centers. One typically has to specify a priori the number of

visual words desired for a given situation. We use K-means to cluster SIFT features in order to

construct visual words. For example, in some of our tests, we construct nearly 2 million visual

words from 28 million raw features. It is worth noting that visual words are SIFT features

representing cluster centers returned by K-means. Consequently, we can match two visual

words using the same machinery that we use for matching SIFT features.

Vocabulary Tree

Vocabulary tree is a technique that relies upon visual words to match a query image against a

collection of reference images. In this method, visual words are constructed from the reference

images and then these words are stored in an efficient search index constructed using hierar-

chical K-means. Features extracted from the query image are matched against the visual words

to identify the list of visually similar images in the reference dataset.

The caveat is that each visual word may be found in multiple images. Consider, for ex-

ample, a visual word that is present in a large subset of images in the reference dataset. This

2Visual words have their roots in text document analysis. Just as text documents are composed of words,
images are seen as consists of visual words. Specifically the visual words are defined over the entire image corpus
and then any image can be described using these visual words.
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Figure 2.9: Visual words constructed from reference image dataset. SIFT features extracted
from the reference dataset are clustered to construct visual words. SIFT features corresponding
to different visual words are drawn in different colors, while those that belong to the same
visual word are drawn using the same color.



CHAPTER 2. LITERATURE REVIEW 26

visual word is not very useful for matching the query image to the images in the reference

dataset. The solution to this problem is to use the well-understood technique from text docu-

ments where each word is assigned a weight based upon its occurrence frequency. Common

words, such as ‘a,’ ‘an,’ and ‘the,’ occur frequently and are assigned low weights. Borrowing

this idea, [Nistr and Stewnius, 2006] suggests to assign a weight

ln

✓
N

Nw

◆

to each word f 0w, where N is the total number of images and Nw is the number of images that

contain the visual world f 0w. Here higher weight is assigned to words that appear in only a few

images in the reference dataset; whereas, a smaller weight is assigned to words that appear in

larger number of images.

Image Localization

When presented with a query image, features extracted from the query image are matched

against the visual words (from the reference geo-tagged dataset) stored in the hierarchical K-

mean structure. The set of matched visual words is used to estimate the location of the query

image. The process is as follows. One or more locations are attached to each visual word and

each visual word votes for its location(s). As noted before each visual word also has a weight

associated with it, which is taken into account during the voting process. The location that gets

the highest score after the weighted voting is picked as the location of the query image.

Vocabulary trees do not fair well for image localization tasks. In part because vocabu-

lary tree based approaches, and more specifically visual words, suffer from polysemy and syn-

onymy [Quelhas et al., 2005b]. Polysemy refers to the fact that any visual word may be present

in different scenes and synonymy means that different visual words may describe the same

scene.

Grant et al. suggests using marginal probability of a specific location given a visual words
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as a means to improve the performance of vocabulary tree based image localization [Schindler

et al., 2007]. Grant et al. examine their method using 30,000 street view images and select 278

images from them as query images. There method was able to achieve 70% recognition rates.

[Kalantidis et al., 2011] organize geo-tagged reference images into spatial groups using the

location information available for these images. Kalantidis et al. observe that some reference

images may contain multiple landmarks and should be included in several groups. By necessity

these groups will be spatially close to each other. In order to create overlapping and approx-

imately equal size groups, their method use Kernel Vector Quantization (KVQ) [Tipping and

Schölkopf, 2001]. Next, for each group, their method identifies one image that contains a rigid

object visible in every other image within that group. SIFT features are extracted from images

within the group and are filtered based upon the SIFT features found in the representative im-

age. The SIFT features that survive this pruning step are used to construct a vocabulary tree for

each scene group. At query time, features extracted from the query image are matched using

these vocabulary trees.

Instead of relying upon “voting” to estimate the location of the query image, [Torii et al.,

2011] observe that any query image typically contains visual words from nearby geo-tagged

reference images. Furthermore, they argue that the location of the query image is best described

as a linear combination of locations of the nearby reference images.

2.1.4 3D Point Cloud

More recently Structure from Motion (SfM) techniques have been employed to construct 3D

scene structure from the set of geo-tagged images. The visual features extracted from the

reference images is then stored as a 3D point cloud; i.e., each visual feature is assigned a

unique 3D location in the scene. This is in sharp contrast to the approaches discussed so far

where each visual feature is assigned the location(s) of the image(s) containing this visual

feature. The primary benefit of this approach is that it can estimate the exact camera location

and pose used for capturing the query image.
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[Li et al., 2010] use vocabulary trees to group visually similar images into separate groups.

SIFT features are extracted from images within each group and matched against each other.

Features that appear in only a few images are discarded and the remaining features are used

to estimate the 3D structure of the scene using SfM techniques. These features are stored as a

3D point cloud. SIFT features extracted from the query image are matched against the visual

features stored as the 3D point cloud.

Li et al. combine image features and 3D geometric constraints for scene summarization [Li

et al., 2008]. Their method uses K-means to group reference images based on their visual

similarities [Oliva and Torralba, 2001]. Their method uses GIST feature for computing image

similarities. Next, for each cluster, 8 images that are closest to the cluster centre are selected

and then one of these 8 images is selected as the iconic image for that cluster. Iconic images

that are “visually similar” are connected to form a scene graph that treats individual iconic

images as its nodes. The scene graph is used to construct a 3D model of the scene and the

query image is matched against this 3D model.

Snavely et al. propose a framework for organizing an unstructured collection of images to

construct 3D panoramic views from novel views [Snavely et al., 2006]. Their system can be

used for content based image retrieval. Their system accepts reference images along with their

camera poses, locations and orientations. First reference features are collected and matched

with each other by using camera pose information. Then all matched features are further

organized into a sparse 3D point cloud using SfM. Based on the 3D point cloud, all images can

be registered in a common 3D coordinate system and further stitched together for a panoramic

view of each scene spot. During the query time, a user draws a rectangle around target objects

in a reference image, and then the system returns all relevant images that contain these objects.

Their system can also annotate a reference image by finding visually similar images.
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2.2 Topic Models for Image Grouping

Topic models is a class of algorithms for automatically discovering “hidden” themes in a large,

unstructured corpus of documents. These first appeared for text document analysis; however,

lately topic models are being increasing applied to the problem of automatic image analysis.

We refer the reader to Blei et al. for an accessible exposition on topic models [Blei et al., 2003].

Here, however, we focus on Latent Dirichlet Allocation (LDA) algorithm for automatically

discovering latent themes (referred to as topics) in a collection of images. We will also discuss

how to infer the “theme” (or topic distribution) of an image given the latent themes discovered

from the image collection.

LDA is easily described by its generative process. It attempts to model the unknown ran-

dom process through which documents were generated from a given set of words. LDA is a

part of generative probabilistic modeling, which assumes that the data is arising from a gen-

erative process that includes both hidden and observed entities. Specifically LDA specifies a

joint probability over both observed and hidden random variables. Here observed variables are

the words present in the documents and the hidden variables refer to the topics or themes of

these documents. LDA performs data analysis by using the joint distribution over observed and

hidden random variables to compute the conditional distributions of hidden variables given the

observed variables. This conditional distribution is referred to as the posterior distribution. The

problem of document analysis or of inferring the latent topic structure of a particular document

is than the problem of computing the posterior distribution.

As stated earlier, topic models are used to analyze textual documents, where each individual

document is simply a collection of words. The first step in applying topic models for image

analysis is then to represent each image as a list of words. This is typically accomplished by

learning visual words from a set of images and then using this vocabulary to describe each

image. Specifically, we represent each reference geo-tagged image as list of visual words that

appear in this image.
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2.2.1 Image Grouping

Li and Pietro deal with image annotation using a variation of topic models [Fei-Fei and Perona,

2005]. Given several classified image groups (a training image dataset), their task is to auto-

matically select the best fitting image group for a query image. To this end, they first construct

a vocabulary from the training dataset and represent all training images as word list based on

that vocabulary. After that they learn a topic model for each image group. Given a new image,

they translate it into a word list using the same vocabulary and use this word list to select the

best group.

Hörster et al. also test content-based image retrieval using topic model and Support Vec-

tor Machines (SVM) on a large-scale image repository [Hörster et al., 2007]. After learning

latent topic set, they manually pick up several reference images as positive set and train SVM

to distinguish similar theme images from the others. Their method works well for small im-

age datasets but does not work well for a large-scale image archive partly because of manual

reference image selection.



Chapter 3

Processing Geo-Tagged Dataset and

Localizing an Image

We use Google Maps Street View dataset covering a small area of the city of Pittsburgh, PA as

our geo-tagged reference image dataset. This dataset comprises around 50, 000 images. The

area covered by this dataset is highlighted in Figure 1.3. The dataset is divided into image

squares, a set of four images captured at one location in four cardinal directions. The distance

between two adjacent image squares is roughly 12 meters. In order to get a more manage-

able number of images and to remove unnecessary redundancies in the dataset, we sample the

dataset every 3 image squares. Consequently our reference image dataset consists of around

16,000 images covering 4000 geographic locations. These locations are roughly 36 meters

apart.

3.1 Geo-tagged Dataset Processing

We process geo-tagged dataset to 1) partition it into scene groups and 2) construct a FLANN in-

dex containing SIFT features from each scene group. We now describe different steps involved

in this process.

31
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Figure 3.1: Cropping away the bottom one third of portion of the reference images. We noted
that this portion rarely contains any geographically relevant information that can be used during
image localization.

3.1.1 Collecting Visual Features

The first step is to collect SIFT features from the reference geo-tagged images. We noticed

that the bottom one-third portion of most of our reference images is dominated by roads (or

automobiles), containing little if any useful geographic information. We, therefore, crop our

reference images and keep only the top two-thirds portion of these images (see Figure 3.1). We

collect SIFT features from the top two-thirds portion of the reference geo-tagged images. It

is possible to control the number and the quality of SIFT features extracted from an image by

choosing different values for the following four parameters used in the SIFT algorithm:

• Number of layers at each octave (sl): This value is used to determine the number of

layers at each octave. Following Lowe’s suggestions, we set this number to 3.

• Contrast threshold (sc): This value determines whether or not SIFT features will be

collected in low-contrast (or homogeneous) regions. A higher value for this parameter

filters out a larger number of SIFT features.

• Edge threshold (se): This value determines if SIFT features that lie on edges will be kept

or not.

• Smoothing (s�): This controls the amount of blurring performed on the image during

SIFT feature detection. A larger value will result in smoother images and fewer number

of SIFT features.
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(a) sl = 1, sc = 0.04, se = 5, s� = 1.6 (b) sl = 1, sc = 0.04, se = 20, s� = 1.6

(c) sl = 2, sc = 0.1, se = 10, s� = 1.6 (d) sl = 1, sc = 0.1, se = 10, s� = 1.6

Figure 3.2: SIFT features extracted from a single cropped reference image for different values
of the sl, sc, se, and s� parameters. The total number of SIFT features extracted depends upon
the choice of parameter values. For example, for the image shown here, a total number of 915,
1193, 140 and 78 SIFT features were extracted for parameter values shown in (a), (b), (c) and
(d), respectively.



CHAPTER 3. PROCESSING GEO-TAGGED DATASET AND LOCALIZING AN IMAGE 34

Figure 3.3: SIFT features extracted from a cropped reference image using sl = 3, sc = 0.04,
se = 10 and s� = 0.9. We use these parameter values for extracting SIFT features from our
geo-tagged reference dataset. For the image shown here a total of 2336 SIFT features were
extracted.

Figure 3.2 shows SIFT features extracted from one reference image using different values

of these parameters. Notice that these parameters effect the number of SIFT features extracted

from a given image. For the remainder of this work, we will use the following values for

extracting SIFT features: sl = 3, sc = 0.04, se = 10 and s� = 0.9. Figure 3.3 shows the

SIFT features extracted (from the reference image used in Figure 3.2) using these values. We

arrived at these values empirically. Essentially we chose to extract roughly 2000 features for

each cropped reference image. The selected values seem to achieve this for all of our cropped

reference images.

Each SIFT feature is associated with the location of the reference image containing it. Say

feature fj,l represents the lth 128 dimensional SIFT feature extracted from image Ij . Then the

location of this SIFT feature is the same as the location of image Ij . For the reference dataset

used in this thesis, this process collects around 28.3 million SIFT features.

3.1.2 Constructing Vocabulary Tree

The next step consists of constructing a vocabulary tree over the SIFT features extracted from

the reference image set. First we construct visual words. As stated earlier, visual words are
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constructed from SIFT features via K-means clustering. The cluster centers are the visual

words that we need. We decided to construct around 2.8 million visual words. This number

represents about 10% of the total number of SIFT features extracted from the dataset. Figure

3.4 illustrates examples of visual words constructed through clustering. Here each SIFT feature

is colored based upon the visual word that is closest to it as determined by Equation 2.1,

remembering that visual words are simply 128 dimensional SIFT features. In order to organize

visual words as vocabulary trees, we employ hierarchical K-means clustering that is 5 level

deep with a branching factor of 64. For the remainder of this thesis we will use f to denote

SIFT features and f 0 to denote visual words.

Each visual word may appear in more than one images. In other words multiple locations

are associated with each visual word. We now present a procedure to compute how many times

each visual word appears in an image. We will store this information in an N ⇥ W matrix,

where N is the number of reference images and W is the number of visual words.

Require: Image set {I1, · · · , IN}.

Require: Visual word set {f 01, · · · , f 0W}.

Require: Sets of SIFT features extracted from each image. Say Fn represent the set of features

extracted from image In.

Ensure: Matrix O 2 RN⇥W that stores how many times a visual word appears in an image.

Set all entries of O to 0.

for Each In 2 {I1, · · · , IN} do

for Each f 2 Fn do

Find the visual word that is closest to this SIFT feature. Say this visual word is f 0w.

O[n][w] 1.

end for

end for

Given O, we can easily find out how many images contain a visual word. Specifically,
P

n O[n][w] is the number of images containing the visual word f 0w. Let us define count(f 0w) =
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P
n O[n][w]. We can then assign a weight to each visual word f 0w as follows

weight(f 0w) =
N

count(f 0w)
,

where N is total number of images in the reference dataset. Lets also define occurrence(f 0w)

to be the wth column of matrix O. occurrence(f 0w) is then a binary vector that records if a

visual f 0w appears in a reference image or not. Specifically, visual word f 0w appears in image

In iff occurrence(f 0w)[n] is 1. Square brackets denotes indexing.

3.1.3 Learning Topic Models

Topic models see each image as a random mixture of (latent) topics, which in turn are re-

sponsible for generating the visual words associated with that image. The goal of learning a

topic model is to find the latent topic set and the associated distributions that best explain the

visual words observed in each image. We employ Latent Dirichlet Allocation (LDA) gener-

ative model to learn the topic model over the aggregated set of visual words observed in our

reference dataset [Blei et al., 2003].

One of the parameters that needs to be chosen a priori when learning a topic model given

the set of visual words is the dimensionality of the topic vector. A higher dimensional topic

vector can explain fine features within an image; whereas, a lower dimensional topic vector

ignore finer details, focusing instead on a more abstract features. At the same time, however,

a higher dimensional topic vector can suffer from over-fitting, meaning that the topic model

is easily distracted by visual clutter present in an image. Such a topic model will not gener-

alize. In this work we present results for 100, 300 and 400 dimensional topic vectors. After

topic model analysis, each image is represented as a topic vector, encoding topic distributions

inferred for that image. Figure 3.5 plots topic vectors for different images.
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Figure 3.4: Examples of visual words detected in reference images. After collecting SIFT
features from an image, we match its SIFT features against a visual word dataset constructed
before. Here, we color SIFT features using their corresponding visual words. To separate
special words from general words, we associate a word weight with each word by using Equa-
tion ?? and Equation ?? respectively.
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Figure 3.5: Representing images as topic vectors. Each image is represented as a 100-
dimensional topic vector. Each topic vector is drawn using a different color, which matches the
border of the corresponding image.
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3.1.4 Scene Groups

The next step is to group images that have similar topic distributions. This is accomplished

by clustering topic vectors from the geo-tagged reference dataset. Specifically we cluster topic

vectors corresponding to each of the reference image into S groups. We refer to these groups

as scene groups. The premise is that visually similar images will be grouped together since

these will exhibit similar topic distributions. Figure 3.6 shows sample images belonging to

three different scene groups. Notice how images belonging to a scene group share similar vi-

sual features. Notice also how scene groups depicted in Figure 3.6(b) and Figure 3.6(c) are

constructed around unique buildings (or landmarks). A possible explanation for this “spatial

partitioning” is that the images of a visually distinctive landmark share many visual charac-

teristics, plus that these images are sufficiently different from all other images. Note also that

the topic model fails to create a spatial partitioning for images of nondescript buildings (Figure

3.6(a)). This is to be expected.

The proposed method then constructs an index for each scene group. For this purpose it

collects raw SIFT features from images belonging to a particular scene group and construct a

FLANN index over these SIFT features. Specifically the FLANN index for a given scene group

is constructed using geo-tagged SIFT features belonging to the images in that scene group.

FLANN index currently does not support online modifications; however, it does support fast

approximate nearest neighbour queries.

3.2 Localizing a Previously Unseen Image

We now turn our attention to the problem of localizing a previously unseen image. We inves-

tigate two strategies for localizing an image. First, we discuss how vocabulary trees can be

used for localizing an image and then we will introduce our method that uses scene groups for

localizing previously unseen images.
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(a)

(b)

(c)

Figure 3.6: A sampling of images belonging to different scene groups. Notice how topic
model driven partitioning scheme groups visually similar images together. (a) is a generic
scene group. (b) is a scene group comprising images that all see a unique building and (c)
consists of images that see the famous PPG Place, Pittsburgh, PA. (b) and (c) supports the
notion that scene groups are constructed around landmarks.
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3.2.1 Localizing an Image using Vocabulary Trees

SIFT features extracted from the query image Iq are matched against the visual words stored

in the vocabulary tree. Say {f 0q|q 2 [1, Q]} is the set of matched visual words. Each visual

word is associated with one or more locations. Remembering that each visual word appears in

one or more reference geo-tagged images. Each visual word votes for the locations where it

appears (i.e., locations of the images containing this visual word). The location of the query

image is

locof

 
maxindex

 
X

q

weight(f 0q)⇥ occurrence(f 0q)

!!
,

where occurrence(f 0q) is a binary vector that stores the occurrences of the visual word f 0q,

weight(f 0q) is a scalar denoting the weight of the visual word f 0q, function maxindex returns

the index corresponding to the largest value of a vector and function locof returns the location

of the reference image corresponding to the index passed to it.

We noticed that the scheme described here does not perform well. This is due to the fact

that weighting scheme used here fails to distinguish between visual words that appear in a lot

of images taken in close proximity to each other and visual words that appear in a lot images

that are spread over a large area. The first kind of visual words contain useful geographic

information and should be assigned higher weights; where as, the second kind of visual fea-

tures do not contain useful geographic information and should be assigned lower weights. Say

loc(f 0) represents the set of locations for visual word f 0, we measure its geographical spread by

computing standard deviation of loc(f 0). We can then estimate the location of the query image

using the following equation:

locof

 
maxindex

 
X

q

weight(f 0q)

spread(loc(f 0q))
⇥ occurrence(f 0q)

!!
,

where spread(loc(f 0q)) denote the geographical spread of visual word f 0q. It is computed as

follows. Say sd(loc(f 0)) denote the standard deviation of vector loc(f 0), treating each of its
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element as a sample of a bivariate distribution. We mention bivariate as each element of loc(f 0)

represent longitude and latitude values. Then spread(loc(f 0q)) =

Q
i sd(loc(f

0
q))[i], again

using [] to denote indexing.

3.2.2 Localizing an image using Scene Group

When localizing a query image using scene groups, the topic model learned over the reference

database is used to infer topic distribution for this new image. The process involves three steps:

1) computing raw SIFT features, 2) projecting the computed SIFT features to the visual word

space constructed for the reference database and 3) using the visual words present in the query

image to infer its topic distribution.

The topic distribution is then used to identify the most likely scene group for the query im-

age. Say topic distribution inferrence represents the query image as a topic vector zq. Further

assume that the set of topic vectors corresponding to S scene groups is {z1, · · · , zS}. Remem-

bering that scene groups are constructed by clustering topic vectors from the reference dataset,

zs is the cluster centre corresponding to the s scene group. The scene group s will be chosen

for the query image if |zq�zs|  |zq�zs0 | , 8s, s0 2 [1, S] and s 6= s0. Next raw SIFT features

from the query image are matched against the FLANN index corresponding to the most likely

scene group for that query image. This process identifies the set of matched geo-tagged SIFT

features.

We adopt the scheme proposed in [Zamir and Shah, 2010] to prune the set of SIFT features

returned after matching the FLANN index of the most likely scene group (Equation 2.5). The

matched geo-tagged SIFT features that pass this test are used to assign a location to the query

image through voting. Essentially each of the matched feature votes for its location and the

location that has the largest number of votes is assigned to the query image.



Chapter 4

Experiments and Results

In this chapter, we focus on experiments and results conducted in this work. In Section 4.1,

we compare image localization using our method that uses scene groups with Zamir and Shah

approach that appeared in [Zamir and Shah, 2010]. We use the same geo-tagged reference

image dataset that was used in [Zamir and Shah, 2010]. For our query images we selected

121 images with known location from the website Panoramio. These images are from the area

covered by our reference datasets and these images have no overlap with our reference dataset.

Figure 4.1 shows a subset of our query images. The locations of these images are known;

however, these locations are not used during localization. Rather this information serves as the

ground truth.

In the second half of this chapter we compare two vocabulary tree based approaches (for

image localization) with the proposed approach. We will compare Nistr and Stewnius [Nistr

and Stewnius, 2006] scheme for weighing visual words with the approach that we presented in

Section 3.1.2. The primary difference between the two approaches is that Nistr and Stewnius

approach relies only upon occurrence frequency of a visual word; whereas, the approach pre-

sented in Section 3.1.2 also takes into account the geographic extent (or spread) of visual words

when assigning them weights. We also compare these approaches with Zamir and Shah scheme

and with the proposed method that uses scene groups for image localization. For this set of

43
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(a) (b)

Figure 4.1: A sampling of test images used to evaluate our method. These images are already
geo-tagged, so we have the ground truth available for these images.

tests, we randomly select 100 images from the reference dataset. A similar approach was taken

in [Nistr and Stewnius, 2006]. Again the locations of the query images were not used during

localization, and served only as ground truth.

For either set of tests we use geo-tagged images from Google Maps Street View dataset

for Pittsburgh, PA as our reference dataset. Figure 1.3 shows the region of Pittsburgh covered

by this dataset, which consists roughly 50, 220 images. Google Maps Street View dataset

consists of an image square (4 images taken in cardinal directions) taken at 12 meters interval.

We noticed that this dataset exhibits redundancy, so we decided to subsample the dataset by

selecting every fourth image square. The subsampled dataset contains an image square roughly

36 meters apart.

4.1 Scene Groups for Image Localization

Around 28.3 million SIFT features are extracted from 16, 740 geo-tagged reference images.

The raw SIFT features when loaded in the memory takes about 13 Gb. K-means clustering is

used to construct 2, 792, 343 visual words from the raw SIFT features. This represents roughly

10 percent of the total number of raw features. Topic model is learned over these visual words.
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Dimensions Sequential (sec) Parallel (sec)
100 1.1 0.1487
300 3.1139 0.445
400 4.593 0.656

Table 4.1: Topic distribution inference times for a query image.

We have experimented with topic space dimensions of 100, 300 and 400. Topic distributions

aggregated over all the images are then clustered to construct scene groups and FLANN indices

are constructed for each of the scene group.

A higher dimensional topic space is able to capture fine features of an image; however, it

may suffer from over-fitting. Additionally it takes longer to infer the topic distribution of the

query image when topic space has a large number of dimensions.

Table 4.1 lists the average times it take to select the corresponding scene group for a query

image. This scene group is most likely to contain the images that are visually similar to the

query image. Notice that more time is needed to infer the topic distributions and select the cor-

responding scene group for higher dimensional topic vectors. The good news is that topic distri-

bution inference times can be drastically reduced by using the algorithm described in [Newman

et al., 2006] (Table 4.1, column 2).

Since the primary thrust of this paper is to partition the reference geo-tagged images into

groups of visually similar images by employing the topic model learned over all the images.

We have evaluated our approach using topic models consisting of 100, 300 and 400 dimensions.

We have also experimented with varying the number of scene groups (10, 50 and 100) that we

construct from the reference dataset.

We have evaluated our approach on 121 test images. The actual geographic locations of

these images are known. These serve as our ground truth. Geographic locations of the test

images were not used during the localization procedure. Figure 4.1 shows a subset of our test

images. Note that Google Maps Street View data does not contain these images. In other words

these images are previously unseen as far as our reference dataset is concerned.
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37 landmark images
Model Accuracy Time (s)
Method in [Zamir and Shah, 2010] 97.3% 11.4019
100 Topics / 10 groups 97.3% 2.33134
100 Topics / 50 groups 86.5% 1.6241
100 Topics / 100 groups 78.4% 1.01103
300 Topics / 10 groups 89.2% 2.05295
300 Topics / 50 groups 89.2% 1.21132
300 Topics / 100 groups 83.8% 1.1616
400 Topics / 10 groups 91.9% 3.9773
400 Topics / 50 groups 78.4% 1.0997
400 Topics /100 groups 78.4% 1.2201

Table 4.2: Localization performance comparison for landmark images.

We divided the test images into two groups. The first group consists of those images of

Pittsburgh that do not contain any unique (visually distinctive) buildings. We call this set non-

landmark images. Where as the second group consists of those images of Pittsburgh that see

some unique buildings, e.g., the PPG Place that dominates Pittsburgh skyline. We refer to this

set as landmark images. Remembering that we are dividing the reference dataset into differ-

ent groups using visual similarity. Our intuition is that reference images that see a particular

landmark will be grouped together.

To test whether this is indeed the case and to ascertain if there are any benefits to such

a grouping, we evaluate the proposed approach on both non-landmark and landmark images.

For the tests presented below we assume that an image is correctly localized if it is within 200

meters of its true location. We used a desktop (Intel Core i5 2.8GHz processor, 6GB RAM)

running Windows 7 to carry out the experiments presented here.

Table 4.3 summarizes the results of our approach using 84 non-landmark images. It also

compares our approach to that of [Zamir and Shah, 2010]. Note that Zamir and Shah’s approach

is able to correctly localize 26 images out of 84. Our method is also able to correctly localize

26 images (300 topic dimensions; 10 groups). A reason for such low accuracy is that that
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84 non-landmark images
Model Accuracy Time (s)
Method in [Zamir and Shah, 2010] 30.9% 14.4136
100-Topic / 10 groups 28.6% 3.352
100-Topic / 50 groups 23.8% 2.3205
100-Topic / 100 groups 19 1.526
300-Topic / 10 groups 30.9% 2.55567
300-Topic / 50 groups 28.6% 1.6579
300-Topic / 100 groups 22.6% 1.3893
400-Topic / 10 groups 30.9% 4.969
400-Topic / 50 groups 23.8% 1.3043
400-Topic / 100 groups 20.2% 1.4096

Table 4.3: Localization performance comparison for non-landmark images.

(a) Success (b) Failures

Figure 4.2: (a) Some of the non-landmark images that were localized correctly by our method
and (b) a selection of non-landmark images that were localized incorrectly by our method.
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reference dataset is impoverished. One needs a lot more than just 50, 220 images to cover a

city the size of Pittsburgh. Figure 4.2(b) depicts a sample of non-landmark images that were

localized incorrectly by our method. It is worth mentioning that these images exhibit a high

visual dissimilarity with the images present in our reference dataset.

Zamir and Shah’s method on average takes roughly 14 seconds to process a query (Ta-

ble 4.3). Our method is able to match the accuracy of Zamir and Shah’s method (300 topic

dimensions; 10 groups); however, our method processes a query on average in under 3 sec-

onds. Consequently on average our method processes a query roughly 4.5 times faster than

that of Zamir and Shah’s method.

Table 4.2 summarizes the results of our approach using 37 landmark images. It also com-

pares our approach to that of [Zamir and Shah, 2010]. Note that Zamir and Shah’s approach is

able to correctly localize 36 images out of 37. Both our method and the method presented in

[Zamir and Shah, 2010] are able to achieve an accuracy of 97%. Here too our method matches

the accuracy of Zamir and Shah’s approach; however, on average our method is spends a little

over 2 seconds per query and their method takes around 11 seconds to process a query. This is

again a 5 fold increase in query processing speed.

It is worth keeping in mind that the localization accuracy for landmark images is much

higher than that of non-landmark images. This is to be expected. Images showing generic

items, we think are typically much harder to localize without a very detailed reference dataset.

Tables 4.2 and 4.3 also exhibit a trend that we anticipated. Irrespective of the topic dimensions,

partitioning the reference dataset into more scene groups adversely affects the accuracy and at

the same time increases query processing speed. Increase in the processing speeds is easy to

explain—more scene groups mean fewer SIFT features per group and smaller FLANN indices.

Decrease in the accuracy; however, is related to the fact that the chance that the topic model

will assign the query image to the wrong group increases as we increase the number of scene

groups.

Table 4.4 aggregates the results for both non-landmark and landmark images. Our method
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121 test images
Model Accuracy Time (s)
Method in [Zamir and Shah, 2010] 51.2% 12.90775
100 Topics / 10 groups 49.6% 2.84167
100 Topics / 50 groups 42.9% 1.9723
100 Topics / 100 groups 39.7% 1.268515
300 Topics / 10 groups 48.7% 2.30431
300 Topics / 50 groups 47.1% 1.43461
300 Topics / 100 groups 38.8% 1.2755
400 Topics / 10 groups 49.6% 4.47315
400 Topics / 50 groups 40.5% 1.202
400 Topics / 100 groups 38.0% 1.315

Table 4.4: Image localization performance comparison aggregated over landmark and non-
landmark images.

compares favorably with the method proposed by Zamir and Shah in terms of accuracy (ours

49.5% compared to theirs 51%). However, on average the proposed method processes a query

4.5 times faster than their method.

4.2 Image Localization using Vocabulary Trees

When using vocabulary trees for image localization, we focus primarily on the schemes used

for weighing visual words. We randomly select 100 images from the reference geo-tagged

dataset and use these as our query images. For our tests we assume that an image is correctly

localized if it is localized to within 50 meters of its true location. We also use this dataset to

evaluate the proposed scene groups based approach and the scheme that appeared in [Zamir

and Shah, 2010]. Here we represented each reference image as a 100 dimensional topic vector

and partitioned our dataset into 10 scene groups. The results are summarized in Table 4.5.

When using vocabulary trees for image localization, our proposal of assigning weights to

visual words using both their occurrence frequencies and their geographical spreads outper-

forms the traditional scheme of assigning weights to visual words using only their occurrence

frequencies. Specifically, for our particular dataset, our method of assigning weights to visual
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100 test images
Model Accuracy Time(s)
Vocabulary tree [Nistr and Stewnius, 2006] 42 % 0.49
Vocabulary tree (Section 3.1.2) 67% 0.49
Our scene model method 94% 0.34
[Zamir and Shah, 2010] 98% 1.32

Table 4.5: Image localization using vocabulary trees.

words achieves an accuracy of 67% as opposed to the traditional scheme of assigning weights,

which only achieved an accuracy of 47%. It seems that vocabulary trees are perhaps not suit-

able for image localization applications. Notice that both Zamir and Shah [Zamir and Shah,

2010] and the proposed approaches achieve 98% and 94% accuracies, respectively. Also note

that the approach presented in this paper posts better times than all other methods.



Chapter 5

Conclusions and Future Works

In this work, we focus on image localization using a geo-tagged city-scale image dataset. While

most existing methods strive for improving accuracy, we focus on the issue of scale. Our

method is motivated by Zamir and Shah work on image localization that appeared in [Zamir

and Shah, 2010]. Their method constructs a single index for storing SIFT features collected

from the reference dataset. Using a single index works reasonably well for smaller datasets,

but does not scale to larger datasets. Instead we propose an automatic method for partitioning

reference dataset into groups. Our method relies upon topic model analysis to group visually

similar images into different groups, called scene groups. When presented with a query image,

first its corresponding scene group is selected and then SIFT features extracted from this query

image are matched against the SIFT features collected from reference images belonging to

that group to identify the set of visually similar reference images. This set of visually similar

images is then used to estimate the location of the query image.

We have examined the proposed method against Zamir and Shah scheme and show that

both methods achieves similar accuracies, however, our method is roughly 4.5 times faster

than Zamir and Shah method. We also presented a new scheme for assigning weights to visual

words when using vocabulary trees for image matching for the purposes of image localization.

Our results suggest that our scheme for assigning weights to the visual words gives better

51
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results then the approach used in [Nistr and Stewnius, 2006]. Furthermore our results suggest

that vocabulary tree based image matching technique are not suitable for appearance based

image localization methods.

It is worth noting that the performance of the proposed methodology depends upon the

quality of the reference geo-tagged dataset. For example, our reference dataset do not contain

any night images, so our method is unable to localize a query image taken at night. Of course

Zamir and Shah [Zamir and Shah, 2010] and Nistr and Stewnius [Nistr and Stewnius, 2006]

methods also suffer from the same drawback. In situations where reference dataset contains a

lot of “similar” images, topic model analysis may result in unbalanced scene groups, i.e., some

of the scene groups contain most of the images from the reference set. The performance of the

proposed approach will degrade in such situations.

5.1 Future Works

We realize that we have barely scratched the surface and that many more experiments are

needed to fully understand the behavior of the system. There are many avenues for further

research, including

• Automatically select the number of visual words that should be constructed from the

SIFT features. Currently, we provide this information to the algorithm.

• Dynamic topic model analysis, where topic models are dynamically updated when new

images are added to the reference dataset.

• Dynamic FLANN inddex update, where FLANN index is dynamically updated as new

SIFT features are added to it.

• Automatic selection of the size of the topic vector. Currently, we provide this information

to the algorithm.
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