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Abstract

Computational and Laboratory Investigations of a Model of Blood Droplet Flight for

Forensic Applications

Raquel Murray

Masters of Science

Faculty of Graduate Studies

University of Ontario Institute of Technology

2012

We present a three-dimensional, forward model of blood droplets in flight. The proposed

model is based on a set of ordinary di↵erential equations (ODEs) incorporating viscous

drag and gravitational forces. We validate the model against laboratory experiments

in which a mock crime scene is constructed. The experiments consist of a ballistics

gel containing transfer blood or porcine blood shot by a riot ball from a paintball gun

constituting a simulated bloodletting event. The experiments are captured using high-

speed stereo camera pair from which three-dimensional trajectories can be extracted

using tracking software. The long-term goal is to develop an accurate framework for

forensic Bloodstain Pattern Analysis (BPA).
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Chapter 1

Introduction

We investigate motion of blood droplets as they travel through air and present a physics-

based, three-dimensional, forward simulation for modelling blood droplet trajectories. We

develop the model by addressing the necessity of physical forces —gravity and drag— that

are acting upon the droplet. The model is validated by setting up a physical experiment

simulating a bullet hitting human flesh. In our experiments we know the position of

the target and the position and type of the weapon used to fire the bullet. The model

contains the following parameters: the drag coe�cient, radii of the droplets, and the

initial speeds of the droplets. The proposed model enables us to analyse the motion

of the blood droplets through the air. Specifically, we study how well the proposed

model explains the motion of physical blood droplets as these move through the air.

We record our experiments using a high frame rate stereo camera pair and use a blood

droplet tracker to estimate the three-dimensional trajectories of the blood droplets. These

trajectories are subsequently used to validate the proposed model. We demonstrate that

our model correctly identify the motion parameters associated with the trajectories of

physical blood droplets. These include initial velocities and drag coe�cients. The values

for these parameters are found by fitting the proposed model to the trajectories of physical

blood droplets by minimising the Euclidean norm.

1



Chapter 1. Introduction 2

1.1 Motivation and Background

Bloodstain Pattern Analysis (BPA) is a branch of forensic physics focused on analysing

bloodstains found in a crime scene with the view to recreate the events leading to these

bloodstains. The objective is to identify the cause (or source) of the bloodstain, often

referred to as the bloodletting event. This includes knowing where a victim was positioned

at the bloodletting event and what weapon or object caused the bloodletting event. The

aim of BPA is to trace the stains from individual droplets back to their source. Under the

assumption that the blood droplets from a single blood letting event are responsible for

a particular bloodstain, the paths of these blood droplets should intersect when traced

back from the bloodstain and the region of intersection of these paths is assumed to give

a good indication of the position of the bloodletting event as depicted in Figure 1.1.

Figure 1.1: An overhead view of the intersection of blood droplet paths. The region in
the blue square is considered region of intersection. The arrows indicate the direction of
motion of the droplet. The bloodstain is created on the y plane. See [16]
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Once a blood droplet exits the body, it travels along a unique trajectory toward the

surface it is going to impact. This trajectory resembles a parabolic path and while the

droplet is travelling along this path, radial contractions or oscillations of the droplet occur

[25]. The proposed model does not account for radial distortions of the blood droplets

as they fly through the air. In Section 5.2.4 we discuss some future research that can be

done in this topic.

1.1.1 Dynamics of Blood Droplets

Blood droplet dynamics of human blood have been studied at length by Pizzola et. al.

[22, 23]. [22] presents two experiments designed to observe the bloodstains formed when

blood droplets fall vertically down on a surface. In the first experiment a blood droplet

is released from a known height and falls on a stationary, inclined surface. Here the

volume of the blood droplet is also known. The experiment is photographed to observe

how the droplet impacts the surface and how the stain settles on the surface. The second

experiment observes circular stains and their corresponding spines caused by a blood

droplet falling from an ice pick, a scarf and a steel laboratory rod. Further research was

done by Hulse-Smith et. al. in [9, 10] on extracting a droplet’s diameter and impact

velocity from the spines on a bloodstain. Figure 1.2 shows high-speed photographs of

porcine blood droplets, of di↵erent diameters, falling onto paper and the resulting spines.

In [23], another experiment was done involving a blood droplet falling onto a moving

belt which could be set on an incline. The purpose of this was to view the di↵erences in

the stains when a droplet impacts a stationary surface on an incline and when a droplet

impacts a moving surface on a flat plane. Many experiments, have been conducted to

study blood droplet dynamics and some experiments use porcine blood [10, 14] as a

substitute for human blood. It has been shown that porcine blood and human blood

share very similar characteristics with regards to density, surface tension and viscosity.

Porcine blood, therefore, is an acceptable substitute for human blood [26]. We study
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Figure 1.2: A series of high-speed photographs comparing the impact dynamics of three
di↵erent porcine blood droplet diameters falling onto paper [10].

di↵erent blood droplet dynamics than those explored in [10, 22, 23]. For the purposes

of our model, we focus on the dynamics of blood droplet flight and the parameters that

are involved in creating the unique forward trajectories each droplet has when it emerges

from the ballistics gel.
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1.2 Existing Methods for Bloodstain Pattern

Analysis

The current methods for finding the location of the bloodletting event responsible for

a bloodstain assume that blood droplets travel in a straight line. The most common

method is the String Method [11]. In this method, an investigator aligns a string with

the major axis of an elliptical stain of an upward moving droplet and pulls the string

back according to the impact angle (see Equation 5.1) calculated using the dimensions

of the stain. When using the String Method, the investigator will not use bloodstains

of droplets that are moving downward once the droplet hits the surface. When a string

is pulled back according to the impact angle of a droplet that is moving downward, the

string will extend upward in a straight line falsely indicating that the source of that

droplet is in the ceiling. Thus investigators will predominately ignore downward moving

droplets when using the String Method or use them with caution. We call such methods,

straight line geometric reconstruction of bloodstains.

Figure 1.3 shows that droplets appear to be moving sideways and these can give mis-

leading results as their strings are pulled away from the source of bloodletting. These

droplets are not moving sideways but could be experiencing a radial distortion as the

droplet impacts the surface. Raymond et. al. describes these droplet vibrations as follows

[25]:

A spherical droplet striking a surface at an angle produces an elliptical stain.

The same stain can be produced by an elliptical drop striking the surface

perpendicularly... It has been shown experimentally that the natural mode

of vibration of a spherical droplet is ellipsoidal... Initial experimentation has

shown that for at least 15 cm of drop travel, there are indications of droplet

break-up, some spinning—particularly where the drop has a dumbbell-like

shape—and considerable deformation of the shape in some instances.
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Oscillatory radial distortions of blood droplets are discussed further in Section 5.2.4.

Work has been done to improve straight line geometric reconstruction methods by ac-

counting for gravitational force. In particular, Knock and Davidson have investigated the

source of angled bloodstains and they use the gravitational force in a two-dimensional

model [14], but neglect air resistance and the oscillation of the blood droplet.

Figure 1.3: The String Method [11]. The strings are aligned with the major axis of
a selected droplet and are pulled backward out of the page according to the angle of
impact. The origin of bloodletting is out of view of the camera. Some strings are being
pulled away from the origin of bloodletting because those droplets are not moving strictly
upward.

BACKTRACK™, developed by Carter [11], is a Bloodstain Pattern Analysis (BPA) soft-

ware package that implements the straight line geometric reconstructions of blood droplet

trajectories. This program estimates the coordinates of the source of the bloodletting

event in a horizontal plane with su�cient accuracy [11]. However the height estimates

of the source of the stain are used with caution because of the uncertainty in downward

moving droplets. Figure 1.4 shows downward moving droplets coming from a bloodletting

source in the ceiling. Without the three virtual strings (shown in the side view screen
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capture in Figure 1.4) from upward moving droplets, the area of convergence would be

incorrect.

Recently, Maloney developed a three-dimensional BPA software package called HEMO-

SPAT™ [17, 18]. This package has a feature that gives investigators who are not at the

scene the ability to measure the dimensions of an actual stain from a digital photograph

as shown in Figure 1.5a. The user can also invert the colours of the photograph if nec-

essary (Figure 1.5b). Similar to BACKTRACK™, this software package is also based on

straight line geometric reconstructions (Figure 1.6).

A major disadvantage of both packages is their confinement to straight line geometric

reconstructions, i.e., the lack of the drag force and gravitational force in their models.

Straight line geometric trajectory reconstructions may be acceptable for bloodstains that

are a very short distance from the bloodletting event [5], but in the situations where

the bloodstains are far from the source of bloodletting or the stain is incomplete (from

moving a piece of the crime scene for instance), a model accounting for drag and gravity

is needed. It is unclear what distance constitutes a bloodstain being far or close to the

source of bloodletting but Buck et. al. states that if the impact angle (measured from

the horizontal plane) “exceeds 10 �, ballistic analysis is recommended”. Buck et. al. also

states [5]:

In the case of bloodstains, which are located [sic] longer distance from the

blood drop origin, the straight line was sited [sic] up to 2m higher than the

ballistically determined trajectory of the blood drop in the area of origin of

the bloodstains. These results demonstrate that a ballistic determination of

the trajectories is necessary.

In the same article [5], a three-dimensional, bloodstain documentation procedure is pre-

sented. Unlike the String Method, the investigator does not need to connect strings to

the bloodstain. Instead a laser scans the crime scene for bloodstains and records their
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(a) An overhead view where the blood droplets

are moving from bottom to top.

(b) A view from the side where the blood

droplets are moving from right to left.

Figure 1.4: Screen captures of trajectory reconstruction produced by BACKTRACK™
[11].



Chapter 1. Introduction 9

(a) Photograph of bloodstain of an individ-

ual blood droplet from a crime scene.

(b) Individual bloodstain in HEMOSPAT™
where the colours are inverted and the ma-

jor and minor axes have been identified by

the user.

Figure 1.5: HEMOSPAT™ stain identification (see [16])

sizes and positions. Buck et. al. presents a model, also based on straight line trajectory

reconstructions, which is used for bloodstains close to the source of bloodletting and

an external software provides a ballistic computation for droplets farther from the ori-

gin. Also, while the user can provide a desired drag coe�cient, the value of drag used by

default is noted to be the drag of a rigid sphere of diameters 1 millimetre to 3 millimetres.

In summation, the three software packages we found for bloodstain pattern analysis, all

use straight line geometric reconstructions. However the model o↵ered in [5] uses ex-

ternal software to reconstruct the trajectories of droplets that are far from the source

of bloodletting and would likely have a curved trajectories alongside straight line geo-

metric reconstructions for blood droplets that are close to the source of bloodletting.

HEMOSPAT™ and BACKTRACK™ both rely on straight line reconstructions of up-

ward moving blood droplets and the region of intersection to find the source of blood

letting. See [8] for a comparison between the software packages HEMOSPAT™ and

BACKTRACK™.
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Figure 1.6: Screen capture of the interface for HEMOSPAT™ [16]. This is a three-
dimensional view of the droplet paths. The droplets are moving into the page toward
the left wall.
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We present a model that does not use straight line geometric reconstruction. Our model

incorporates the force of gravity and the e↵ects of drag on a blood droplet. In Chapter 2

we discuss the procedure of producing the bloodstains via a simulated bloodletting event

where the position of the target and the weapon used are known. In Chapter 3 we

discuss briefly how to track the droplets in the stereo video data and how the paths of

the blood droplets are reconstructed. These experimental path reconstructions are used

in an objective function which is the Euclidean distance between the experiment path

reconstruction and a trajectory produced by our model. We use an optimisation solver to

minimise this objective function. Chapter 4 shows the results from fitting our model to

the experimental path reconstructs and also shows the distributions of drag coe�cients

and Reynolds numbers found by our model. Lastly, Chapter 5 has conclusions about our

work and a discussion of future research.



Chapter 2

Laboratory Simulations of

Bloodletting Events

We construct laboratory experiments of realistic bloodletting events using blood filled

gel targets. The position of the target is known and it is shot by a paintball gun loaded

with a riot ball. The high-speed stereo cameras record the shooting of the ballistics gel

and record the blood droplets flying through the air as they exit the ballistic gel. The

collected video is used by the software from [30] to produce trajectory reconstructions of

the blood droplets coming out of the ballistics gel. The properties associated with the

paths of individual droplets are analysed by the model described in Chapter 3. Each

experiment takes about 30 minutes to perform from start to finish and each experiment

generates approximately 6 gigabytes of video and photographic data.

12
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2.1 Outline of Procedure for Laboratory

Experiments

The laboratory procedure used to generate videos of simulated bloodletting events is as

follows. The details of specific calibration processes are outlined in Section 2.3 and each

item of the laboratory procedure is briefly described in a paragraph below the list.

1. Prepare the mock crime scene and recording equipment.

2. Calibrate the recording equipment.

3. Run the laboratory experiment.

4. Document and verify the experiment.

Preparing the mock crime scene (see Section 2.2) begins with fixing surface materials

on walls using clamps. These surfaces include carpet or cardboard or the default white

laminated plywood. High frame rate stereo camera pair is turned on and the Mega

Speed™ high-speed software is started, and the cameras are tested to ensure that all

wire connections from the cameras to the laptop are functioning.

There are three types of calibration videos captured in this experiment, the moving

checkerboard calibration video, the moving laser dot calibration video, and the riot ball

calibration video. Before the shooting of the ballistics gel all three calibration videos are

captured. The first calibration video recorded is the moving checkerboard calibration

(see Section 2.3.1). The second calibration video that is captured is the moving laser

dot calibration (see Section 2.3.2). Next, both calibration videos are analysed by the

calibration software to fix the coordinate system used by software from [30]. Once the

coordinate system is fixed the camera capture speed and mock crime scene lighting is

adjusted for the riot ball calibration. This calibration video captures a riot ball falling

into the mock crime scene (see Section 2.3.3). This video is used for determining the

downward direction needed for the software from [30].
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After camera calibration is completed, the laboratory experiment can proceed (see Sec-

tion 2.4). The ballistics gel target is mounted onto the lab jack. We ensure that the

riot ball travels directly through the gel and hits the blood package suspended inside the

ballistics gel target. Next we press the video synchronisation trigger, shoot the target

with the paintball gun and capture the experimental video.

After the shooting of the ballistics gel, the resulting bloodstains are photographed. Then

the calibration using the moving laser dot is repeated to ensure that the cameras have not

moved during the experiment, say due to recoil from the gun, invalidating the calibration.

All the videos are archived and labelled with dated filenames. If during the experiment

anything unexpected occurs (i.e. the riot ball ricochets o↵ the lab jack or the riot ball

did not pass through the gel completely or droplets from the experiment all moved in one

general direction) it is noted in a text file that goes along with the videos (see Section 2.5).

The list of materials needed to set up the mock crime scene and create the ballistic gel

targets are listed in Table 2.1. Some items in this table are reused for each experiment

but some items (specifically the targets) were remade for each experiment.

2.2 Preparing the Mock Crime Scene

The laboratory experiments are set up on a steel table 0.9m⇥ 3.0m where three 1.2m⇥

1.2m laminated plywood boards with a white vinyl finish are propped up against the

table opposite each camera to simulate the corner of a room (see Figure 2.1). Notice

that two plywood boards are propped up, next to each other, on the same side of the

table, and the last plywood board is perpendicular to the other two. Camera A faces the

two adjacent plywood boards and Camera B faces the last plywood board perpendicular

to the direction of the riot ball being fired. Di↵erent surfaces can be clamped onto the

walls to observe the resulting bloodstain pattern. In our experiments we use the white

laminated plywood surface extensively. For two experiments (one with transfer blood
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Table 2.1: Materials for reconstructing experiment

Category Item Quantity

Camera

Mega Speed ™ high-speed camera 2
Camera trigger 1
25mm camera lens 2
Camera tripods 2
Gigabit network switch 1
60cm⇥ 45cm sheet of plexiglass 2

Lights
500 watt halogen work lights 14
Tripod light stands 5

Target

600mL beakers 6
Popsicle sticks 2
Gelatin 40-50g
Thin string approx. 30cm
Latex wrap 1
Hot plate 2
Stirring rod 1
Syringe 1
Triple beam balance 1
Transfer blood 15-20mL

Weapon
Paintball gun 1
Hollow plastic 1.71 cm diameter riot balls 1

Crime Scene

Clamps 16 (minimum)
Lab jack 1
1.2m⇥ 1.2m sheet of plywood with white vinyl finish 3
Cardboard, carpets, other surfaces 2 (one for each wall)
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and the other with pig blood), we used cardboard as the surface. The blood runs a lot

more on the laminated plywood than on the cardboard, as expected. Experiments using

carpet (brown and green) surfaces are unsuccessful because the blood droplets soak into

the carpet immediately after the bloodletting event and thus cannot be photographed.

On an actual crime scene, investigators will not be taking the photographs of bloodstains

immediately after the crime takes place but on surfaces like walls that have been painted

or carpet or wallpaper, the bloodstains may retain their shape and not run along the

walls. This will be discussed further in Chapter 5. When we took the photographs of the

resulting bloodstains we were looking to photograph the stains before they were distorted

from the running of the blood so that this photographic data could be used in future

research.

The target is a thin latex packet containing either porcine blood or transfer blood encased

in gelatine and raised o↵ the table with a lab jack (seen in Figure 2.1 as item B). The

ballistics gel is a simulation of human flesh and the blood suspended inside the gel is a

simulation of the blood inside a human body. The latex blood package is suspended in

the beaker before the gelatine begins to harden and then placed in the refrigerator for

24 hours. The amount of each material is listed below:

• 15-20mL of blood

• 40g of gelatine powder

• 500-600mL of water

Directly behind the target sits the paintball gun loaded with a single riot ball for each

experiment. The riot ball has a radius of about 0.5 centimetres. The muzzle velocity of

the paintball gun is approximately 100 metres per second. The blood droplets emerge

from the ballistics gel at less than 10 metres per second. The crime scene setup is shown

in Figure 2.1 where the paintball gun is shown as item A.
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Figure 2.1: Placement of lab jack and paintball gun within the crime scene. A) paintball
gun used as a weapon. B) Lab jack on which the ballistics gel is placed in front of the
paintball gun. C) Halogen 500W work light.

The placement of the two high-speed cameras is shown in Figure 2.3. Both high-speed

cameras are capable of recording videos at 1300 frames per second. One high-speed

camera, protected by plexiglass, is mounted on a separate table behind the paintball gun

and o↵ to the side (Camera B in Figure 2.3). It is raised above the paintball gun and

angled vertically to gain a good perspective of the left and right motion of the blood

droplets. The paintball gun, when fired, produces recoil that shakes the table it is placed

upon. The high-speed camera, therefore, cannot be placed on the table directly behind

the paintball gun because the recoil of the gun can shake the high-speed camera thereby

invalidating the experiment. To avoid this, the high-speed camera is placed on its own

table to the left of the paintball gun. The other high-speed camera—also protected by
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a sheet of plexiglass—points in a direction perpendicular to the path of the riot ball

(Camera A in Figure 2.3).

The cameras are connected together via a synchronisation trigger. Both cameras are

set to single trigger continuous capture mode in the Mega Speed™ high-speed software

which means that both cameras will begin capturing when the trigger is pressed, and will

continue capturing until the camera bu↵er is full. The actual shooting of the ballistics

gel will take no longer than a second. The cameras will normally capture the few seconds

before and after the trigger is pulled filling the camera bu↵er. Once the videos are

captured and saved, the beginning and end of the video clip will be trimmed since the

actual experiment occurs in the middle two seconds (maximum) of the video. Lighting

is provided by fourteen 500W work lights (seen in Figure 2.1 as item C) allowing the

cameras to produce usable videos even at frame rates above 1000 frames per second.

Within the high-speed camera software there is a setting called camera gain which con-

trols the quality of the videos captured. Higher gain values give lower quality videos

so in order to capture higher frame rate videos we could either use higher gain or more

illumination. We opt not to sacrifice the quality of the videos and thus use a higher

intensity of light. We use AC light sources and observe the light flickering in the videos

because the capture speed is su�ciently high. This flickering is accounted for by the

droplet tracking software from [30] (see Chapter 3).

2.3 Calibrating the Recording Equipment

In a previous version of this experiment, only one high-speed camera records the coor-

dinates of the blood droplet trajectories in the vertical plane. This setup can be seen in

Figure 2.4. This experiment shows that the blood droplets do indeed travel in curved

trajectories.

For this single camera experiment, the tracking of individual blood droplets is done by
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Figure 2.2: The full laboratory setup without markup.

hand (shown in Figure 2.5). The current version of this experiment uses two cameras

which allows for the three-dimensional reconstruction of the paths of the blood droplets as

they come out of the ballistics gel. Both cameras are connected to a trigger, as mentioned

above, which is connected to a laptop for video synchronisation.

The tracking of droplets is di�cult when using a stereo pair of high-speed cameras because

finding a unique droplet in both videos is di�cult. The synchronisation trigger is essential

for tracking droplets because it would be nearly impossible to manually find a unique

blood droplet in both videos without the synchronisation of the cameras. However,

even with the trigger synchronising the two video signals, ensuring the droplet being

tracked is the same in both videos would be virtually impossible to do with the Mega

Speed™ software. It is infeasible to use manual tracking to reconstruct the paths of blood
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Figure 2.3: The position of Camera A and Camera B with respect to the mock crime
scene. Camera A is oriented perpendicular to the direction of shot riot ball. The view of
Camera B is not exactly parallel with the direction of the shot riot ball but is oriented
overhead the placement of the ballistics gel.

droplets in the videos provided by stereo cameras, hence we use a three-dimensional blood

droplet tracker provided by Zarrabeitia et. al. [30]. We discuss the use of this program

in Chapter 3.

The tracking program developed Zarrabeitia et. al. [30] requires stereo camera calibration

to estimate the three-dimensional trajectories of blood droplets. Most calibration is done

before shooting the ballistics gel. However, there is also some calibration verification

done after the shooting is completed, to ensure the cameras have retained their original

position. The calibration program was provided by Zarrabeitia [30]. The calibration

procedure is as follows:
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Figure 2.4: A single camera experiment. The high-speed camera is oriented perpendicular
to the path of the projectile to capture the motion of the droplets in a vertical plane.

1. Capture the moving checkerboard calibration video

2. Capture the moving laser dot calibration video

3. Verify the accuracy of the above calibration videos using software from [30]

4. Capture the riot ball calibration video

2.3.1 Capturing a Moving Checkerboard for Calibration

Two checkerboard patterns with squares of size 3.35 cm ⇥ 3.35 cm are printed out and

mounted on the walls of the mock crime scene to aid in the tracking of blood droplets (see

Figure 2.7). Each checkerboard is positioned to be in the field of view of one of the two

cameras. When the mounted checkerboards are laminated (for cleaning and reuse after
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Figure 2.5: Manual tracking of a single droplet with Mega Speed™ software [19]. Here, a
single droplet is observed in 10 frames from a single camera and the position was marked
by the user. The Mega Speed™ software takes those ten points and applies polynomial
interpolation to reconstruct the path.

each experiment) the reflection from the work lights prove to be counter productive for

the droplet tracking software. Instead of laminated checkerboards a simple paper print

out of the checkerboard is used for each experiment.

For the moving checkerboard calibration video the wall checkerboards are covered or

removed. The reason for this is to ensure the calibration program is not confused between

the moving checkerboard (see Figure 2.6) it should be analysing and the stationary

checkerboards mounted on the walls of the mock crime scene. The camera is set to

capture at 100 frames per second and the exposure time is set to 5 seconds. The flat

checkerboard is moved around in the view of both cameras and both videos are analysed

by a calibration program provided by Zarrabeitia et. al. [30]. Once it does this the

calibration program will record the position of the cameras relative to each other. The

coordinate system is chosen with Camera A (shown in Figure 2.3) at the origin and
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Camera B will have a position relative to that origin. The size of this calibration video,

from one camera, is about 220 megabytes.

Figure 2.6: Still shot from a moving checkerboard calibration video. The checkerboard
is moved around in the view of both cameras and the calibration program identifies
the individual squares on the checkerboard. The image has been lightened to enhance
contrast.

2.3.2 Capturing a Moving Laser Dot for Calibration

This calibration video is captured with just enough light to see the wall checkerboards.

The camera settings are 100 frames per second and the exposure time is set to 5 seconds.

The size of this video, from one camera, is approximately 730 megabytes. The laser dot

must be the brightest object in each frame and it must be moved very slowly to avoid

motion blurring. The objective here is to shine the laser at least once on all three planes

of the experiment, trying to reach the edges and areas where the laser dot may be visible

by only one camera.

The calibration program (from [30]) will circle the laser dot (in Figures 2.8 and 2.9
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Figure 2.7: Still frame (as captured by both cameras) to illustrate the placement of the
mounted checkerboards. Each camera captures only one checkerboard. In both views of
the mock crime scene, the riot ball can be seen emerging from the ballistics gel. The
figure on the left is a still shot from Camera B and the figure on the right is still shot
from Camera A.

it is a thin blue circle) and a line (in Figures 2.8 and 2.9 it is a blue line) is plotted

corresponding to the position of the laser dot in the other camera. The error is the

distance between the line and the laser dot’s position. Ideally the blue line should pass

directly through the blue circle (as seen in Figure 2.9). The experiment will only proceed

if the three-dimensional reconstruction of the laser dot’s position matches the laser dot’s

actual position in the view of the camera. This laser dot verification is done before

and after firing the paintball gun to ensure the cameras have not moved during the

experiment. Figure 2.8 is an example of a failed experiment. The calibration verification

did not pass because one or both cameras had shifted during the experiment. This can

be caused by either recoil from the paintball gun or wires connected to the cameras being

moved accidentally. Figure 2.9 is an example of a successful experiment. The calibration

verification passed indicating that cameras did not move during the experiments.
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Figure 2.8: A screen shot of calibration verification. The blue circle shows the position
of the laser dot and the blue line represents the line corresponding to the position of
the laser dot in the other camera. The red circle shows the re-projection of the 3D
reconstruction of the laser dot. In this case the calibration is inaccurate because the
camera has somehow moved during the experimental procedure.

2.3.3 Capturing a Falling Riot Ball for Orientation

Figure 2.10 shows a still frame of the riot ball falling into the mock crime scene. This

calibration is done right before firing the paintball gun. The camera is set to capture at

1300 frames per second and the exposure time is set to 100 microseconds. The size of

this video, from one camera, is approximately 180 megabytes; the size is smaller because

the length of this video is much shorter than the checkerboard calibration video or the

verification of calibration video.

The function of the riot ball calibration video is to fix the direction of gravity. Once all

the necessary calibration videos are saved and are processed by the calibration program

the actual firing of the paintball gun can proceed.
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Figure 2.9: A screen shot of calibration verification. The blue circle shows the position
of the laser dot and the blue line represents the line corresponding to the position of
the laser dot in the other camera. The red circle shows the re-projection of the 3D
reconstruction of the laser dot. In this case the calibration is successful because the
camera has remained stationary during the experimental procedure.

2.4 Running the Experiment

The synchronisation trigger is pressed and the riot ball is fired at the ballistics gel target.

The video of the shooting of the ballistics gel will normally be about 1 gigabyte in size,

from one camera, and the camera settings will be identical to the directional calibration

camera settings: 1300 frames per second; full illumination. The data provided from

the droplet tracking software can be used to visualise the trajectories of blood droplets.

Figure 2.11 shows the first one hundred droplets tracked in the porcine blood experiment.

2.5 Documenting and Verifying the Experiment

After each experiment a number of photographs are taken of the scene to record the

final positions of the blood droplets on the walls and table for later use. Documenting

an actual crime scene consists of four steps: note taking, videography, photography, and
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Figure 2.10: Riot ball (shown as the black circle) is dropped from above the mock crime
scene and falls straight downward. The still shots also show the concentration of light
focused into the corner of the mock crime scene
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Figure 2.11: Visualisation of the trajectories from software provided by [30]. The left
figure is a view of the xy-plane or side view, the top right figure is the zy-plane or a
view from behind the gun, and the bottom right figure is a view of the xz-plane or an
overhead view. The thick green line is the path of the riot ball.

sketching [13]. Since we have a controlled laboratory experiment where the position

of the weapon is known, the only documentation we collected was photography of the

resulting bloodstain. While photographs of a crime scene should be taken with a camera

equipped with 35mm lens and other auxiliary lenses available, all the pictures of the

crime scene are taken with a Sony Cyber-shot DSC-W210 digital camera. The primary

use of the photos captured after each experiment is to make a visual validation of the

droplet tracking in that specific experiment. It will also serve a purpose in later research,

notably the inverse problem (see Chapter 5).
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(a) A digital photograph from the perspec-

tive of Camera A.

(b) A digital photograph from the perspec-

tive of Camera B.

(c) A digital photograph of the ballistics

gel including the checkerboard in the field

of view of Camera A.

(d) A digital photograph of the ballistics

gel including the checkerboard in the field

of view of Camera B.

Figure 2.12: Final photos of the mock crime scene using transfer blood.
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Before cleaning up the bloodstain pattern from the mock crime scene walls or removing

the surfaces a laser is once again shined in a random pattern on the surfaces of the mock

crime scene and a video is recorded. The digital photographs are taken before the laser

dot video is captured because the blood has a tendency to run on the laminated plywood

walls. This video is analysed using the calibration software [30]. If the verification fails

(as shown in Figure 2.8) the experiment is discarded and the entire procedure must start

over. If the verification passes, the videos are processed by the software from [30] once

they are suitably dated and labeled.



Chapter 3

Modelling Trajectories of Blood

Droplets

As mentioned in Chapter 1, our objective is to study blood droplet flight dynamics after

a bloodletting event. In this chapter we outline the model used to simulate the flight of

blood droplets after a bloodletting event (see Chapter 2). The model is used to calculate

the exact parameters (in particular, the drag coe�cient, the radius, the initial direction

and the initial speed) associated with individual droplets. The parameters are determined

via the solution of an optimisation problem. The objective function in the optimisation

problem is the Euclidean norm of the di↵erence between two vectors: one consisting

of points in a reconstructed trajectory and the other consisting of corresponding points

produced by the integration of the ordinary di↵erential equation that models the blood

droplets motion through the air.

For convenience we provide two tables summarising our notational conventions. Ta-

ble 3.1 lists parameters associated with individual blood droplets together with some

variables that would be measured by an investigator in a crime scene, which is discussed

in Chapter 5. Table 3.2 lists known empirical values that we use in our model. Also, see

Figure 3.1, for the coordinate system we are using in this model. While this coordinate

31
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system is unorthodox, it is the simplest right handed system to use with the high-speed

cameras in the laboratory experiment.

Table 3.1: List of notation

Symbol Description Units

 drag coe�cient dimensionless
r radius of a droplet m
Re Reynolds number dimensionless
u

0

speed ms�1

A cross sectional area m2

✓ polar angle (on the xy plane) radians
� azimuthal angle (on the xz plane) radians
↵ impact angle on the surface (see Chapter 5) radians
� glancing angle (see Chapter 5) radians
� string angle (see Chapter 5) radians

Table 3.2: List of constants and known values

Symbol Value Description Units

g 9.80665 acceleration due to gravity ms�2

⇢

air

1.1839 density of air at 25�C kgm�3

⇢

pig

1062 density of porcine blood [26] kgm�3

⇢

sim

1153 density of transfer blood (calculated in lab) kgm�3

µ

air

1.8616⇥ 10�5 dynamic viscosity of air at 25�C Nsm�2

µ

pig

4.8⇥ 10�3 dynamic viscosity of porcine blood [26] Nsm�2

�

pig

5.6⇥ 10�3 surface tension of pig blood [26] Nm�1
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Figure 3.1: Coordinate system used in our model with velocity vector u, azimuthal angle
� and polar angle ✓. The origin of the coordinate system is the centre of the ballistics
gel in the laboratory experiment.

3.1 Models of Aerodynamic Drag

3.1.1 Using Navier-Stokes Equations to describe

non-Newtonian Fluids and the Reynolds Number

The standard form of the Navier-Stokes Equation which describes the motion of a fluid

is:

⇢

✓
@u

@t

+ u ·ru

◆
= �rp+r · ⌧ + q, (3.1)

where ⇢ is the density of the fluid, u is the velocity of the flow, p is the pressure, ⌧ is the

stress tensor, and q represents any external forces acting upon the fluid. The divergence

of the stress tensor, r · ⌧ , from Equation 3.1 is known as the viscous term while ⇢u ·ru

from the left hand side of Equation 3.1 is known as the inertial term. The Reynolds

number, Re, (see Section 3.1.2) is derived from the ratio of the inertial terms to the

viscous terms.
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The laboratory experiments, described in Chapter 2, use two di↵erent types of blood:

simulated (or transfer) blood which is a fluid with Newtonian properties and porcine

blood which exhibits non-Newtonian fluid properties, similar to human blood. The stress

tensor, ⌧ , for a Newtonian fluid, is linearly proportional to the rate of strain tensor D

thus,

⌧ = µD, (3.2)

where µ is the dynamic viscosity of the fluid. For non-Newtonian fluids, the relationship

in Equation 3.2 is not linear. In fact, the dynamic viscosity is a function of pressure,

temperature and the rate of strain.

3.1.2 Reynolds number: Re

The Reynolds number, Re, is a ratio of inertial forces to viscous forces in a fluid. The

inertial forces characterise how much a fluid resists a change in motion. The viscous

forces are associated to the rate of change of a fluid’s viscosity over time. Therefore,

the Reynolds number is used to characterise a fluid’s flow behaviour. For instance, low

Reynolds numbers (where the viscous force is dominant) would characterise laminar or

smooth fluid flow. Higher Reynolds numbers (where the inertial force is dominant) would

characterise turbulent fluid flow. Acheson describes the Reynolds number in [1] as

Re =
⇢UL

µ

, (3.3)

where L, U , ⇢, and µ are characteristic scales of length, speed, fluid density, and dynamic

viscosity, respectively.

For our purposes, we treat the droplet as a rigid sphere with the air flowing around it.

As in [15], the Reynolds number that characterises this flow is
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Re =
2⇢

air

kukr
µ

air

. (3.4)

In Equation 3.4, the characteristic length is 2r (twice the radius of the droplet), the

characteristic speed is kuk (the speed of the droplet moving through the air), and ⇢

air

and µ

air

are, respectively, the density and the dynamic viscosity of air. Despite the small

radius of the droplet and the low initial speed of the droplets the density of air proves

to be large enough and the dynamic viscosity of air small enough to force the Reynolds

number to be greater than 1. Figure 3.2 presents a graph of the Reynolds number as a

function of speed for droplets of distinct radii.
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Figure 3.2: Reynolds numbers calculated via Equation 3.4 using four di↵erent radii and
over 1ms�1  kuk  10ms�1. This plot was made using the density and dynamic
viscosity of porcine blood.
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3.1.3 Stokes’ Flow

When the Reynolds number is small (i.e., Re ⌧ 1), the resulting flow is referred to as

Stokes’ flow. Stokes’ law characterises the drag force on a rigid sphere immersed in a

fluid undergoing Stokes’ flow (see [3]). The drag force, F
d

, on a sphere in Stokes’ flow is

written as

F
d

= 6⇡rµ
air

kuk. (3.5)

We are interested in the drag coe�cient associated with the drag force in Equation 3.5.

According to Batchelor [3],

It is common practice to express the forces exerted on moving bodies by the

fluid in terms of a dimensionless coe�cient obtained by dividing the force by

1

2

⇢U

2 and by the area of the body projected on to a plane normal to U.

In our case, we divide the force (Equation 3.5) by 1

2

⇢

air

kuk2A to obtain the drag coe�-

cient, , as follows:

 =
F

d

1

2

⇢

air

kuk2A
(3.6a)

=
6⇡rµ

air

kuk
1

2

⇢

air

kuk2⇡r2
(3.6b)

=
12µ

air

⇢

air

kukr . (3.6c)

Therefore,

 =
24

Re
, (3.7)

where Re is shown in Equation 3.4. In the next section, we use a correction of Stokes’

drag to calculate the drag coe�cient for our model.
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3.1.4 Drag Coe�cient: 

The drag coe�cient has a large influence on the motion of a droplet. The drag coe�cient

of an object moving through a fluid will vary depending on the speed of the object, the

size of the object, and the density and viscosity of the fluid that the object is moving

through. These properties are all handled within the Reynolds number (see Equation 3.4).

In our model, we use a drag coe�cient based on the work of Liu et. al. [15], in which the

following assertion appears:

At high relative velocities, the liquid drop deforms as it breaks up, and its

drag coe�cient should be a function of its Reynolds number and its oscillation

amplitude.

We could impose a periodic time dependence on the radius of the droplet to account for

the droplet’s internal oscillations, i.e., r = r

0

cos!t for some positive parameters r
0

and

!. For simplicity, we neglect these oscillations (discussed in Section 5.2.4). Therefore,

the drag coe�cient is calculated as [2, 15, 21]

 (kuk, r) =

8
>><

>>:

24

Re

⇣
1 + 1

6

Re
2
3

⌘
, if Re  1000

0.424, if Re > 1000.

(3.8)

For Reynolds numbers lower than 1000 (but still larger than 1), a correction to Stokes’

drag, 1 + 1

6

Re
2
3 , was proposed by Putnam in [24]. For a Reynolds numbers higher than

1000 the drag coe�cient of a rigid sphere, of radius r, is used. The model presented by

Buck et. al. [5] also assumes that the droplets remain spherical as they travel through the

air [22] and that the oscillations at the beginning of flight can be neglected [25]. A result

of this assumption is that the radius of the droplet is assumed to be constant during its

entire flight.

As mentioned in Section 3.1.2, we calculate the Reynolds number at every time step.

Since we use the Reynolds number in the calculation of the drag coe�cient (see Equa-
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tion 3.8), we also calculate the drag coe�cient at every time step. Even though the radius

of the droplet is assumed to be constant during the flight of the droplet, the velocity of

the droplet is changing during its flight which causes the drag coe�cient to also change

every time step of the blood droplet’s flight. Figure 3.3 plots the drag coe�cient against

the Reynolds number using Equation 3.8 which is continuous. The drag coe�cient de-

creases as the Reynolds number increases up to Re = 1000 where it plateaus. Figure 3.4

plots the drag coe�cient against the norm of the velocity using Equation 3.8. The drag

coe�cient is a monotone decreasing function of speed. Also, smaller droplets experience

a lower drag force but have a larger drag coe�cient in accordance Equation 3.8.
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Figure 3.3: A plot of the calculation of the drag coe�cient using a range of Reynolds
numbers in Equation 3.8.
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Figure 3.4: Drag coe�cients calculated (via Equation 3.8) using four di↵erent radii and
over the range 1ms�1  kuk  10ms�1. This plot was made using the density and
dynamic viscosity of porcine blood.

3.2 Dynamic ODE Model of Droplet Flight

Before describing the model here’s a list of the assumptions we are making:

• Blood droplets can be treated as spheres;

• these spheres are rigid, i.e., the radius of the droplet does not oscillate during the

flight;

• the decision parameters are bounded above and below, i.e., the radius of the droplet,

the direction angles, and the initial speed of the droplet all lie within fixed intervals;

and

• the drag force is quadratic in speed and the drag coe�cient corresponding to this
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drag force is given in Equation 3.8.

The model we present incorporates the force of gravity and e↵ects of drag and is derived

from Newton’s Second Law of Motion. During a droplet’s flight, the force of gravity acts

downwards, i.e., towards the centre of the Earth, and the drag force acts in the direction

opposing the direction of motion (see Figure 3.5). The direction of the acceleration due

to gravity is

g = �ge
2

, (3.9)

explicitly, where e
2

is shown in Figure 3.1.

Y

X
Fg

Fd

direction
of motion

Figure 3.5: The forces acting upon a single droplet as it flies through the air. The drag
force (Fd) with oppose the direction of motion and the force of gravity (Fg) acts only in
the y direction, pulling the droplet downward.

We start this model with Newton’s Second Law of Motion, F = mu̇, where m is the

mass of the droplet and u̇ is the acceleration of the droplet. The velocity of the droplet

can also be written in terms of the position of the droplet, x, where u = ẋ, thus u̇ = ẍ.

Also, the unit vector of the velocity is written as û and the magnitude of the velocity is

written as kuk. The net force on a single droplet is

F = F
d

+ F
g

, (3.10)
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where F
d

denotes the drag force acting on the droplet and F
g

denotes the force of gravity.

Substituting the drag force (also used by Liu et. al. in [15])

F
d

= �1

2
⇢

air

Akuk2û, (3.11)

and the gravitational force

F
g

= �mg (3.12)

into Equation 3.10, we obtain

mu̇ = �1

2
⇢

air

Akuk2û�mg. (3.13)

Notice, in Equation 3.13, A denotes the cross-sectional area of a sphere, not the surface

area. We divide both sides of Equation 3.13 bym to get an expression for the acceleration,

i.e.,

u̇ = �⇢

air

A

2m
kuk2û� g. (3.14)

As m = ⇢

drop

V , where V is the volume of the blood droplet, Equation 3.14 can be

simplified. The radius of the droplet is written as r and density of the droplet, ⇢
drop

, will

change depending on the blood used in the laboratory experiment. If the experiment is

with porcine blood the density is taken to be 1062 kgm�3, for transfer blood the density

was measured to be 1153 kgm�3. It follows that

u̇ = � ⇢

air

A

2⇢
drop

V

kuk2û� g (3.15a)

u̇ = � ⇢

air

(⇡r2)

2⇢
drop

(4
3

⇡r

3)
kuk2û� g (3.15b)
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and finally,

u̇ = �3

8



r

⇢

air

⇢

drop

kuk2û� g. (3.16)

Expanding Equation 3.17, we get the first order ODE model

ẋ = u

x

(3.17a)

ẏ = u

y

(3.17b)

ż = u

z

(3.17c)

u̇

x

= �3

8

 (kuk, r)
r

⇢

air

⇢

drop

u

x

⇣q
u

2

x

+ u

2

y

+ u

2

z

⌘
(3.17d)

u̇

y

= �3

8

 (kuk, r)
r

⇢

air

⇢

drop

u

y

⇣q
u

2

x

+ u

2

y

+ u

2

z

⌘
� g (3.17e)

u̇

z

= �3

8

 (kuk, r)
r

⇢

air

⇢

drop

u

z

⇣q
u

2

x

+ u

2

y

+ u

2

z

⌘
(3.17f)

which is the form used by an Initial Value Problem (IVP) solver.

To solve Equation 3.17, six initial conditions are needed: three initial spatial coordinates

and three initial velocity components. For convenience, the initial components of velocity

are specified using spherical rather than rectangular coordinates. That is, if u
x0 , uy0 , and

u

z0 denote the rectangular components of the initial velocity u
0

, then

u

x0 = u

0

cos ✓
0

cos�
0

, (3.18a)

u

y0 = u

0

sin ✓
0

, and (3.18b)

u

z0 = u

0

cos ✓
0

sin�
0

. (3.18c)

In (3.18), �
0

is the initial azimuthal angle, ✓
0

is the initial altitude angle, and u

0

is the

initial speed of the droplet (see Figure 3.1 coordinate system).
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3.3 Fitting the Dynamic ODE Model to the

Laboratory Experiment Data

We are fitting our dynamic ODE model described in Section 3.2 to reconstructed trajecto-

ries from the laboratory experiments (see Chapter 2) to verify our model. A reconstructed

trajectory is obtained by tracking an individual blood droplet in a video of a laboratory

experiment. We describe the reconstruction process in Section 3.3.1. We also describe

the process of fitting our ODE model to a reconstructed trajectory in Section 3.3.2. We

obtain the fitting by solving an optimisation problem where the objective function mea-

sures the Euclidean distance between a dynamic ODE-based trajectory and a trajectory

reconstructed from a video of a laboratory experiment. This optimisation is done by fine

tuning the decision variables, within imposed bounds, in the ODE-based trajectory until

it is a reasonable fit to the experimental path reconstruction.

A given path is W = {w
0

,w
1

,w
2

, ...,w
k

}, where w
t

= (x
t

, y

t

, z

t

, t). The reconstructed

trajectories are translated so that the initial spatial coordinates are (x
0

, y

0

, z

0

) = (0, 0, 0)

at t = t

0

= 0 so that w
0

= (0, 0, 0, 0). Let v(t; r, u
0

, ✓

0

,�

0

) = {v
0

,v
1

,v
2

, ...,v
k

} be the

numerical solution of the IVP with initial conditions specified by (0, 0, 0, u
0

, ✓

0

,�

0

) and

parameter r. Therefore, the objective function, f , is written as

f(r, u
0

, ✓

0

,�

0

) =
kX

t=0

kv
t

�w
t

k2 . (3.19)

3.3.1 Reconstruction of Experimental Blood Droplet

Trajectories

We employ the software of Zarrabeitia et. al. [30] to extract the paths of individual

blood droplets from videos of the laboratory experiments. We refer to this software as

the Droplet Tracker (DT). It is an automated method for identifying a unique blood

droplet in the videos from a stereo pair of cameras and tracking its trajectory using the
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video data. Figure 3.6 shows the mock crime scene with trajectories as reconstructed by

DT overlaid as recorded from each camera.

Figure 3.6: Automated tracking of a full experiment using the Droplet Tracker [30].

Given two pixels p
I

and p

II

in two synchronised video frames captured by each camera,

the software DT generates putative spatial coordinates (x, y, z) of a point in a trajectory.

Each of the pixels p
I

and p

II

backprojects to a line in three-dimensional space, `
I

and `

II

,

respectively. The spatial coordinates (x, y, z) computed by the software DT, then, are

the coordinates of the midpoint of the shortest line segment connecting `

I

and `

II

. The

estimated misfit e associated with (x, y, z) is half the length of that same shortest line

segment (see [30] for details).

Each numerical trajectory produced by DT is stored as a matrix of form

M =


t x y z e

�
=

2

666666666664

t

0

x

0

y

0

z

0

e

0

t

1

x

1

y

1

z

1

e

1

t

2

x

2

y

2

z

2

e

2

...
...

...
...

...

t

N

x

N

y

N

z

N

e

N

3

777777777775

. (3.20)

In Equation 3.20, the columns t, x, y, z, and e of M denote time, x-coordinates, y-

coordinates, z-coordinates, and estimated misfits associated with each droplet, respec-
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tively, and N is the number of frames in which this droplet’s motion was successfully

captured by both cameras. The (N +1)-vector of times t associated with a path consists

of frame indices and is not necessarily contiguous. In practice, individual droplets may

not be tracked in every frame for a number of possible reasons:

• droplets in the video leave the field of view;

• droplets in the video return to the field of view;

• droplets collide with one another;

• noise obscures detection of a droplet in some frames;

• droplets break up into smaller droplets; and

• droplets occlude one another in the view of either camera

The software DT records the rows of M in (3.20) with the frame indices in t translated

to start at t
0

= 0. DT also provides a rotation matrix in the form

R =

2

66664

cos� 0 � sin�

0 1 0

sin� 0 cos�

3

77775
. (3.21)

While in this optimisation problem we choose to use the three-dimensional data over the

two-dimensional data, DT provides a rotation matrix R (see Equation 3.21) to rotate

all the trajectories onto the � = 0 plane (see Figure 3.7). It is acceptable to perform

this optimisation with two-dimensional data because both gravity and drag are isotropic

forces meaning regardless of the value for �, gravity will always pull the droplet down-

ward. Similarly, the drag force will always oppose the motion of the droplet regardless

of its direction of motion. The initial guess for the parameter � is extracted from R.
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(a) This is the original axis setup with two

independent paths shown. Each trajectory

is expressed in terms of this coordinate sys-

tem.

Z

X

Y

(b) Find the principal direction of motion

and set the x axis to that direction. Each

trajectory has its own coordinate system.

Z

X

Y

X'Z'

X'

Z'

(c) Rotate all new principal directions or

new x axes to one plane according to their

respective values of �. Note all trajectories

still share the same y axis.

Z

X

Y

X'Z'

X'

Z'

(d) Now all the trajectories lie approxi-

mately flat on one plane and the measure-

ments in the z direction are deviations from

the x plane during the rotation.

Znew

Xnew

Ynew

Figure 3.7: Depiction of the coordinate system change when converting three-dimensional
to two-dimensional or planar data.

However, there will be some deviation in z plane when performing the rotation and so

the initialisation for � will not be exact and will still need to be a decision variable in

the fitting.

3.3.2 Using a Practical Optimisation Solver

We use an optimisation tool based on the Nelder-Mead simplex algorithm to optimise

the norm between the ODE-based trajectory and the reconstructed path from DT. The
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Nelder-Mead simplex algorithm, or the downhill simplex method, is a nonlinear optimi-

sation technique. In our case, the method is approximating a local minimum problem,

with four variables. Nelder-Mead is capable of N variables but a reasonable limit for

N is five variables. Nelder-Mead also works well with problems that vary smoothly and

have one mode or solution. Our model is low dimensional which makes it appropriate

to use this algorithm for the optimisation of the objective function. The four decision

variables of this optimisation problem are the radius, the initial speed, and the direction

angles of the initial velocity vector (✓ and �). The optimisation solver will optimise all

four variables at once, rather than one at a time and this process is repeated until the

optimisation norm is satisfactory.

3.3.3 Initialisation of Decision Parameters for Optimisation

Each reconstructed trajectory from DT is fitted with a curve produced by the integra-

tion of Equation 3.17 with optimised parameters which are specific to each individual

path. The initial conditions of the model are described in Equation 3.18 where each

reconstructed trajectory from DT has been translated to start from the origin of the

coordinate system which is the centre of the ballistics gel target. The initial speed of the

droplet, u
0

, is calculated using the norm of the finite di↵erences over the first two points

of the reconstructed path from DT. Thus,

u

x0 =
x

2

� x

1

�t

(3.22a)

u

y0 =
y

2

� y

1

�t

(3.22b)

u

z0 =
z

2

� z

1

�t

(3.22c)

and
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u

0

=
⇣q

u

2

x0
+ u

2

y0
+ u

2

z0

⌘
(3.23)

where �t is the time di↵erence between the first two frames the droplet has been tracked

in by DT and u

x0 , uy0 , and u

z0 are the spatial components of u
0

. The initial guess of r is

2.5 millimetres and the initial guess for � can be extracted from the rotation matrix R

as mentioned in Section 3.3.1. The initial guess of the decision variable ✓ is dependent

on the first few points of the reconstructed path form DT. We explain the initial guess

of ✓ in Section 3.3.4.

To prevent the optimisation solver from returning unphysical values for the drag coe�-

cient, radius, exit angles and initial speed, we impose bounds on the decision variables:

• radius of a single droplet: 1mm  r  4mm;

• initial velocity of a droplet: 1ms�1  u

0

 10ms�1; and

• angles of exit from the target: 0  �  2⇡

3.3.4 Initialisation of the parameter ✓

Originally, the bounds on ✓ were set to 0  ✓  2⇡ in order to allow the fitting of a

droplet travelling in any direction. There are instances where an ODE-based path with

reasonable values of r and u

0

has a low norm but the actual plots of the ODE-based

path and the DT reconstructed path are not visibly the same. The problem is shown

in Figure 3.8 where the the calculated parameters are: r = 0.001, u
0

= 2.33, ✓ = 6.28,

� = 1.19 and the optimisation norm is 0.29. We can clearly see that the ODE-based

path does not fit well with the DT experimental path reconstruction.

To ensure the reconstructed value of ✓ is reasonable, we adopt the following procedure.

If the y coordinates of the first few points of the experimental path reconstruction are all

positive, then we restrict ✓ to the range 0  ✓  ⇡. If the y coordinates of the first few
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Figure 3.8: The reconstructed path of a single synthetic blood droplet from DT (in red)
and the ODE-based path (in black). The optimisation solver fails to solve the fitting
problem properly because of the bounds on the variable ✓.

points of the experimental path reconstruction are all negative, then we restrict ✓ to the

range ⇡  ✓  2⇡. In Figure 3.9, the problem is resolved and the calculated parameters

are: r = 0.001, u
0

= 2.47, ✓ = 0.34, � = 1.19 and a lower optimisation norm of 0.018.

3.3.5 Criteria for Rejection of Reconstructed

Trajectories

Given that the data we are attempting to fit with an ODE-based trajectory is generated

by the tracking software DT, the reconstructed trajectory produced may not be physically
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Figure 3.9: The reconstructed path of a single synthetic blood droplet from DT (in red)
and the optimisation solver successfully the fits an ODE-based trajectory (in black) to
the reconstruction.

reasonable, we need some criteria to decide whether or not to reject a reconstruction. In

order for a path reconstruction to be considered for fitting or to remain in the final data

set it must pass these criteria:

1. The path reconstruction from DT must have more than 15 frames tracked, i.e. the

reconstruction must have at least 15 points in the trajectory;

2. The average estimated misfit for a path reconstruction must be less than 0.02

centimetres;

3. The final norm after fitting the ODE-based trajectory to the DT path reconstruc-
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tion must be less than 1 centimetre; and

4. During the fitting, the optimisation solver must not get stuck at the boundary of

any given parameter.

When the optimisation solver is choosing parameters to perform the fitting, sometimes

the solver will choose a value of a parameter that is too close to the boundary. Once the

solver is at a boundary and attempts to choose a value o↵ the boundary it will not take

a step large enough away from the boundary and thus get caught at the boundary. We

call this issue clamping. Refer to [12] for a study on some convergence properties of the

Nelder-Mead simplex method.
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Experimental Results

We collect the stereo video data of 80 transfer blood experiments and 2 porcine blood

experiments using the procedure from Chapter 2. In Sections 4.1 and 4.2 the ODE-

based trajectories are depicted by black lines and the path reconstructions provided by

DT are depicted by red data points. For brevity, we refer to the experimental path

reconstructions from DT as DT trajectories.

We expect that minimisation of the Euclidean distance, i.e., the objective function (see

Section 3.3) will be small enough that the ODE-based trajectory will visually fit the

spatial coordinates of the DT trajectory (see Sections 4.1 and 4.2). The process of fitting

the ODE-based trajectory to the DT trajectory will yield an optimisation norm which we

expect to be less than 1 centimetre. We also expect the estimated misfit (see Section 3.3.1)

associated with the tracking of the blood droplets to be less than 0.2 millimetres.

In order to validate our model we use a finite di↵erence method to find the velocity of a

given droplet at every time step in its DT trajectory. We also extract the velocities of the

droplet from the corresponding ODE-based trajectory. We expect that these methods

of calculating the speed of the droplet at each time step should yield similar results and

thus validate our model.

52
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4.1 Visual Verification of the Model on Single

Trajectories

The DT trajectories that were chosen for visual verification of our model were path

reconstructions with the most data points i.e., droplets that DT tracked for the greatest

number of frames. There is one droplet from a porcine blood experiment and two droplets

from two separate transfer blood experiments.

Figure 4.1 shows a DT trajectory that has 446 plotted spatial coordinates. This porcine

blood droplet is moving in the positive x-direction (meaning it is following the direction

of the shot riot ball) and its reconstructed trajectory is visibly curved. There is some

error in the fitting near the end of the DT trajectory, in the z-direction, however this

can be attributed to the tracking of the droplet by DT as the DT trajectory has an

unnatural curve, seen in the xz-plot. Overall we can see the ODE-based model fits

the DT trajectory very well and the Euclidian norm between these two paths is 2.95

centimetres. The trajectories shown superficially resemble parabolas. However, over

longer time scales, the influence of viscous drag forces will make the trajectories deviate

further from parabolic curves.

Figure 4.2 shows a similar verification but using a DT trajectory from a transfer blood

experiment where the droplet was tracked in 168 frames. This path reconstruction is

noisier than the DT trajectory shown in Figure 4.1 but is also a forward moving droplet

and its trajectory is visibly curved. We can see again that the ODE-based trajectory is

not accurate in fitting the DT trajectory near the end of the path in the z-direction but

this can be attributed to the noisy path reconstruction. However, we can see in general

the ODE-based trajectory matches the DT trajectory well with an optimisation norm of

4.46 centimetres.

Figure 4.3 shows another DT trajectory selected from a di↵erent transfer blood experi-

ment where the droplet is tracked in 266 frames. This transfer blood droplet is a backward
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Figure 4.1: The red data points are the spatial coordinates of the porcine blood droplet
tracked by DT, producing the experimental path reconstruction. The black line is the
ODE-based trajectory with optimised parameters to reduce the Euclidean distance be-
tween the DT trajectory and the ODE-based trajectory.
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Figure 4.2: The red data points are the spatial coordinates of a transfer blood droplet
tracked by DT. The black line is the ODE-based trajectory with optimised parameters
to reduce the Euclidean norm between the DT trajectory and the ODE trajectory.
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Figure 4.3: The red data points are the spatial coordinates of a transfer blood droplet
(from a di↵erent transfer blood experiment) tracked by DT. The black line is the ODE-
based trajectory with optimised parameters to reduce the Euclidean norm between the
DT trajectory and the ODE trajectory.

moving droplet, meaning when the riot ball struck the ballistics gel, the blood droplet is

travelling in the opposite direction of the riot ball. In this instance, we can see that the

ODE-based trajectory is failing to fit the DT trajectory at the end of the path in the

x-direction. However, in both Figures 4.2 and 4.3, the xz-plots of the DT trajectories

reveal some motion of the vertical plane. As a result, our model that incorporates forces

that are acting strictly within a vertical plane will not yield a good fit in regions where

the out-of-plane deviations are largest. This fitting resulted in an optimisation norm of

1.93 centimetres and again we can see again that the ODE-based trajectory matches the

DT trajectory very well.
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4.2 Visual Verification of the Fitting for Full

Experiments

For the individual trajectories in Figures 4.1, 4.2, and 4.3, we can visually confirm that

the ODE-based model is fitting the DT trajectories with good accuracy. However, to

ensure that the accurate fitting of individual ODE-based trajectories to DT trajectories

(see Section 4.1) are not isolated occurrences, we plot all DT trajectories with their

corresponding ODE-based trajectories in three di↵erent figures. The thick green line

in Figures 4.4, 4.5 and 4.6 is the path of the riot ball. We can see in Figure 4.4 that

for straight line or curved DT trajectories and forward moving or backward moving DT

trajectories, the ODE-based model is fitting the experimental reconstruction very well.

Figure 4.5 is an overhead view, showing the zx-plane, of the porcine blood experiment.

There are a few trajectories where we can see the ODE-based model is not fitting the DT

trajectory properly (possibly because the reconstruction is noisy or the average estimated

misfit is high) but for most of the reconstructed trajectories, the ODE-based trajectories

are fitting the DT trajectories very well. Figure 4.6 shows a plot of the DT trajectories

and their corresponding ODE-based trajectories from the perspective of being behind

the paintball gun. Again, most trajectories are being fitted very well; however, there are

two short, noisy trajectories just above the origin where the fitting is failing.

Figures 4.7, 4.8, and 4.9 are the DT trajectories from a transfer blood experiment and

their corresponding ODE-based trajectories plotted together. In general, the ODE-based

trajectories are fitting the DT trajectories very well however there are a few DT trajec-

tories that are exhibiting out-of-plane motion or simply have a lot of noise. Specifically

a single DT trajectory in Figure 4.8 curves sharply to the right. The ODE-based trajec-

tories, expectedly, fail to fit those DT trajectories.
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Figure 4.4: An xy view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line). The riot ball is plotted in green, moving in the positive x
direction.
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Figure 4.5: A zx view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line). The riot ball is plotted in green, moving in the positive x
direction.
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Figure 4.6: A zx view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line).
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Side View of Trajectories

Figure 4.7: An xy view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line). The riot ball is plotted in green, moving in the positive x
direction.
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Figure 4.8: A zx view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line). The riot ball is plotted in green, moving in the positive x
direction.
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Figure 4.9: A zx view of the DT trajectories (red data points) and each of their ODE-
based trajectories (black line).
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4.3 Validation of the Model by Comparing Speeds

for Individual Trajectories

In the objective function, the calculation of the Reynolds number and the drag coe�cient

is done for every time step along the DT trajectory. As mentioned in Chapter 3, the

Reynolds number depends on the norm of the velocity components and the radius of the

droplet. Since we cannot validate that our model is choosing the correct radius because

of the low camera resolution (see Section 5.2.4), we validate the norm of the velocity

instead. To do this we take the reconstructed experimental paths and at each time step,

assuming linear motion between steps, calculate the speed using finite di↵erences. We

also extract the norm of the velocity at each time step from our ODE model and we

expect that both speed plots will be very similar.

For a porcine blood droplet, Figure 4.10 shows that the speed at each time step of DT

trajectory (the blue data points) follows the same characteristics as the speed plot for the

ODE-based trajectory (the green line). Since these speed plots are very similar in shape,

we can validate that the speeds calculated by the integration of the ODE are correct.

Figures 4.11 and 4.12 are speed validation plots for two di↵erent transfer blood droplets

in two di↵erent experiments. Even with the noisy finite di↵erence calculation seen in

Figure 4.12 we can see a general decrease in speed as the droplet reaches the apex

of its curved trajectory and then an increase in speed as the droplet falls toward the

table. Again, this confirms that the speeds calculated by the ODE model are reasonable.

Further, the optimisation norms of the data used in Figures 4.10, 4.11 and 4.12 are 2.95

centimetres, 4.46 centimetres and 1.93 centimetres, respectively.
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Figure 4.10: The blue data points are the speeds calculated at every time step of the
DT reconstruction (using finite di↵erences) and the green line is the speed calculated at
every time step from the ODE-based trajectory. This is for one droplet in the porcine
blood experiment. The optimisation norm is 2.95 centimetres.
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Figure 4.11: The blue data points are the speeds calculated at every time step of the
DT reconstruction (using finite di↵erences) and the green line is the speed calculated
at every time step from the ODE-based trajectory. This is for one droplet in a transfer
blood experiment. The optimisation norm is 4.46 centimetres.
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Figure 4.12: The blue data points are the speeds calculated at every time step of the
DT reconstruction (using finite di↵erences) and the green line is the speed calculated at
every time step from the ODE-based trajectory. This is for one droplet in the second
transfer blood experiment. The optimisation norm is 1.93 centimetres.
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4.4 Validation of the Model by Comparing Speeds

for Full Experiments

To ensure that the paths chosen in Section 4.3 were not remote instances of good speed

validation, we plot a histogram of all the speeds calculated by the ODE model and all the

speeds calculated using the finite di↵erence method on the DT trajectories. Meaning, for

each DT trajectory in an experiment (and its corresponding ODE-based trajectory), the

speeds are calculated at each time step (using the appropriate method). All the speeds

calculated using the finite di↵erence method are put into one histogram and compared

to another histogram with the speeds generated from the ODE model. We expect that

these histograms should look similar.

Figure 4.13 shows the speeds calculated via finite di↵erences (blue histogram) and the

speeds calculated by the ODE model (red histogram) for a porcine blood experiment.

We can see that these histograms follow the same shape and so we can conclude that

the speed validations in Section 4.3 are not an isolated cases. The same conclusion can

be drawn for Figure 4.14 which plots the histograms for speeds calculated for a transfer

blood experiment.

As a result of these speed validations we conclude that the speeds being calculated by the

ODE model at each time step are reasonable and correct. Since the Reynolds number

and drag coe�cient are dependent on this speed calculation, in the ODE model, we can

confirm that our model has been validated by a method independent of the procedures

outlined in our model.
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Figure 4.13: The red histogram shows the velocities calculated at each time step by
the ODE model and the blue histogram shows all the velocities at each time step of
the DT reconstructions (using finite di↵erences). The histograms are generated from a
porcine blood experiment. We are using transparency in the histogram colours to show
the overlap.
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Figure 4.14: The red histogram shows all the velocities calculated by the ODE model and
the blue histogram shows all the velocities at each time step of the DT reconstructions
(using finite di↵erences). The histograms are generated from a transfer blood experiment.
We are using transparency in the histogram colours to show the overlap.
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4.5 Analysing the Reynolds numbers and Resulting

Drag Coe�cients

The specific porcine blood experiment and transfer blood experiment shown in this sec-

tion were selected because they had the most experimental path reconstructions that

passed the criteria for rejection (see Section 3.3.5). The porcine blood experiment has

128 experimental path reconstructions fitted by the ODE model while the transfer blood

experiment has 50.

A histogram of the Reynolds numbers calculated by our ODE model for the porcine

blood experiment is shown in Figure 4.15. We can see that lower range of Reynolds

numbers is approximately Re = 250. This is much higher than what is considered a low

Reynolds number, Re ⌧ 1, which would invoke Stokes’ law [3]. Figure 4.16 shows the

corresponding drag coe�cients calculated for the porcine blood experiment. Only 20%

of the calculated drag coe�cients are exactly 0.424, i.e., the Reynolds number is greater

than 1000. This indicates that the drag coe�cient of a droplet cannot be fixed to 0.424

but must be calculated as discussed in Section 3.1.4.

The distribution of Reynolds numbers for a transfer blood experiment is shown in Fig-

ure 4.17. The majority of the Reynolds numbers calculated are centred around Re = 1000.

Figure 4.18 shows a histogram of the drag coe�cients calculated in this transfer blood

experiment. Only 60% of the drag coe�cients calculated are exactly 0.424 corresponding

to a Reynolds number greater than 1000. This is much higher than the porcine blood

experiment shown earlier but this di↵erence can be attributed to the amount of droplets

tracked in the experiment.

A drag crisis is a phenomenon in fluid mechanics in which the drag coe�cient of a body

(typically a sphere or a cylinder) experiences a rapid drop as a function of the Reynolds

number [29]. Typically, a drag crisis occurs when the Reynolds number characterising

the flow is on the order of 105. Given that the Reynolds numbers empirically determined
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Figure 4.15: A histogram of the Reynolds numbers calculated for a porcine blood exper-
iment.

from our experiments are well below 5000 on average (see Figures 4.15 and 4.17), we do

not expect a drag crisis to occur.

Since we will not be observing the drag crisis for this range of Reynolds numbers, char-

acterising the flow of air around the blood droplet, we can be sure that Equation 3.8 is

a good approximation of the drag coe�cient in the range Re > 1000. Figure 4.19 shows

the drag coe�cient plotted for a range of Reynolds numbers and a black line correspond-

ing to the drag coe�cient for a rigid sphere,  = 0.424. While the expression used for

Reynolds numbers smaller than 1000 in Equation 3.8 does decrease below  = 0.424 for

larger Reynolds numbers, the approximation for Re > 1000 is still appropriate as we are

assuming the droplets are rigid spheres.
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Figure 4.16: A histogram of the Drag Coe�cients calculated for a porcine blood experi-
ment.
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Figure 4.17: A histogram of the Reynolds numbers calculated for a transfer blood exper-
iment.

4.6 Analysing the Optimisation Norms and Average

Estimated Misfits

Figure 4.20 shows a histogram of the optimisation norms associated with the paths

analysed in a porcine blood experiment. This histogram is heavily skewed left which

reflects well on our model. Figure 4.21 shows the average estimated misfit associated with

each path and this histogram is also skewed left which reflects well on the program DT [30]

used to track the droplets. There are a few outliers toward an average estimated misfit

of 0.02 centimetres but we do not expect any instances beyond 0.02 centimetres because

the error criteria discards paths with an average estimated misfit over 0.02 centimetres

(see Section 3.3.5). The same conclusions can be drawn concerning the histograms of the

optimisation norm (Figure 4.22) and average estimated misfit (Figure 4.23) for a transfer

blood experiment.



Chapter 4. Experimental Results 75

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

500

1000

1500

2000

2500

Drag Coefficient

T
im

e
 S

te
p
s 

w
ith

in
 a

ll 
T

ra
je

ct
o
ri
e
s

Figure 4.18: A histogram of the drag coe�cients calculated for a transfer blood experi-
ment.
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Figure 4.19: A plot of the calculation of the drag coe�cient using a range of Reynolds
numbers from 10  Re  5000 in Equation 3.8 (in blue) and a line plotted at  = 0.424
(in black).

4.7 Discussion

From the results presented in this chapter, we can conclude that our ODE-based model

successfully incorporates the forces of gravity and drag. Our model can also reliably

retrieve parameters for unique reconstructed trajectories from a bloodletting event. These

parameters are the initial speed, azimuthal angle, altitude angle, radius, Reynolds number

and finally the drag coe�cient for any given droplet tracked by DT. Further, we see that

the optimisation solver did not choose one specific value for the drag coe�cient and thus

we can conclude that the drag coe�cient cannot be fixed to a specific value but must be

calculated as a function of the droplet’s radius and velocity.
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Figure 4.20: The optimisation norms for each trajectory analysed by the model in a
porcine blood experiment.
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Figure 4.21: The average estimated misfit (from DT) for each trajectory analysed by the
model in a porcine blood experiment.
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Figure 4.22: The optimisation norms for each trajectory analysed by the model in a
transfer blood experiment.
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Figure 4.23: The average estimated misfit (from DT) for each trajectory analysed by the
model in a transfer blood experiment.
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We can also confirm that the force of drag (see Equation 3.11) used for the droplets

is appropriate because the Reynolds number is high enough to dismiss using Stoke’s

drag. We also confirm that the drag crisis is unlikely to occur in the range of Reynolds

numbers observed. The speeds used to calculate the drag coe�cient and Reynolds number

of a droplet has been validated by an independent calculation of the speeds from the

experimental path reconstruction (see Sections 4.3 and 4.4). Since this model includes

the forces of gravity and drag in three-dimensions it can be used to create paths based

on the Equation 3.17. The outline of using this ODE model backwards in time as a BPA

tool is outlined in Chapter 5.



Chapter 5

Conclusions and Future Research

5.1 Conclusions

We show that a three-dimensional, physics based, ODE model can successfully fit exper-

imental path reconstructions from a bloodletting event. An advantage to our model is

the incorporation of the forces of gravity and drag acting upon the droplet. This results

in our model not being restricted by straight line geometric reconstructions. From our

laboratory experiments, outlined in Chapter 2, we collect stereo video data of simulated

bloodletting events. The blood droplets emerging from the ballistics gel are tracked us-

ing software from [30] and the trajectories of the blood droplets are reconstructed. The

Euclidean distance between the experimental path reconstructions and the ODE-based

trajectories is minimised. These ODE-based trajectories match the path reconstructions

reasonably well as seen in Sections 4.1 and 4.2. The optimisation norm of this problem is

low, along with the average estimated misfit from tracking the droplets (see Section 4.6).

Our model is based on the integration of Equation 3.17 and thus can be integrated

backward in time to be used as a tool in Bloodstain Pattern Analysis.

82
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5.2 Future Research

The Bloodstain Pattern Analysis (BPA) problem is at the very heart an inverse problem.

A bloodletting event produces a bloodstain and in BPA, an investigator is presented with

the bloodstain, the solution to the problem. The investigator’s task is to reconstruct the

bloodletting event which is solving the inverse problem. From a given bloodstain pattern,

ballistic properties like a blood droplet’s angle of impact and the droplet’s impact velocity

can be inferred and used to find the location of the bloodletting event. These become the

initial conditions and the model must move backwards in time, using physical principles,

to arrive at the initial velocity of the blood droplets and their starting position. The

model presented in this thesis could, in theory, be used as a forward model in an inverse

problem to find the source of bloodstains. Since the ODE-based trajectories are based

on the integration of a model, we can integrate the same ODE backwards using di↵erent

initial conditions. The inputs to the inverse model would include the radius of the droplet,

the impact velocity of the droplet, the impact angles and the drag coe�cient.

An immediate advantage of this inverse model is the accommodation of droplets that

hit the surface moving in the downward direction or droplets far from the bloodletting

source. This inverse model would still not account for oscillations of the droplet during

its flight but it would account for the forces of gravity and drag. The inverse problem is

expected to be ill-posed in the sense that the problem will be underdetermined. Further,

errors in extracting information about the radius and impact angles from the bloodstain

will be amplified when the inverse model attempts to find the origin of the blood droplet.

5.2.1 Initial Conditions of the Inverse Problem

A few properties can be found from the stain of a single droplet. The conventional

and simplest properties to measure from the single stain are the width (minor axis, w)

and length (major axis, l). Consider Figure 5.1, a simple image of a bloodstain pattern
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created by Maloney [18].

Figure 5.1: Classical measuring of bloodstain patterns where the direction of travel is
characterised by following the tail of the blood droplet once it has impacted a surface.
See [16].

The width and the length of the bloodstain are relevant because we can find the angle of

impact with the surface with a simple trigonometric formula,

sin↵ =
w

l

, (5.1)

which is also known as the Balthazard formula [4]. With this simple calculation and by

measuring the glancing angle, � we can find what is called the string angle using

tan � =
tan↵

sin �
. (5.2)

All these angles are depicted in Figure 5.2.

There is still a vital piece of information missing here which can not be solved for using

simple trigonometric formulae and that is the impact speed of the droplet u

0

. All the

angles of impact can be extracted but none of the velocity components (as shown in

Figure 5.2) can be determined using just these measurements. Fortunately, there have

been studies done on circular bloodstains and a formula has been derived to find the
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Figure 5.2: The impact angle, stringing angle and glancing angle with respect to a blood
droplet which is landing on the xy-plane. The components of velocity are also shown
and this figure was edited to match the coordinate system used in our model. See [16].

impact speed using the spines of the circular droplet [10] and on angled stains [14]. If

the speed cannot be measured from the stain, then a reasonable range of speed could be

used in the inverse problem which would produce a selection of paths from one stain. In

the context of a small number of individual elliptical bloodstains patterns, a region of

intersection can be found. Further, the validity of Equation 5.1 depends on assumptions

about the droplet and its flight. Rowe [27] states these assumptions:

The drop of blood is spherical at the time of impact and has travelled in a

straight line to the point of impact.

When measuring the width and length of a bloodstain, there will be uncertainties which

carry over into the calculation of the impact angle, ↵. These uncertainties are explored

in [27] and need to be considered when using our model in the inverse problem. There

has also been work done in solving the inverse problem using probabilistic methods [7].
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This method includes the forces of gravity and drag in the model; however, the estimate

for the drag coe�cient is Stokes’ drag (instead of a correction to Stokes’ drag, as used

in our model). Further, the method has only been tested on planar data and more tests

are needed to validate the entire algorithm.

5.2.2 Surfaces

Within the field of bloodstain pattern analysis, there is a large area of research dedi-

cated to blood droplet impacts on di↵erent surfaces. As mentioned in Chapter 2, we

attempted a few experiments using surfaces other than white laminated plywood walls.

The experiments using carpets were discarded because the bloodstain had seeped into

the carpet before the photographs could be taken. However, from our experiments using

cardboard surfaces (see Figure 5.3), we discover that blood droplets (both porcine and

transfer blood) adhere better to cardboard than to laminated plywood.

The digital photographs captured in our experiments can be used to validate computed

solutions of the inverse problem. Other research directions include the development of

methods for extraction of bloodstains from photographs and automating the collection

of individual features from bloodstains (e.g., lengths, widths, and glancing angles of

bloodstains caused by individual droplets). Shen et. al., in [28], has proposed an image

analysis technique that can automate the gathering and analysis of bloodstain pattern

data. However, the experimental validation of that specific algorithm used paint rather

than blood thus further trials could be necessary. Carter [6], has also proposed an

automated method for calculating the glancing angle using the digital photographs of a

bloodstain.
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(a) Porcine bloodstain pattern photograph

taken in a position in front of Camera A.

(b) Porcine bloodstain pattern photograph

taken in a position in front of Camera B.

Figure 5.3: A digital photograph of the resulting bloodstain pattern formed on a card-
board surface from the porcine blood experiment.
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5.2.3 Collisions

The initial velocity of blood droplets are dictated by the initial impact on the ballistics

gel. There is relationship between the impact velocity of the riot ball on the gel, to the

droplet’s initial velocity. The backbone of this problem is in the equations for an inelastic

collision in physics where

m

b

v
b

= m

0

b

v
0

b

+
NX

i

m

i

v
i

. (5.3)

In Equation 5.3, m
b

and v
b

are, respectively, the mass and the velocity of the bullet prior

to the impact. Immediately after the impact, the mass and velocity of the bullet are

m

0
b

and v0
b

respectively. The term m

i

v
i

within the sum in Equation 5.3 constitute the

momentum transferred to the ith droplet (assuming the target breaks into N individual

droplets). This would be useful to investigate for the purpose of studying how droplets

break up or how many droplets to expect at a crime scene given a certain impact or

associating the impact velocity of the droplets on the surface to the impact velocity from

the weapon. The above is a very simplistic approach to investigating the initial velocities

of droplets but could be worth looking into.

5.2.4 Models of Oscillations in Moving Droplet Shape

As mentioned in Section 1.1, the droplet undergoes radial distortions because, realisti-

cally, the droplet is not a rigid sphere; rather, it is a fluid. Raymond explains these

oscillations clearly [25]:

The forces that damp droplet oscillations are due to viscosity acting on the

internal flow in the droplet while the forces that ‘drive’ the oscillations, once

a droplet has been distorted, are due to surface tension. The surface tension

tries to minimise the surface area of the droplet.

According to Liu et al. in [15] “the drag coe�cient of a distorting drop should lie

between the lower limit of a rigid sphere and the upper limit of a disk”. From this we
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can understand that the droplet’s maximum radial deviation will resemble a disk shape.

In [15], Liu et. al. present a second-order ODE model for the oscillation of the surface

of a droplet in flight, namely,

ÿ =
C

F

⇢

air

W

2

C

b

⇢

d

a

2

� C

k

�

d
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d
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d

µ

d

⇢

d

a

2

ẏ, (5.4)

In Equation 5.4, the independent variable y is the radial distortion, �
d

is the surface

tension of the droplet, a is a characteristic radius, W is the relative velocity, and C

b

, C
F

,

C

d

, and C

k

are constants obtained in [20]. Liu [15] proposed that solving Equation 5.4

for the radial distortion, y, could be used in the linear variation of the drag coe�cient,

 = 

sphere

(1 + 2.632y) , (5.5)

where  would be the drag coe�cient at each time step. Equation 5.5 still needs to

be validated by experiment which could be done by having droplets of known volume

dropped into an air stream and the motion of the droplet in the air stream should

be recorded by high-speed cameras with high enough resolution to observe the radial

distortions of the droplet.
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