
Ray Tracing Large Distributed
Datasets Using Ray Caches

by

Christopher Little

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in

The Faculty of Graduate Studies

Computer Science

University of Ontario Institute of Technology

Supervisors: Dr. Mark Green and Dr. Faisal Qureshi

November 2011

c©Christopher Little, 2011



Abstract

Most large scale simulations now produce datasets that can be significantly

larger than can typically be stored in memory on a visualization system. Visu-

alization algorithms then become ineffective and stall since the data must be

paged to disk. Recently, in-situ visualization has received renewed attention

for visualizing large datasets that are distributed among many processors dur-

ing a simulation. It takes advantage of the fact that the full dataset is already

in main memory, distributed among multiple processors. Visualization in this

environment then requires communication which can be more expensive than

disk access. The goal of this thesis was to develop an in-situ visualization

technique using ray tracing that employs ray caches to reduce communication

overhead. Ray caches attempt to replace a communication operation with a

less expensive cache search operation. A prototype implemented on Sharcnet

shows ray caching can significantly improve overall performance at a small cost

to image quality.
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Chapter 1

Introduction

Current high performance computers are capable of producing extremely large

datasets through large scale simulations and real-world data recording. Tra-

ditionally scientific visualization of these datasets has been viewed as a post

processing step where the data saved during computation is sent to an offline

visualization system for rendering. Due to the increasing size of these datasets,

it is difficult to transfer and store them for visualization. Researchers have

been turning to alternate methods, such as in situ visualization where the vi-

sualization is produced in parallel with the simulation. Although this is not a

particularly new approach, it has not received a lot of attention until recently

[29].

Many scientific computations are performed on grids, where each processor

within a cluster is responsible for a small portion of the dataset making up

the grid. Typically a ray tracing algorithm is employed to render these kinds

of datasets due to its high quality and accuracy. Ray tracing is also beneficial
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as it can directly sample the data structures that are used by most simulation

code. However, since the dataset is distributed, it is difficult to facilitate

ray intersection calculations without copying the dataset between processors.

Most previous methods have taken the approach of caching portions of the

dataset from each processor [5, 20], or rendering each portion of the dataset

individually and then compositing [2, 29].

1.1 Contributions

This work describes a new technique for in-situ visualization based on dis-

tributed out-of-core ray tracing. Rather than copying data between processors,

this approach instead sends and receives rays between the processors as the

rays traverse each processor and search for an intersection. Communication

of the rays is performed using a message passing paradigm supplemented by

batching to alleviate network congestion. A prototype implementation is also

described and demonstrated on a cluster of up to 125 processors.

Performance of this system is highly dependent on both the ray tracing

algorithm and, more importantly, on the expense of communication. This

work also describes the implementation of ray caches which are placed at the

boundaries between neighbouring processors. Ray caches track rays that pass

from one processor to another and store their colour values. This allows other

rays that pass through the cache to retrieve previously computed ray colour

values and thus prevent an expensive communication operation.

The current implementation of the distributed out-of-core ray tracing sys-
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tem supplemented with ray caches is evaluated for performance, image quality

and scalability. The results show that overall performance can be improved

significantly through the use of ray caches, and at a small cost to image qual-

ity, which demonstrates the validity of the techniques described in this work.

Scalability, however, is clearly the most significant drawback of the current

implementation.

1.2 Thesis Overview

This thesis begins by covering previous work into ray tracing, out-of-core ren-

dering and large-scale visualization in Section 2. An overview of how the

distributed out-of-core ray tracer is to function and how ray caches are imple-

mented is discussed in Chapter 3. An initial implementation is described in

detail, including test scene generation, ray intersection calculation, ray cache

searching, and ray distribution, in Chapter 4. The results of the naive and ray

cache supplemented rendering are discussed in Chapter 5.
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Chapter 2

Literature Review

This chapter provides an overview of several areas of research that have stemmed

from ray tracing and visualization. Each section discusses some of the major

works that have formed the basis for the work presented in this thesis.

2.1 Ray Tracing Algorithm

Ray tracing can simply be described as an image rendering technique. It is

based on the principles of ray optics where a ray of light can be followed from

source to surface. The light ray may be absorbed, reflected to another surface

or refracted as it travels through the surface. In real world situations these

rays represent light energy or photons emanating from a light source. These

photons can be captured at any point in space to estimate the intensity of

light that reaches that point. Film and digital cameras take advantage of this

by absorbing photons that impact the surface of the film or image sensor. The

number of photons collected at the image sensor can be used to measure light
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intensity and determine pixel intensities for the final image. In much the same

way, ray tracing seeks to simulate rays of light moving through a 3D scene and

capturing or displaying those rays that intersect a planar grid of pixels.

A distinction exists between the notion of ray tracing and ray casting. The

goal of ray tracing is to create an image by simulating light moving throughout

a 3D scene. Ray casting on the other hand is used in many applications to

calculate ray-surface intersections. The earliest use of this appears in the work

by Appel [4] for the purpose of shading 3D wireframe models for printing via

a digital plotter. His initial tests were based on generating randomized rays

from a light source and checking for intersections with the planar surfaces of

the wireframe mesh. Some techniques were developed to improve this process,

such as limiting ray directions to those more likely to impact a specific surface.

The shading method starts with a 2D projection of the wireframe model onto

the image plane. Inside the boundaries of the projected vertices a set of points

is selected for shading. A line of sight from the observer’s eye position to each

of these points is calculated. Each plane in the 3D model is then checked for

intersections with the line of sight to determine the closest point that is visible

to the observer. The line of sight, the location of the light source and the

orientation of the surface can then be used to estimate the light intensity for

the final image. Appel’s work established the benefit of tracing rays originating

from the eye that pass through the image plane rather than originating at the

light source.

With advances in computer display technology throughout the 1970’s al-

ternative shading methods were developed. Two of the most notable methods
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were demonstrated by Gouraud [9] and Phong [16]. Their shading and il-

lumination models provided good smooth surface shading at a relatively low

computational cost. A shortcoming of these models is the lack of consideration

for shadowing and light propagation due to reflection.

Unsatisfied with the lack of realism in these models, a hidden surface al-

gorithm and a more accurate illumination model that could take advantage

of global scene data was demonstrated by Whitted [26]. Whitted borrows

from Appel’s technique where a ray is traced from the observer’s eye position.

Where Appel had predefined points over the surface of a polygon that each ray

points to, Whitted used a grid of pixels transformed into scene coordinates.

Each ray cast through this grid now represents the visible light direction for

the observer at that pixel. Each ray can now be checked for the closest surface

intersection to perform hidden surface removal. Shading techniques such as

Gouraud or Phong shading can now be easily applied at the surface intersec-

tion point.

This alone would not produce results much different from what was already

possible, but the method also allows reflection and refraction ray directions to

be calculated using the principles developed in conventional ray optics. A new

reflection or refraction ray can be calculated and recursively traced to the next

nearest intersection. Each subsequent intersection is shaded independently and

contributes some illumination to the parent ray. The result of this method

is very accurate simulation of specular reflection and refraction that is very

difficult to achieve with other rendering methods.

Appel noted in his work that ray casting and surface intersection calcula-
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tions are computationally very expensive. The added recursive complexity of

Whitted’s algorithm produces images with considerably higher quality but at

a massive cost to performance. Whitted examined this impact in his perfor-

mance measurements and found that between 75-95% of run time was spent

performing ray intersection calculations. Ray tracer performance can there-

fore be improved significantly by any improvements in the performance of

calculating intersections. For this Whitted offered the suggestion that simple

bounding shapes could be placed around more complex sets of geometry. A

ray could then be tested for an intersection with the bounding shape before

finding an exact intersection with the contained geometry.

2.2 Ray Tracer Acceleration and Ray Coherence

Many strategies have been employed to accelerate ray tracing. A survey by

Arvo and Kirk in [7] classifies these acceleration techniques into three cat-

egories: faster intersections, generalized rays and fewer rays. Faster inter-

sections refers to methods that reduce the average cost of calculating an in-

tersection or reducing the total number of intersection calculations per ray.

Generalized rays refers to grouping rays to prevent repeating similar ray cal-

culations. And lastly, fewer rays refers to techniques that reduce the total

number of rays that are cast to produce an image.

The last category, “fewer rays”, is less broad than the other two, however

one example, subsampling, is used extensively in some applications. Subsam-

pling operates similarly to the anti-aliasing method described by Whitted [26],
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however rays are cast at multiple pixel intervals rather than within a single

pixel, for example a ray is cast through the four corners of each 4x4 block of

pixels. If the four rays return colour values that are reasonably similar, then

the 16 individual pixel colours are simply interpolated from the four corner

samples, thereby reducing 16 rays to only 4. The drawback to this method

occurs when some objects that appear in an area smaller than 4x4 pixels may

be entirely missed by the four sample rays, thus omitting it from the final

image.

2.2.1 Faster and Fewer Intersections

Whitted suggested the use of bounding volumes - shapes enclosing more com-

plex objects - to prevent unneeded ray intersection computations [26]. He

initially suggested surrounding each object with a sphere due to its simplicity.

Substituting a large number of ray intersection calculations with a single sphere

intersection test significantly reduces the overall number of computations re-

quired for each ray. However this method does not improve on the linear time

complexity of exhaustive ray tracing and suffers linear performance degrada-

tion as scene size increases. Later work by Rubin and Whitted [18] introduced

the concept of bounding volume hierarchies (BVH) for ray tracing. Rather

than surrounding each object individually, groups of bounding volumes are

surrounded by larger bounding volumes to form a tree data structure. Large

sections of the scene can be ignored as a ray traverses deeper into the tree until

reaching a set of leaf nodes that are likely to produce an intersection. This

effectively reduces the computational complexity of ray tracing from linear to
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logarithmic with respect to scene size. Others have attempted to improve the

BVH further by using different shapes such as the work by Kay [13] that uses

arbitrary shapes to tightly surround a more complex object.

A similar technique demonstrated by Fuchs et. al. [6], known as binary

space partition (BSP), groups primitives based on their position in scene space.

The BSP tree structure is built by placing a bounding box around the extent

of the model or scene and then splitting the box into two smaller bounding

shapes. The plane that divides the space can be any orientation and it is

that orientation that determines the properties of the resulting BSP tree. The

“pure” BSP tree partitions space by placing division planes such that all ob-

jects are evenly distributed on either side of the partition. One particular BSP

technique that is used extensively for sub-dividing a 3D scene is the octree,

which hierarchically divides a region evenly into 8 sub-regions that are then

further sub-divided based on the geometry found within the sub-region. An-

other similar structure is the kd-tree which uses axis aligned dividing planes.

The scene is sub-divided along each axis in-turn, where one dividing plane

placed on a particular axis creates two sub-regions on either side that contain

an approximately equal amount of scene data. A new dividing plane is placed

on a different axis for each sub-region, again ensuring that an equal amount of

data is contained in each new sub-region. For each of these structures, a ray

samples the scene by traversing the hierarchy either incrementally, progress-

ing between neighbouring partitions, or top-down, traversing each child of the

intersected parent tree node.
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2.2.2 Generalized Rays

Typically in recursive ray tracers, ray directions will quickly diverge when re-

flected or refracted by curved surfaces. However there are several techniques

that have been able to take advantage of ray coherence especially for primary

rays. Ray coherence refers to the occurrence of multiple rays following a very

similar path through a scene or, more specifically, encountering the same nodes

in the resulting ray tree. Beam tracing [10] and pencil tracing [19] take ad-

vantage of this by replacing individual ray intersection calculations with fewer

area surface calculations.

The beam or pencil can be viewed as a pyramid-shaped polygon that en-

compasses the frustum of the rays it contains. Reshetov et. al [17] showed that

combining this technique with the BSP or BVH structures discussed above al-

lows entire groups of rays to traverse the BSP or BVH as a single entity. Once

the group encounters a bounding volume that is smaller than the bounds of

the frustum of the ray group, or is a leaf node in the hierarchy, the group of

rays can be split to more accurately capture the divergence of the individual

rays. More recent work by Wald et. al. [22, 21] applies this technique in a

realtime ray tracing implementation. In this case grouping rays is useful for

performing ray intersections using SIMD operations. All the rays in the group

then traverse the BSP or BVH simultaneously in parallel rather than incurring

the same computation multiple times for each ray. Even as rays diverge, their

work shows that there are still significant performance gains.

A technique described by Yoon et. al. in [28] attempts to reduce the

complexity of calculating ray-object intersections by adapting the level of de-
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tail (LOD) technique often used to accelerate rasterization. Their technique,

which they call R-LOD, also takes advantage of a kd-tree bounding volume

hierarchy. Rather than simplifying the geometry of the entire model, the R-

LOD generates a plane to represent the geometry contained in the bounding

box of a node in the kd-tree, typically a leaf node. This plane is defined by

a point and a normal vector, which are assigned based on the curvature of

the contained geometry. Sections of the model previously made up of many

individual polygons can now be represented as a single plane, and any ray

passing through these sections only require a single plane intersection calcu-

lation, rather than many polygon intersection calculations. They show that

building an R-LOD as part of a preprocess for a particular model can take

minutes or hours depending on the model. However, they also show that us-

ing the R-LOD during ray tracing can significantly reduce render time as well

as reduce overall memory requirements, replacing multiple polygons with a

single plane, at the expense of surface discontinuity artifacts in the rendered

image.

Ray coherence has also been shown to be useful in applications that require

super sampling. There are many optical phenomena that ray tracing can

emulate by super sampling an area with randomized techniques, such as anti-

aliasing using distribution ray tracing or diffuse interreflection using Monte

Carlo ray tracing. Although this results in a higher quality image, the number

of rays that are cast grows exponentially. Taking advantage of ray coherence,

this exponential growth of rays can be alleviated or avoided entirely by casting

fewer generalized rays.
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Igehy [11] uses this principle to demonstrate a technique for texture fil-

tering. When a ray intersects a textured surface the intersection point is

typically mapped to a position in a 2D texture. If only a single texture sam-

ple is acquired then the resulting textured surface often becomes blurry or

“pixelated”, while acquiring multiple texture samples would typically require

casting additional rays. Instead, the derivative of the ray with respect to image

coordinates, which Igehy calls ray differentials, can be employed to produce

an estimate of the area on a surface between a ray and its neighbouring rays.

This area is called the ray footprint, referring to an area of the surface that

would likely contribute to the resulting colour value for the ray. This allows an

area of the texture to be sampled and averaged, rather than sampling a single

point, to produce a better colour approximation in the final image without the

added expense of casting multiple rays.

A similar idea forms the basis for a global illumination sampling technique

described by Ward and Heckbert [24]. Global illumination typically requires

casting many randomized rays through a hemisphere centred at a point on a

surface. In much the same way as Igehy, their method computes gradients

across an area of the surface for which illumination samples should be inter-

polated. This produces much smoother global illumination effects, such as

diffuse interreflection, without the need for casting additional rays.
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2.3 Radiance Caching

There are many situations in graphics and rendering where storing previously

calculated radiance values can be beneficial. The general idea is to store

information about the scene such as light traversal or previously rendered

pixels so that they can be reused. Rather than computing a new sample for

each image pixel or ray intersection, the cached information can be reused to

interpolate a new value at a much lower performance cost.

Storing rays and radiance values has been shown to be very useful for 3D

image reconstruction by Gortler [8] and Levoy [15]. The primary goal of this

work is to reconstruct a 3D scene from a series of real world or synthetic source

images. The source images contain not only colour values, but also information

about light direction and distance which are stored as rays. Aggregating all

the rays from the series of source images together produces a light field. Since

the storage size and complexity of this field is quite high, it is converted to a 4D

plenoptic function. Each ray in this function is represented as two 2D points, or

U-V coordinates, where it intersects two parallel planes. Inherently, the stored

rays each correspond to a camera position and view direction, depending on

the source image from which they were produced.

To generate an image of the scene from a new view direction or to create

a smooth animated view of the scene, new rays must be interpolated based

on the new camera position/direction and the rays stored in the plenoptic

function. In short, to generate a new image, a ray is cast for each pixel, then

the plenoptic function is sampled to find similar existing rays and interpolate

or average their colour values. Since each new ray is entirely dependent on
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existing rays to produce a colour value, the resulting image quality is highly

dependent on the quality and distribution of the source images. Therefore,

if there are large gaps in camera position or view direction between source

images, or the new camera position or view direction differ too greatly from

the source images, a new image will become completely incoherent. However,

when source image density is high enough, this method has been shown to

produce very high quality images at real-time performance.

Walter et. al. demonstrate a similar technique for use in real time ray

tracing of static scenes, which they called the render cache [23]. They initially

use a brute force ray tracing algorithm to produce one complete image or frame

of the animation. Along with the final pixel colour values, the render cache

also stores the camera position, view direction and the distance along each ray

where an intersection occurred for each pixel. In subsequent frames, when the

camera position or view direction changes, the data stored from the previous

frame can be reprojected, similar to the z-buffer method used in rasterization.

Naturally this creates gaps where previous pixels are reprojected onto the same

pixel in the new frame. In this case it is a simple matter of casting another ray

to calculate the missing pixel colour. For situations where the camera position

or view direction changes gradually very few new rays need to be cast for each

new frame.

Larson and Simmons [14] demonstrate the holodeck data structure which

they use to achieve real-time walk-through rendering of scenes with global

illumination. The goal of the holodeck is to provide a reusable ray cache

in place of complex geometry that can be sampled from an arbitrary view
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point. It is permanently stored externally to the rendering system on a server

that handles caching and retrieving ray radiance values. It is built by placing

a bounding box around the extent of the scene geometry and dividing the

planes on each side of the box into a grid of faces. Any ray that passes

through the bounding box must therefore pass through at least two of these

faces. Accordingly, the holodeck stores an individual group of rays for each

pair of faces that they pass through. A method similar to that described by

Gortler [8] and Levoy [15] is then used to generate a new image from the

holodeck. If the ray tracer determines that a ray passes through the holodeck

bounds, a request is sent to the holodeck server to produce a colour value

from previously cached rays. The server first determines which two faces the

new ray passes through to determine the correct groups of rays that should be

sampled. The colour values of each ray in the group are then averaged based

on their similarity to the new ray and returned to the ray tracer for display.

As with Gortler and Levoy above, the resulting image quality when sam-

ples are taken from the holodeck is highly dependent on the distribution of

rays that it has stored. When the holodeck is first created it contains no sam-

ples and therefore any ray passing through its bounds must perform a regular

ray trace to produce a colour value that can be stored. However, since the

holodeck is managed by an external server, cached samples can be stored be-

tween rendering sessions and reused as long as the contained geometry remains

unchanged. This initially results in slow performance and poor image quality

but, as demonstrated by Larson and Simmons, as more samples are added

over time the holodeck is able to retrieve reasonable colour values significantly

15



faster than performing the ray intersection calculations and therefore produces

an image much faster.

Possibly the most prominent application of radiance caching is the irradi-

ance cache introduced by Ward et. al. [25]. Even today, diffuse interreflection

is extremely expensive to perform in ray tracing. A brute force method of

approximating this would be to cast many randomized reflection rays each

time a ray intersects a surface. Obviously this scale of ray propagation quickly

becomes prohibitive for most ray tracing applications. Instead, Ward et. al.

proposed that a smaller set of diffuse illuminance values could be computed

across all surfaces and stored in a cache, and later reused for subsequent rays.

The cache is initially empty when ray tracing starts and a diffuse interreflection

value must initially be computed using the brute force method above for each

ray. Once this value is computed it is stored in the irradiance cache as a 3D

point, corresponding to the ray-surface intersection point, and an illuminance

or colour value. If a subsequent ray is determined to have intersected a surface

at a nearby point, the cached illuminance value can be retrieved rather than

computing a new value using the brute force method. This work was later

extended to include other complex phenomena, such as caustics, in the form

of the photon map [12].

2.4 Large-Scale and Parallel Visualization

The ray tracing acceleration and radiance caching methods described previ-

ously in this chapter are only effective when the scene or dataset to be rendered
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is stored entirely in main system memory. If the model is too large, attempts

by the ray tracer to access certain portions of the scene will cause a page fault.

In these cases a typical ray tracer would be forced to stall while the required

data is loaded from disk into main memory. Regardless of whether any of the

ray intersection acceleration methods above are employed, any performance

gain is eliminated since the ray tracer must wait for the geometry to be loaded

before proceeding. This is often the case when rendering large CAD models

or datasets from large-scale simulations that can be many gigabytes in size.

To solve this researchers have concentrated on two main strategies; adaptive

memory management and distributed parallel rendering.

One memory management technique that has become common-place is to

treat main memory as a cache for loading chunks of a large scene stored on

disk. This should not be confused with the type of caching described in the

previous section where the cache stores ray and radiance values. An example

of a large geometric scene is the schematic model of the Boeing 777 jet (see

[20]). Wald et. al. demonstrate a system for rendering this model in real-time

that takes advantage of 64-bit memory addressing and the extensive virtual

memory capabilities of most operating systems [5, 20].

Initially a pre-process organizes the full model into a kd-tree structure in

much the same way as discussed above [20]. The geometry contained at each

leaf node of the tree are grouped together contiguously in memory, thereby

creating pages in memory containing smaller chunks of the scene. Now, when

a ray enters one or more leaf nodes, the ray tracer need only load the corre-

sponding pages from disk once, rather than reading in each piece of geometry
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individually, i.e. each triangle. Once a page has been loaded it remains in

main memory and can be accessed for subsequent rays without the need to

access the disk. When main memory space becomes full, pages are purged

based on how recently they have been accessed. However, this method does

not entirely avoid the delay that accessing the disk incurs and requires a work

management scheme in the ray tracer to mask it.

Ray casting is performed in small coherent groups, rather than individual

rays, since a group will often pass through the same leaf nodes in the kd-tree.

Once a leaf node is encountered, its corresponding page is loaded into memory

once and reused for all the rays. To mask this inherent need to read from

the disk the ray tracer initially loads a subset of the pages that will fit in

main memory. When a ray group encounters a leaf node which has already

been loaded then ray tracing proceeds as normal. However, if the leaf node

page has not been loaded, the ray tracer suspends ray tracing for that group

and requests the page from disk. The disk access routine is performed by a

continuously looping thread that accepts a memory request, reads a page into

memory and then notifies the ray tracer when the page is available through a

shared page index table. It becomes unavoidable, at least shortly after startup

or moving the camera, to mask all disk access latency within the time it takes

to display a single frame in real-time. When the geometry is not available

in memory to compute a particular ray, the corresponding colour is simply

coloured red or interpolated from nearby pixel values. The end result is a

real-time animation of the large scene at the expense of image accuracy for

several frames after the camera is moved.
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Distributed parallel rendering has been employed by many researchers,

particularly when visualizing scientific data generated from simulations or

recorded from real world sensors. In recent years super computer simula-

tions have grown in scale significantly and are capable of generating massive

datasets. As with super computing, datasets of this scale simply do not fit in

main memory on a stand-alone workstation and require distributed processing

for rendering. One relatively simple example of distributed rendering of large

datasets, which takes advantage of general purpose computing on graphics

processors (GPGPU), is demonstrated by Abraham and Waldemar [2]. Their

distributed visualization system uses a cluster of commodity PCs equipped

with GPUs to display black oil reservoir simulation data for industrial re-

search.

One of the processors in the cluster performs a preprocess to partition the

data into a kd-tree and then distributes a subset of the kd-tree nodes to each

processor in the cluster. Each processor is then responsible for rendering an

image of the subset it has been assigned, given a camera position and view

angle that is static across all processors in the cluster. The actual rendering

is offloaded to the GPUs which, in this case, perform a simple rasterization of

polygonal data generated from the data subset. Upon completion, one image

is produced for each processor in the cluster and subsequently composited

together to form one final image of the full dataset. This method is capable of

real-time performance, however, since a “master” process must pre-compute

the kd-tree, this is not possible if the dataset changes.

In recent years, simulations have become capable of producing datasets so

19



large that the time required to physically transfer the data to a visualization

system is prohibitive, if not impossible. Researchers have typically solved this

problem by reducing the resulting dataset, either by saving only a spatial

subset or a coarse subset of all time steps of the computed data. Even when

these techniques are employed the datasets can still be extremely large, in some

cases reaching the petabyte scale. A more promising visualization technique

for data of this scale is to perform in situ visualization as part of the simulation

computation while the full dataset is available in memory.

In situ visualization is not a new technique, but it has not been widely

adopted because researchers have preferred to devote their HPC resources to

computation, rather than visualization. Recently, however, it has received

renewed interest as exemplified by the work of Yu et. al. [29]. They demon-

strate a technique that is capable of live, real-time visualization of a simulation

in progress that incorporates visualization computations into the simulation

code. A typical simulation computation operates on a dataset made up of a

grid or lattice of scalar data. To distribute the data among the processors,

they are partitioned or sliced at some predefined interval. Where Abraham

and Waldemar’s method required a partitioning preprocess, this property is

inherent when a simulation is still running.

Yu et. al. do, however, share a similar parallel rendering method to Abra-

ham and Waldemar. The primary goal of their work is to render combustion

chamber simulations at real-time speeds. As such, they chose to use ray trac-

ing to produce a volumetric rendering as well as render spheres generated from

the dataset. After a processor has completed a time-step in the simulation it
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then ray traces an image of the data subset that it contains. As with Abraham

and Waldemar, this results in a set of images, one for each processor, that are

composited together using a parallel painter’s algorithm. One of the draw-

backs of this method is that a six-way communication is required among each

spatial neighbour of each processor to complete the compositing step. Despite

this, Yu et. al. show that rendering performance in most cases approaches

real-time speeds.
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Chapter 3

Ray Caches

This chapter will outline the design for an out-of-core ray tracer to be imple-

mented on a distributed memory cluster, and the construction and use of ray

caches to enhance its performance. Previous work in this domain has typically

shown that the most significant performance bottleneck is the overhead of

communication between processors [20, 28]. The primary goal of ray caches is

to reduce the overall amount or number of these exchanges, or more accurately,

to replace communication with a less expensive local cache lookup operation.

The first section in this chapter, Section 3.1, describes a simple, naive out-

of-core ray casting algorithm for rendering scenes that are distributed among

many processors on a cluster. The remaining sections introduce ray caches

to this algorithm, and describe a method for constructing, populating, and

sampling these caches during rendering.
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3.1 A Method For Distributed Out-of-Core Ray Casting

The literature review in Chapter 2 has already discussed several methods of

“out-of-core” rendering for large datasets or scenes. Each of these systems

employ one of two main strategies that are intended for a particular hardware

configuration:

1. a single, shared memory multi-processor machine, or

2. a distributed memory system or cluster.

A single multi-processor rendering system typically employs memory caching

or paging schemes for rendering scenes that do not fit entirely in main mem-

ory. However, this method becomes ineffective when the scene size grows large

enough that the cached pages themselves become too large. In contrast, a

distributed memory or cluster rendering system relies on distributing a scene

among each separate processor that renders an image of the locally stored

data; followed by a compositing algorithm to produce the final image. This

method too can be limited because, as image size increases, the compositing

algorithm can become more expensive than the rendering computation. Both

methods appear to be susceptible to degraded image quality, either due to

geometry that is not available for intersection calculations because its page

has not been loaded into memory, or discontinuities created when a set of

individually rendered images are composited.

To begin investigating the effectiveness of ray caches, a different distributed

out-of-core rendering system is needed. This system must be able to store the

full dataset or scene in memory distributed among the available processors, to
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avoid the cost of paging memory from disk. This system must also be able

to cast rays through the scene only to their closest intersection, rather than

casting all rays locally on all processors and then compositing.

Computer clusters have always been an effective way of increasing process-

ing power by orders of magnitude. As processors have become increasingly

powerful and more affordable, clusters made up of consumer PCs have be-

come just as effective for increasing computing power. Clusters such as these

can easily contain hundreds or even thousands of individual processors at a

very low cost. They have been utilized to great effect for parallelizing large

scale computations and simulations that would simply overwhelm a standalone

computer system.

As eluded to previously in Section 2.4, most simulation computations op-

erate on a dataset made up of a grid of scalar data points. To distribute these

datasets equally across the cluster, the grid is subdivided into smaller “voxels”

that contain a subset of the full grid. Each voxel can then be assigned to an

available processor for local computations. To understand this visually, this

subdivision process is analogous to slicing a solid cuboid into several smaller,

equally sized cuboids; resembling the smaller cubes making up a Rubik’s Cube

(see Figure 3.1).

At each simulation time step, each processor independently operates on

the voxel of data that it has been assigned and, when necessary, exchanges

boundary data with the processors that are responsible for the neighbouring

voxels. This data subdivision process is quite similar to a technique employed

by Wald [21] to subdivide a scene comprised of triangles into a 3D grid of
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Figure 3.1: This figure shows the set of cuboids or voxels created by subdi-
viding a triangle mesh. P1, P2, etc. refers to the processor that stores the
geometry within the indicated voxel.

voxels that each contain a subset of the scene.

A ray cast into this subdivided scene then traverses the set of voxels

that intersect its path. Upon entering the voxel, the contained triangles are

checked for intersections with the ray before proceeding to the next voxel.

Although Wald’s ray tracing method is quite effective on a shared memory

multi-processor machine where voxels can be loaded asynchronously from disk,

it is hardly feasible if the voxels are stored on separate processors on a cluster.
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In this case, when a ray travels from one voxel to the next it must access the

triangles stored at a physically separate processor. One solution would be to

copy the triangles between processors and to employ a paging scheme similar

to that mentioned previously (see Section 2.4). However, this would lead to

significant communication overhead and increased memory requirements for

each processor. Instead, since each processor already has a particular voxel

loaded in memory, the ray itself can be sent, and the receiving processor can

calculate an intersection and colour value independently.

3.1.1 Scene and Voxel Bounding Boxes

One of the most basic ray tracing acceleration structures is the bounding

box. Many efficient algorithms have already been developed to take advantage

of them, such as triangle-box overlap tests by Möller [3], to determine if a

triangle pierces an axis aligned bounding box; and ray-box intersections by

Williams et. al. [27], to determine if and where a ray passes through an

axis aligned bounding box. Using axis aligned bounding boxes significantly

reduces the complexity of these computations compared to non-axis aligned

boxes, and they can be simply defined by the minimum and maximum of their

bounds on the x, y and z axes. These bounds are stored as two 3D points,

bmin = {xmin, ymin, zmin} and bmax = {xmax, ymax, zmax}. Traditionally one

bounding box is built to surround the extent of the scene. A rectilinear grid

of scalar data points inherently defines a bounding box since its minimum

and maximum boundaries are known; however, this must be computed for

a scene made up of triangles. This is accomplished by parsing each triangle
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and increasing the minimum and maximum bounds to encompass them. Sub-

bounding boxes can be created by subdividing the scene bounding box at

regular intervals on each axis to form voxels. Once the minimum and maximum

bounds of each voxel are computed, Möller’s triangle-box overlap algorithm

can be used to determine the set of triangles it contains. This is discussed in

greater detail in Section 4.2.

For a ray to travel through this subdivided scene and find an intersection

it must first pass through the scene bounding box. Further, if the ray does

pass through the scene bounding box, it must also pass through one or more

voxels before it encounters an intersection or exits the scene. The method of

traversing a ray between voxels is addressed further in Section 3.1.2, however,

both the intersection point and the “face” of the bounding box where the

ray enters the box must first be calculated. This is possible through a small

modification of Williams’s intersection algorithm. Their algorithm considers

each axis of the interval between bmin and bmax and tests each for overlaps

with the ray. Two floating point values are produced for each axis, tmin and

tmax, which are the distances from the ray origin point to the point where the

ray enters and exits the interval respectively. This results in three separate

tmin values; one for each axis. The highest of these three values indicates the

distance from the ray origin that the ray actually enters the bounding box,

and can be used to calculate the 3D intersection point. This method has been

extended to assign a “face” index that indicates which face the ray passes

through to enter and exit the bounding box. To reference the face, each face

of the bounding box is assigned an index value in the following order: −x ⇒
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Figure 3.2: The voxel v has six neighbouring voxels. The processor responsible
for v stores the rank of the processor responsible for each neighbour. For
example neighbour-ranks[−z] yields the processor rank responsible for the
neighbouring voxel in the −z direction.

0; +x ⇒ 1; −y ⇒ 2; +y ⇒ 3; −z ⇒ 4; +z ⇒ 5. For example, face 0 refers

to the minimum boundary on the x axis, and face 3 refers to the maximum

boundary on the y axis, etc. (see Figure 3.2). Since tmin and tmax are chosen

based on the axis that yields the highest or lowest value, the face index is

determined by that same axis.
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3.1.2 Voxel Traversal and Ray Communication

Each ray cast into the scene must traverse the grid of voxels in the order

that they are encountered until an intersection is found with the contained

triangles. First each processor on the cluster must be assigned an integer rank

to uniquely identify it. This rank is used to determine which processor the

ray should be sent to when it moves between voxels. To simplify this, each

processor stores a table, neighbour-ranks, which stores the six ranks that

correspond to the processors responsible for the six neighbouring voxels (see

Figure 3.2). Now when a ray passes through a particular voxel face, and must

travel to a neighbouring voxel, the processor need only look up the processor

rank in this table to determine where the ray should be sent in the cluster.

The voxel traversal algorithm operates in two phases; initialization and

incrementation. Initialization begins by finding an intersection with the scene

bounding box and then identifying the first voxel that the ray passes through.

Given the scene bounding box intersection point, p, the minimum and maxi-

mum boundary points of the scene, bmin and bmax, and a set of three integers

that indicate the number of voxels on each axis, G, the processor rank is then

computed by Algorithm 3.1.

To summarize, the vector d is the vector from the minimum scene bound-

ary to the point where the ray enters the scene. The vector v is the vector

from the minimum scene boundary to the maximum scene boundary. Each

component of the vector v is divided by the corresponding component in G,

which gives the corresponding dimensions of each voxel. Each component of

the vector d is then divided by the corresponding component of the voxel
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Algorithm 3.1 Compute primary ray destination rank.

d← p− bmin

v← bmax − bmin

x← floor(dx/(vx/Gx))
y ← floor(dy/(vy/Gy))
z ← floor(dz/(vz/Gz))
rank ← x+ yGx + zGxGy

dimensions. The resulting floating point value is truncated to leave only an

integer indicating the x, y and z grid coordinate of the first voxel that the

ray passes through. The destination processor rank is then computed by con-

verting the grid coordinate into a linear index value. Once this is computed,

the ray is sent to the destination and the traversal algorithm moves on to the

incrementation phase.

After receiving the ray that passes through its voxel, the processor traces

the ray through the locally stored triangles. This computation is very similar

to any standard ray tracing algorithm and can be supplemented by further ac-

celeration techniques, such as a BVH. If an intersection is found, the processor

computes a colour value for the ray. However, in many cases the ray may pass

through and exit the voxel, and must be sent along to traverse a neighbouring

voxel. When this occurs the processor calculates the ray intersection with its

voxel bounding box to determine the face index that the ray exits through.

The face index is then used to lookup the processor rank in the neighbouring

rank array to determine where the ray should be sent. Each subsequent pro-

cessor that receives this ray repeats these steps until either an intersection is

found and a colour value is computed, or the ray exits the scene bounding box
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and a default colour value is assigned.

Every time a ray transitions between two voxels there is a communication

delay while the ray is sent between the two processors in the cluster. Further,

another communication delay occurs when a colour value is found and sent

back to the processor that cast the ray initially. Using a naive method, the

colour value could be propagated back to each of the processors that the ray

previously traveled through until reaching its origin. This would double the

number of communications as each ray sent between voxels would result in

a colour value being sent back. Instead, each sent ray carries a reference to

the processor rank that originally cast the ray. Upon finding an intersection,

the colour value can be sent back directly, resulting in a single extra commu-

nication operation. Despite this, if a scene is divided into hundreds or more

voxels, a ray may incur many hundreds of communication operations before an

intersection is found, resulting in significant traffic passing through the cluster

network. To alleviate this network congestion, each processor can maintain a

set of six batches corresponding to each neighbouring processor. These batches

then collect all outgoing rays or colour values that are being sent to the same

destination. This reduces the overall density of traffic in the network but can

cause delays while rays and colour values must wait until the batch is filled

(see Section 4.4).
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Figure 3.3: A ray communication operation occurs at each highlighted voxel
boundary intersection.

3.2 Cache Construction

What is really needed to alleviate the overhead of ray and colour communi-

cation is a method to derive or approximate a ray colour value from previous

rays that have already been computed. In the two dimensional example shown

in Figure 3.3, each ray would incur a communication operation for each of the

highlighted grid boundaries that it passes through. Due to the ray coherence

property discussed previously, it is likely that several other rays will follow a

similar path through the grid and cross many of the same voxel boundaries.

32



Further, Larson and Simmons [14] observed that the computed colour value for

a ray is valid anywhere along its length, including positions behind its origin,

if there are no obstructions. They use this observation in their holodeck data

structure, which captures the point where a ray enters and exits the bounding

box around a complex object along with its computed colour value. At the

expense of image quality, any subsequent ray that enters and exits the bound-

ing box at similar points can then reuse the captured colour values to produce

a new value instead of performing an intersection calculation. There are two

important conclusions to draw from this work which are useful for the out-of-

core ray tracing method described here. First, for a ray that originates outside

the scene bounding box and that pierces one of the bounding box faces, a ray

intersection may only occur at some point further along the ray than the point

where it entered the bounding box. Second, for a ray that originates inside or

at the boundary of a voxel and does not find an intersection inside, it must

exit the voxel and an intersection may only occur beyond the exit point. This

means that any radiance value calculated for the ray is not only valid at the

ray origin point but also for the point where the ray enters and exits a voxel.

Instead of viewing each voxel as a minimum and maximum boundary po-

sition, it can be thought of as a set of six planes or walls making up the six

sides of its bounding box. For a ray to enter and exit these voxels it must

pass through at least two of these walls; one to enter and another one to

exit. Accordingly, a ray cache is created for each wall and is responsible for

collecting colour values for every ray that passes through it. Each processor

individually creates and maintains these caches locally. For any ray passing
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through its voxel wall, the processor provides the ray-wall intersection point,

ray direction, and colour value to the appropriate cache, which can then store

the ray or search for similar rays. More importantly, however, caches are also

placed on the outer boundaries of the bounding box surrounding the extent of

the entire scene. The is done to allow primary rays cast from the camera, i.e.

outside of the scene bounding box, to sample a cache before it enters a voxel

and thus requires a communication operation.

Although the principle is similar, the outer caches surrounding the scene

are handled quite differently than the caches surrounding each voxel. A major

concern is that the number of primary rays that pass through these outer

caches is likely to be significantly larger than the number of rays that pass

through any voxel. This is especially true under the assumption that most, if

not all the voxels fall within the camera view frustum. Also consider that the

rays will only ever be able to enter the scene bounding box through no more

than three sides. This means only three of the six surrounding ray caches would

be responsible for storing a significant number of rays, upwards of hundreds of

thousands for even a relatively small 10242 pixel image. To reduce this load

on a single cache, the outer bounding box walls are subdivided into a set of

smaller caches. For simplicity the area of these smaller planes correspond to

the wall surface area of the inner voxels, such that each smaller cache matches

1:1 with a voxel wall. Referring to Figure 3.1, the outer ray caches correspond

to each square patch on the bounding box surrounding the scene, which each

correspond to a voxel wall.
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3.3 Cache Storage and Search

The purpose of the ray cache is to replace an expensive communication oper-

ation with a fast search operation to produce a colour value. To accomplish

this the ray cache must be able to store, search for, and retrieve rays faster

than sending a ray and computing an intersection and a colour value. This

is challenging due to both the high number of rays that are cast as well as

the potentially high number of caches that any given ray may pass through.

When a cache stores a large number of rays it not only requires additional

memory but also significantly increases search complexity. Also, in the case

that the cache search fails to produce a suitable colour value, a communication

operation becomes unavoidable. In this situation the cache search operation

becomes a bottleneck to the ray tracing computation; therefore it is crucial

that the cache search operation incurs a minimal cost to performance.

A ray is defined by its origin point and its direction vector. Thus to store a

ray and to subsequently search for similar rays, the ray cache must store both

an origin point and a direction for every ray. However, the ray origin point,

i.e. the camera position, is not particularly useful to the cache. Instead,

the cache records the point where the ray intersects the cache plane. This

allows the cache to more easily compare the intersection points where any two

rays pass through its plane. For an incoming ray that intersects the plane,

the cache must then perform a nearest neighbour search across the surface

of the plane for any stored rays that intersected at a similar point. Also,

when no suitable cached value can be found and a new colour value must be

calculated through ray tracing, the cache must be able to quickly insert the
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value without significantly delaying further ray tracing computations. Given

these constraints, storing the cached rays in a linear data structure would be a

poor choice due to its linear search complexity. One data structure that lends

itself extremely well to these requirements is the kd-tree due to its ability to

efficiently insert into and search through k-dimensional space. Insertion into

the cache then requires O(log n) time compared to constant time for a linear

array, however searching for nearby rays becomes significantly more efficient.

When a ray is found to intersect the cache plane and a suitable stored

colour value can be extracted, this is referred to as a cache hit. Similarly,

a cache miss occurs when a cached value cannot be extracted. The specific

criteria needed to determine a cache hit is described by two tolerances; radius

r and angle φ. The radius r refers to the maximum allowable distance between

the point where a new ray intersects the cache and the point where a stored

ray previously intersected the cache, see Figure 3.4. The angle φ refers to the

maximum allowable angle between the direction of the new ray and the stored

rays. The cache search routine takes r, φ, the cache plane intersection point

p and the ray direction vector d as input. The search begins by querying

the kd-tree for any stored ray intersection points q such that ‖p − q‖ ≤ r.

This search returns 0 or more stored rays that meet this tolerance. Next,

each returned ray is further considered only if the direction of the stored ray

f meets the requirement d · f ≥ cosφ. When one or more rays are found to

satisfy both these tolerances, the ray tracer must determine the colour to be

extracted. There are three potential ways to do this, and each have a potential

trade-off between image quality and performance:
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Figure 3.4: This figure shows which cached rays are likely to be selected for
retrieval. Ray A is rejected because its intersection point is outside the search
radius. Ray B is within range, but is also rejected since its direction differs too
greatly. Ray C and D fall within both the range, r, and angle, φ, tolerances
and may provide a suitable colour value.

1. Take the colour value of the first ray found within tolerance.

2. Take the colour value of the nearest or most similar ray found within

tolerance.

3. Take the average colour value of all rays found within tolerance.

Retrieving the first colour found in the cache potentially allows the search

routine to terminate more quickly at the expense of lower accuracy. Retrieving

the nearest colour value, specifically for the ray that has a minimum intersec-

tion point distance, likely requires additional computation but ensures a more
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accurate colour value. In the event that only one ray is found within tolerance,

or the nearest ray is very near maximum tolerance, the accuracy of the re-

trieved colour value will not significantly improve over the first result method.

Lastly, retrieving the average colour value also requires additional computa-

tion and can alleviate loss of accuracy by taking multiple cached colours into

account. These three methods are compared later in the results, see Section

5.3.
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Chapter 4

Implementation

4.1 Sharcnet and MPI

The Shared Hierarchical Academic Research Computing Network (Sharcnet)

is a consortium in Southern Ontario that has established many large clusters of

high performance computers meant to facilitate academic, industrial and busi-

ness research. The individual clusters are located and maintained at academic

institutions and are connected via dedicated fiber optic links. Each cluster

employs a different multi-processing scheme such as shared vs. distributed

memory systems, or clusters comprised mainly of GPGPUs. Each processor

in a cluster is connected through a specific hardware interconnect, such as ba-

sic Ethernet or InfiniBand. A typical cluster is a distributed memory system

and supports multi-processor programming through the use of the Message

Passing Interface (MPI). Due to the number of jobs submitted by students

and faculty on these clusters, Sharcnet employs a job scheduling system to
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manage available resources and scheduling fairness. When a job is submitted

to the queue the user must specify the number of required processors. The

scheduler then assigns the job to a specific set of processors or nodes in the

cluster to ensure the requested number of processors are available when the

job starts.

MPI itself is a standard communication protocol for sending messages be-

tween parallel processes. Sharcnet provides implementations and bindings for

MPI in C, C++ and Fortran, along with other parallel programming libraries

such as pthreads and openMP. Each process spawned during the execution of

an MPI program has access to a small set of basic functions to facilitate com-

munication. The first of these is the ability for a process to determine its rank

among all the processes and determine the size or total number of processes

that have been spawned. This allows any process to be uniquely identified and

targeted for communication. For example, a master-slave model can be imple-

mented by choosing rank 0 to be the master process that manages dispensing

work to all available processes by communicating data across the network. The

size variable is particularly useful when writing an MPI program that is scal-

able to any arbitrary number of processes without having to change the source

code. Again for the master-slave model, rank 0 could divide the total dataset

that needs to be computed into size number of chunks and then communicate

each chunk to the appropriate process. Thus the program can be executed

on any number of processors and the work will be distributed approximately

evenly.

MPI facilitates communication through two basic functions MPI_Send()
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and MPI_Recv(). These functions form the basis of every communication oper-

ation; including collective communication and process coordination. MPI_Send()

and MPI_Recv() both require four parameters; a reference to a data array, the

data type stored in that array (int, double, etc.), the total number of items of

that data type to be sent or received and lastly the target processor’s rank. For

a send, the sending process must initialize a data array that is at least one byte

in size to contain the data that is being sent. In many cases this is simply a

matter of specifying a memory address or pointer to an existing array of data.

However some messages need to send data that is stored in non-contiguous

memory locations. Here data must be copied into a contiguous array before it

can be sent through MPI. The data type parameter is simply the MPI equiv-

alent to the data type being sent, such as MPI_INT for integers and MPI_BYTE

for basic byte arrays. The total number of items in the array to be sent is

simply an integer value that has been precomputed or specified by the user.

Lastly the target rank is an integer value specifying the rank of the process

that the array will be sent to.

The parameters are used slightly differently for a receive operation. The

receiving process must specify a memory address which has enough allocated

space to receive the incoming array. If the size of the array being sent is not

known beforehand or can be of variable size, efficiently allocating an array or

allocating an array of sufficient size can be a difficult task. The receiving data

type parameter is specified the same way as for the send operation, however

it does not necessarily have to match the type that has been sent. The array

length integer parameter specifies the upper bound for the number of items
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of the given data type that will fit in the allocated receiving array. As with

allocating the receiving array size, this value must be chosen carefully. Lastly

the target rank integer specifies the rank of the sending process. In some

applications the rank of the sending process may not be known, in which case

MPI provides the MPI_ANY_SOURCE value to allow the receiving process to

collect data from any sending process.

It should be noted that these basic send and receive functions are block-

ing operations. For a sending process to complete a MPI_Send() operation, a

receiving process must also perform or post a MPI_Recv() operation and vice

versa, otherwise one process will block while it waits for its counterpart. MPI

does provide a non-blocking alternative to each of these; MPI_Isend() and

MPI_Irecv(). Rather than waiting for a matching send or receive to post,

these functions both store the data array in a buffer and return immediately.

This allows the process to continue while the communication operation com-

pletes in the background. However, in this case it becomes possible for the

process to access and potentially alter the buffer before the operation has com-

pleted. It is then the programmer’s responsibility to restrict access to the array

or allocate and manage buffer space in memory to ensure it is not modified.

For this purpose MPI provides the MPI_Test() and MPI_Wait() functions.

MPI_Test() allows the process to check if a specific communication operation

has completed and returns immediately. This is useful for periodically checking

the status of a communication without interrupting computation. MPI_Wait()

is similar but it will block the process until the communication has completed.

This allows the process to continue computation for some time before blocking
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until the communication completes.

4.2 Test Scene Generation

To test the effectiveness of ray caches in the out-of-core ray tracer described

in Section 3.1, it is necessary to generate a representative test scene and dis-

tribute it among the available processors. The implementation described here

is restricted to polygonal scenes composed of triangle meshes. A common

way of storing triangle meshes is in the PLY file format, developed for storing

models in the Stanford 3D scanning repository. Recall from chapter 3 that

each processor is intended to operate under the assumption that it will al-

ready contain some portion of the scene. To create a viable test case then,

each processor must load a subset of the triangles making up a scene. This is

decided through user defined parameters for the number of voxels on each axis

of the voxel grid, and the number of processors. Since voxels are assigned 1:1

to processors, the total number of voxels must equal the number of available

processors. For example, the user may specify a 3x3x3 grid resulting in 27

total voxels, therefore 27 processors must be available. The processor then

must determine which of these voxels it is responsible for by mapping its rank

to a voxel grid position; this is shown in Listing 4.1.

Essentially this algorithm is the reverse of a typical linear array mapping

where 3D coordinates are converted to a linear array index. The linear array

index, rank in this case, is instead mapped to a discrete x, y and z grid position

based on the extents defined by bounds. Conceptually, as rank increments by
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Listing 4.1: C++ code sample to map a processor rank to a voxel grid position.

/* Rank assigned to this processor */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

/* Number of voxels on the x, y and z axes */

int bounds [] = {3, 3, 3};

/* Calculate x, y and z grid position of voxel */

int xVoxel , yVoxel , zVoxel;

if(rank >= bounds [0]* bounds [1]) {

zVoxel = rank / (bounds [0]* bounds [1]);

} else {

zVoxel = 0;

}

if(rank % (bounds [0]* bounds [1]) >= bounds [0]) {

yVoxel = (rank % (bounds [0]* bounds [1]))

/ bounds [0];

} else {

yVoxel = 0;

}

xVoxel = rank % bounds [0];

1 starting from the 0 position, the resulting grid position first increments

along the x-axis until the according boundary is reached, in which case the

position increments along the y axis and starts back at the 0 position on the

x axis. Similarly, when the y axis boundary is reached, the z axis position is

incremented and the x and y positions both start back at the 0 position.

The processor is now able to determine the portion of the scene that it must

store for rendering. There are two ways of creating a scene that are used in this

implementation. One method is to assign static voxel dimensions and position
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to each processor which then individually load a single PLY mesh, such that it

will fit within its assigned voxel. This allows any arbitrarily large scene to be

generated by simply specifying a larger number of processors. Alternatively, a

single mesh can be subdivided and the triangles distributed to the processors

based on which voxel they reside in. This is useful for assessing the effect of

changes in voxel grid density, or number of processors, with respect to a given

model. Recall from Section 3.1.1 that each processor loads its portion of the

model in three phases. In the first phase it parses the set of triangles and

calculates the minimum and maximum bounds of the axis aligned bounding

box that encompasses the entire scene. In the second phase it calculates the

dimensions and position of its voxel. Finally, in the third phase it tests each

triangle for an intersection with the voxel; if the triangle does intersect, it is

stored for later rendering. Once each processor has loaded its portion of the

scene, it proceeds to the render loop where it begins receiving rays, see Section

4.3.

4.3 The Render Loop

Once a scene is properly loaded and ray casting has begun, each processor

enters the render loop where it will spend the majority of its time. The purpose

of the render loop is to retrieve and service any incoming rays and returned

colour values that are sent from another processor. To determine if a message

has arrived and requires service, the render loop depends on the FIFO incoming

message queue. To facilitate both incoming rays and colour values in this single
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Listing 4.2: The PackedRayStruct struct contains either a ray or a colour
value.

struct PackedRayStruct

{

bool isColour;

int rank;

int ID;

int originRank;

int originID;

float e[3];

float d[3];

};

queue, the ray tracer stores incoming messages in a PackedRayStruct object,

which is described further in Section 4.3.1.

4.3.1 Packing and Unpacking Rays

Listing 4.2 shows the definition for a packed ray object. Its primary purpose

is to pack ray or colour data into a contiguous memory block that can be sent

as an MPI message. An added benefit of this is the ability to group ray and

colour objects together into a single array. This is not only useful for storing

incoming data in the incoming message queue but is also useful for buffering

communications (see Section 4.4).

The isColour member is true when the data contained is a colour value,

otherwise it is assumed that a ray is stored. The rank member refers to

the processor rank from which the object was sent. The ID member is a

unique integer identifier generated by the processor that sent the object but is

treated differently whether a ray or colour is stored. For a ray, ID is uniquely
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generated for that ray by the sending processor. For a colour, ID refers to

the ID of the ray for which the colour value has been returned, see Section

4.3.2. The originRank and originID members are similar to rank and ID,

however they refer to the rank of the processor that originally cast the primary

ray from the camera position, and the ID that the primary ray was originally

assigned. The e and d members store the vector or colour components. For a

ray, e stores the origin point, and d stores the direction vector. For a colour,

e stores the RGB colour components, and d is simply ignored.

The integer ray ID of each ray sent by a given processor must be unique

in order to match a returned colour value to a particular ray. To do this

each processor initializes an ID generator to a value of INT_MIN, the minimum

possible integer value. When sending a ray, the ID generator is incremented by

1 and the value is assigned to the ID member of the packed ray object. There

is obviously a limit to the number of times the ID generator can be incremented

before reaching the maximum integer value, however this number is far larger

than the number of rays that a processor would send in this implementation.

Another consideration is the potential conflict created when two processors

generate the same ID and each send a ray to the same processor. The solution

is to have the processor returning a colour value verify that both the ray ID

and processor rank that sent the ray are matched.

4.3.2 Workflow

The overall workflow of the render loop is shown in Figure 4.1. The render

loop begins each iteration by polling the incoming message queue, known from
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incomingQueue

received incoming ray received colour

calculate intersection

intersection found no intersection

sample voxel exit face 
cache

cache hit cache miss

map ID in rayTable and 
rayExitTable

send ray to neighbour

send colour to origin for 
display

send colour to neighbour 
for caching

find incoming ray in 
rayTable and voxel exit 

point in rayExitTable

insert colour and 
incoming ray into cache

Figure 4.1: This flow diagram shows the high level workflow of the render
loop.

here on as simply the incoming queue. When no messages are available the

render loop simply loops continuously or “busy waits” until a message arrives.

Doing so ensures that any incoming messages are retrieved as quickly as pos-

sible. When a message arrives, the render loop pops it off the incoming queue

and then branches depending on the type of packed ray object that has been

received.

If a ray is received, the render loop passes it to the ray tracing routine

which returns a boolean value, indicating if an intersection was found, and a

colour value. Note that the internal operation of the ray tracing routine has no

consequence on the render loop workflow, so long as it is capable of producing

intersections and colour values. The ray tracing routine can therefore be sup-
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plemented with any applicable type of acceleration techniques. For instance,

in this current implementation, each processor builds a grid of bounding boxes

around the locally stored set of triangles to improve ray-intersection calcula-

tion efficiency. If the ray tracing routine finds an intersection, the render loop

immediately packs the computed colour value into a new packed ray object

and prepares it to be sent. However, if an intersection does not occur, the

render loop must compute which voxel wall the ray exits through to determine

which cache should be searched.

Recall from Section 3.1.2 that the ray-bounding box intersection method

produces the intersection point and the integer face index of the voxel wall

where the ray exits the voxel. Before searching the cache, the render loop first

checks if the voxel wall is actually the boundary of the scene, in which case

the cache is not searched, and the default ray colour is assigned and packed

for sending. Otherwise the render loop performs a cache retrieve operation,

which is discussed further in Section 4.6. If a suitable cached colour value can

be found in the cache it is packed for sending. Once each of these options for

producing a colour value - ray intersection, scene boundary or cache retrieval -

have been exhausted, the render loop then repacks the ray into a new packed

ray object, which generates a new ray ID, and prepares it to be sent to the

neighbouring voxel.

When the processor sends a ray it must maintain a reference to the ray in

order to match it with an incoming colour value, such that both the ray and the

colour value can be added to the ray cache. A simple way to solve this is to map

the ray ID to the packed ray object containing the outgoing ray. This is stored
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in a standard map structure, std::map<int, PackedRayStruct> rayTable,

referred to simply as the ray table. When the render loop eventually receives

a colour value for the ray, the packed colour ID is used as the search key to

the ray table to retrieve the corresponding ray. Next the render loop must

determine the correct cache to populate, which requires the cache face index

and the intersection point to be added. Rather than recalculating this, the

render loop maintains another map, std::map<int, RayExitPointStruct>

rayExitTable, which maps the outgoing ray ID to a ray exit point object

that contains the face index and the intersection point where the ray exits the

voxel. Listing 4.3 shows how a ray ID is mapped to a packed ray object and

to an exit point object. Listing 4.4 then shows how these maps are searched

when a colour value is received.

Up to this point, the difference between returning a ray colour value for

caching and returning a ray colour value for display has not been addressed.

Section 3.1.2 suggested that a processor should send back a colour value imme-

diately to the processor that cast the ray, rather than propagating it through

each processor that the ray previously traversed. This is good for producing

a colour value for display as quickly as possible, however it prevents the inter-

mediate processors from adding that colour to their respective caches. There

are two options for solving this; 1) the colour value can be sent back only to

the last voxel that the ray passed through; or 2) the colour value can be prop-

agated back to each voxel the ray passed through. Option 1) requires only one

additional communication operation but only one voxel will be able to retrieve

the computed colour from its cache. Option 2), however, requires an additional
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Listing 4.3: This listing shows how an outgoing ray ID is mapped to an in-
coming ray in the ray table, and mapped to a ray exit point object.

PackedRayStruct incomingRay =

incomingQueue.pop_front ();

/* ... ray is found to exit the voxel ... */

/* Pack the ray and generate a unique ray ID */

PackedRayStruct rayToSend = packRay (...);

/* Map the outgoing ray ID to the incoming ray */

rayTable.insert(rayToSend.ID, incomingRay );

/* Voxel face and point where ray exits the voxel */

int exitFace; Vector p;

boundBoxIntersect(voxel_dimensions , &exitFace , &p);

/* Map outgoing ray ID to the ray exit point */

RayExitPointStruct exitPoint =

makeExitPointStruct(exitFace , pFace);

rayExitTable.insert(rayToSend.ID, exitPoint );

send(rayToSend );

communication operation for each voxel that the ray passed through but each

voxel will have access to the colour value in its cache. In practice, however,

these two options have little performance difference. Although propagating

causes the number of cached rays and thus overall cache hit rate to increase

slightly, the added communication overhead appears to negate any potential

improvement.

Further to this, the render loop must also consider whether a colour value

should be sent back for caching at all. Consider, for instance, when a proces-
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Listing 4.4: This pseudo-code snippet shows how an incoming colour object is
used to search the rayTable and rayExitTable.

PackedRayStruct incomingColour =

incomingQueue.pop_front ();

Colour returnedColour = incomingColour.e;

/* Retrieve original incoming ray */

PackedRayStruct incomingRay =

rayTable.find(incomingColour.ID);

/* Retrieve the ray exit point */

RayExitPointStruct exitPoint =

rayExitTable.find(incomingColour.ID);

/* Populate the cache at face faceIndex , with point */

/* pFace , ray direction d and colour returnedColour */

cachePopulate(exitPoint.faceIndex , exitPoint.pFace ,

incomingRay.d, returnedColour );

/* Repack the colour to send the received colour */

/* along to subsequent neighbour */

PackedRayStruct colourToSend =

packColour(incomingRay.ID, returnedColour );

sendToNeighbour(colourToSend );

sor produces a colour value by sampling a cache. The colour value may be

appropriate for display but may not be suitable for insertion into the cache in

a neighbouring voxel. In other words, the render loop assumes an incoming

colour value is an accurate value corresponding to the ray that was sent out.

If a cached colour value is retrieved and returned, then adding that colour

value to a neighbouring voxel’s cache will likely introduce unwanted noise to

future cache sampling. The render loop must then decide if a computed colour

value should be returned for caching based on whether the colour value was
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calculated by the ray tracer or retrieved from a cache.

4.4 Threaded Communication

To ensure optimal performance of the ray casting and ray cache search routines,

each processor must put the majority of its computing power into the render

loop and avoid interruptions that may be caused by managing communica-

tions. Recall from Section 4.1 that MPI supports blocking and non-blocking

communications. Certainly blocking communication operations would not be

suitable for use in the render loop since this would cause the processor to pause

until the matching processor is ready. It would seem then that non-blocking

operations would be the solution, however this would force the processor to

allocate and manage a potentially large number of memory buffers. This is

difficult since during an iteration of the render loop, the processor is unable

to determine the number of messages that it may receive and therefore cannot

predict the number of message buffers that would need to be allocated. One

solution would be to allocate some number of message buffers and post a non-

blocking receive operation for each of them. Then, at the beginning of each

iteration, the render loop would query each buffer for a message, extract the

received object and post another receive operation. This forces the render loop

to spend time checking and operating on each buffer, and, if too few buffers

have been allocated, prevents some communications from completing until a

subsequent iteration.

The receive method employed in this implementation attempts to alleviate
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these issues by performing receive operations in a thread running in parallel to

the render loop. The thread is created using the pthread library and scheduling

is left to the operating system since the thread function is quite simple. Be-

fore initiating the render loop, each processor first spawns the receive thread

to ensure that any sent rays will be immediately received and available for

ray intersection, or received colours will be immediately available for display.

Once created, the thread allocates a reusable message buffer to store an in-

coming packed ray object. The thread then calls MPI_Recv(), which causes

the thread to block until a message arrives. Upon receiving a message, the

packed ray object stored in the message buffer is copied and appended to the

incoming queue. Since the incoming queue is the only means of communica-

tion between the receive thread and the render loop, it is protected by a mutex

lock. Threading communication in this way minimizes buffer management by

receiving one message at a time, as they are received, and also minimizes delay

in the render loop by handling communication in parallel.

Another major consideration for communication is the potentially large

number of communication operations across the cluster that may occur at a

given time. Not only does this create congestion in the interconnect network,

it also causes the processor to perform frequent send or receive operations.

In Section 3.1.2 batching was suggested as a potential solution to this kind

of network congestion, at the expense of potentially delayed ray tracing com-

putations. In practice, however, the resulting delay is insignificant since the

incoming queue will, quite often, already contain rays and colour values that

need to be computed. In other words, a ray delayed by batching does not cause
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significant delays in the render loop. To implement batching, considerations

must be made for how large the batches should be and how often they should

be sent and cleared. If a batch is too small then the number of communications

will not be greatly reduced since the batch will fill and must be sent quite of-

ten. Conversely, if a batch is too large then the delay in sending rays will begin

to delay computations by the render loop. To balance these two extremes, a

maximum batch size of 16 was chosen and each processor maintains a total of

six batches, one for each neighbouring processor that rays and colour values

may be sent to. Also, delays may occur if the render loop is not able to fill

a batch quickly, therefore causing some rays not to be sent while they sit in

an idle batch. To combat this, the render loop flushes the batches every 256

iterations to ensure that partially filled batches are sent regularly.

Batching requires a small modification to both the render loop send routine

and the receive thread. The batch itself is an std::vector<PackedRayStruct>

which contains a set of packed ray objects (outgoing rays or colour values) con-

tiguously in memory. The render loop allocates six of these batches in an array,

sendBatches[], where sendBatches[r] corresponds to the batch that will be

sent to processor rank r. Recall, each iteration of the render loop produces

one packed ray object that contains either a ray or colour value that will be

sent to one of the neighbouring voxels. Rather than initiating the send opera-

tion immediately, the render loop appends the object to the appropriate batch

before moving on to the next iteration. When a batch reaches its maximum

size or a sufficient number of iterations have completed, the render loop ini-

tiates the send routine. The render loop uses the asynchronous MPI_Isend()
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function to minimize delays to subsequent iterations by performing the actual

communication in the background. If a single batch has reached its maximum

size then only that batch is sent, and if the maximum number of iterations

have completed then all non-empty batches are sent. Accordingly, the receive

thread supports batching by allocating a message buffer large enough to con-

tain 16 packed ray objects rather than just one and, upon receiving a batch,

appends the objects to the incoming queue.

4.5 Ray Casting and Load Balancing

At this point each processor in the out-of-core ray tracer is capable of receiving

rays, tracing them locally and sending out further rays or colour values to

neighbouring processors. This only functions under the assumption that rays

are initially sent to a processor from a position outside of its voxel, such as

a camera that is positioned outside the bounds of the scene. As a result,

each processor requires another processor, possibly itself, to cast primary rays

into its voxel and therefore send it rays to begin ray tracing. For the current

implementation, ray casting is handled by a single processor, which requires

that one processor take on the dual role of intersecting rays in one of the

voxels as well as casting and collecting primary rays to render a final image.

This task is arbitrarily assigned to the processor rank 0 at run time. Before

entering the render loop, this processor performs all computations necessary

to cast primary rays through the image plane, calculate which voxel a given

ray first penetrates and finally send the rays to the appropriate processors.
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One of the primary concerns of the ray casting function is ray distribution.

A basic ray tracing algorithm will typically cast a ray through each pixel

using a scan-line pattern. Subsampling techniques are also often employed

to speed up ray tracing for areas of little change across the image plane but

they too often follow a scan-line-like pattern. This is not a particularly good

way to cast rays for this out-of-core renderer since the scan-line pattern does

not evenly distribute rays among the voxels. If a scan-line pattern is used,

only a small number of the available processors begin ray tracing while the

remainder are left idle until a later scan-line is reached, see Figure 4.2a. To

ensure an approximately even distribution, the ray casting function breaks

up the scan-lines into chunks across the image plane. This is done by simply

dividing the image plane into a set of smaller sub-planes and also dividing each

scan-line in these sub-planes into a set of pixel chunks, see Figure 4.2b. The

ray casting function then proceeds sequentially through the set of sub-planes

and generates rays for the next chunk of pixels. Although this accomplishes

a sufficient distribution of work among the processors, it does not necessarily

provide a very good distribution of cached colour values among the ray caches.

This is addressed by a coarse subsampling process, discussed in Section 4.5.1.

4.5.1 Coarse Sampling

Before casting a ray through each pixel, the ray casting function first performs

a coarse subsampling across the image plane. The purpose of this step is

to populate the ray caches such that a representative set of stored rays are

available for sampling once the primary rays begin searching the caches. The
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(a) Regular scanline pattern.

(b) Image plane broken into subdivided scanline regions.

Figure 4.2: In the regular scanline pattern, most rays are initially cast into
the voxels toward the “top” of the image plane. With subdivided scanlines,
rays are distributed more evenly among all the voxels.
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coarse sampling function operates similarly to the ray casting method discussed

in Section 4.5; however, the rays do not correspond to image pixels, and the

rays are computed only for storage in the ray caches, not for display in the

final image.

The number of coarse samples to be taken must be carefully selected such

that the rays are sufficiently distributed throughout the caches and that the

coarse sampling process does not significantly degrade performance. For exam-

ple, when rendering a 10242 pixel image, casting 2562 coarse samples provides

a sufficient distribution of cached rays without causing significant delay (see

results in Section 5.2). A ray cast during coarse sampling does not necessar-

ily pass through the same pixel position as a ray cast during rendering. The

reason for this is that coarse sampled rays should be available for reuse for as

many rays as possible, within the allowable tolerances outlined in Section 3.3.

If a sample were to correspond with a particular pixel, that sample may be

biased to provide accuracy for that one pixel while surrounding pixels would

result in reduced colour accuracy, whereas a sample not corresponding to a

pixel may provide a more reasonable approximation to multiple nearby pixels.

This also allows the coarse sampled rays to be randomly distributed across the

image plane, similar to the method used in distributed ray tracing. A random

distribution does not necessarily affect performance or numerical measures of

image quality, however it can produce a more visually appealing image by re-

ducing aliasing in the cached samples; the results of this are shown in Section

5.2.1. To understand this visually, Figure 4.3 shows the resulting distribu-

tion of sample rays cast in regular and randomized patterns, while Figure 4.4
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shows the potential effects of searching a cache that has stored regular and

randomized samples.

4.6 Cache Retrieval and Population

The ray caches are stored in a kd-tree structure using the open source kd-tree

implementation library found at [1]. Using this library, a kdtree object is

created with the kd_create(int k) function which creates a k-dimensional

kd-tree. It is then possible to insert into and search the tree with the following

two functions:

• kd_insert(kdtree *tree, float[k] p, void *data)

• kd_nearest_range(kdtree *tree, float[k] p, float r)

The parameters to the kd_insert() function are a reference to the kd-tree,

an array of length k which contains the k-dimensional point to be inserted

into the tree and an optional pointer to a data array that is to be stored along

with the point. The parameters to kd_nearest_range() are similar, however

p in this case is the k-dimensional point for which the tree is being searched

and r is the allowable range from p. Also, note that kd_nearest_range()

returns a kd_res object, which acts as an iterator that references the set of

all points returned by the search. The points can then be retrieved using the

function kd_res_item(kd_res *points, float[k] pos), which accesses the

next point found in the result list points, stores the retrieved k-dimensional

point in pos, and returns a reference to the data array that was stored with

the point.
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(a) Coarse sampling using a regular pattern.

(b) Coarse sampling using a randomized pattern.

Figure 4.3: In the regular coarse sampling pattern, each sample ray is equally
spaced within each subsample region on the image plane. In the randomized
pattern sample rays are distributed randomly among the subsample regions,
which produces a randomized distribution of samples on the ray cache plane.
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(a) Searching a cache that has stored regular coarse samples.

(b) Searching a cache that has stored randomized coarse samples.

Figure 4.4: Searching a cache containing regular samples may yield a more
even distribution but is susceptible to aliasing due to the regular grid pattern.
Searching a cache containing randomized samples trades aliasing for random-
ized noise, which, in the case shown here, may result in a more accurate colour
value. Conversely, a ray passing through the lower right of the image plane
may not find any cached samples and must therefore be ray traced through
the voxel.
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These functions are incorporated into the ray cache implementation by

wrapping them into the cachePopulate() and cacheRetrieve() functions.

Recall from Section 3.3 that the ray cache must be able to store the cache

plane intersection point, the ray direction and the resulting colour value for

a given ray. The kdtree object will inherently store the intersection point

since it is used as the kd-tree position index. However, the ray direction and

colour value must be stored together such that they can be referenced by

the data pointer. This is accomplished by storing them in the CacheData

object shown in Listing 4.5. Now, each time a ray and colour value is added

to the cache by the cachePopulate() function, a new CacheData object is

created and passed in as the data parameter to the kd_insert() function.

This subsequently allows the cacheRetrieve() function to extract the ray

direction and colour by calling kd_res_item(), which now returns a pointer

to a CacheData object. The cacheRetrieve() function takes in a ray origin

and direction, and a kdtree pointer parameter and returns a colour value if one

is found. It first searches the tree and then iterates through the kd_res search

results and extracts the CacheData pointer for each. Now it can compare the

ray directions and accumulate the colour values to produce a colour value for

display, using one of the colour retrieval methods described in Section 3.3.

One final consideration for cache storage is the dimension k of the kd-tree.

Recall the ray-voxel intersection calculation produces a 3D intersection point

where the ray crosses the cache plane. For simplicity, each ray cache could

simply store a 3D kd-tree such that the intersection point can be directly

inserted. However, since each cache is represented by a 2D plane, only a
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Listing 4.5: The CacheData struct contains a ray direction and rgb colour
value for storage in the ray cache kd-tree.

class CacheData

{

Vector direction;

Colour colour;

};

2D point is needed, which reduces the storage requirements and potentially

reduces search complexity. Converting the 3D intersection point to a 2D cache

coordinate is quite simple since the voxels are all axis aligned. For example,

if a ray intersects a cache on one of the bounds of the x-axis, the intersection

point, p, can be converted to 2D by storing only the py and pz components.

After having implemented this 3D to 2D conversion, it appears to effect little

difference in overall performance, however each cache now need only store two

components for each stored point rather than three.
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Chapter 5

Results

This chapter discusses the impact of ray caches on the performance and image

quality of the out-of-core distributed ray tracer. Baseline performance and

image quality are determined by rendering a scene using a naive ray casting

method without the assistance of ray caches. When caches are subsequently

employed, performance can be measured by the change in total render time.

Image quality is then measured in two ways; visually and numerically. Visually

the image quality difference is displayed in a difference image, which simply

displays the difference in the red, green and blue component for each pixel;

numerically the difference is calculated as a single value, root mean square

error (RMS-error). Note that this chapter does not investigate the effect of

changes in the cache hit angle parameter φ. Since a ray casting algorithm

is used for rendering and secondary rays are not cast, ray directions will not

significantly differ unless the cache hit radius parameter r increases. If r is

small then the rays found in range will inherently travel in similar directions
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and increasing φ will have a negligible effect. Conversely, if r is increased

to consider a broader range of rays, increasing φ will typically cause image

quality to slightly degrade further without a meaningful improvement in cache

hit rates or overall performance. In cases where secondary rays or randomized

super-sampling are used, this parameter would be worth further investigation.

5.1 Cache Hit Radius

The initial tests extensively compare the overall effects of varying the cache

hit radius parameter r. Determining a good value for r is highly dependent on

the size of the overall scene space as well as the total number and dimensions

of each voxel. The first set of tests, shown in Table 5.1, compares the render

performance, image quality and cache hit success rates for rendering a 3x3x3

grid of voxels that each contain a Stanford Bunny model. The Bunny model

consists of 69,451 triangles, therefore the overall scene contains 69,451 × 27

= 1,875,177 triangles. In this case each voxel has dimensions of (0.3, 0.3,

0.3) which produces 2D cache planes with dimensions (0.3, 0.3) between each

pair of neighbouring voxels. Note that these dimensions are specified in world

space coordinates, therefore if the overall scene size, image plane and voxel

dimensions are increased by a factor of 10 then increasing the value of r by

a factor of 10 would produce similar image quality results. A selection of the

resulting rendered images are shown in Figure 5.1.

To summarize, Table 5.1a shows the rendering performance and resulting

image quality error for varying values of r. Coarse time shows the total time
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Coarse Ray Cast Render RMS
r Time (s) Time (s) Time (s) error

w/o caching - 3.91 13.12 -
0.001 1.33 6.77 13.43 0.0165
0.002 1.36 6.65 11.37 0.0593
0.003 1.35 6.47 7.73 0.0887
0.004 1.34 6.53 6.81 0.105
0.005 1.35 6.54 6.62 0.111
0.007 1.36 6.55 6.56 0.113
0.009 1.36 7.59 7.59 0.119

(a) Render time performance and RMS-error.

Inner Inner Inner Outer Outer Outer Total
r Searches Hits Ratio Searches Hits Ratio Ratio

0.001 1277203 10315 0.00808 837686 60764 0.0725 0.0849
0.002 955419 81201 0.085 837686 230323 0.275 0.372
0.003 541227 146297 0.270 837686 457472 0.546 0.721
0.004 216882 76183 0.351 837686 655858 0.783 0.874
0.005 59760 27348 0.458 837686 772322 0.922 0.955
0.007 2241 1435 0.640 837686 833497 0.995 0.997
0.009 131 88 0.672 837686 837429 0.999 0.999

(b) Cache search and hit statistics.

Table 5.1: Rendering performance for a 3x3x3 voxel grid on 27 processors,
each containing a Stanford Bunny model. Voxel dimensions are (0.3, 0.3, 0.3)
in world space coordinates. All other parameters are constant: Cache hit angle
cosφ = 0.005; 2562 coarse samples, 10242 pixels.

to cast the set of coarse rays and store their results in the ray caches; coarse

sampling is investigated further in Section 5.2. Ray cast time shows the time

needed to cast the primary rays into the scene and send them to the appro-

priate processor for rendering. Note that the ray cast time also includes the

coarse sampling time. Render time shows the total time, including coarse

sampling and primary ray casting, to render and store a colour for each pixel.

Lastly, RMS-error is the image quality error between an image rendered with
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caching enabled and an image rendered naively without caching.

Table 5.1b shows the number of times the caches are searched, produce

hits and the resulting hit ratio. This table is split between inner and outer

caches to differentiate between the caches that are stored within each voxel

(inner caches), and the caches between the scene boundary and the individual

voxels (outer caches). This is meant to distinguish between rays that produce

a colour value before entering the scene, thus preventing a communication

operation, and rays that must traverse the voxels and search subsequent caches,

requiring one or more communication operations. Keep in mind that any ray

that produces a cache hit at an outer ray cache is not sent through any of the

voxels and thus does not sample any of the inner caches. Lastly, total ratio

shows the proportion of all primary rays for which any cache hit occurs. Also

note, for the inner caches, the number of samples is the total number of times

that the ray caches are searched; for example a single ray may search several

inner caches as it travels through several voxels.

Looking now at the results in Table 5.1a, when ray caching is enabled, the

ray cast time increases compared to the naive ray tracer without caches due to

the added overhead of coarse sampling and searching the ray caches as primary

rays enter the scene. Also notice that ray casting time is approximately con-

stant among the variations in r. This is due to the constant number of coarse

samples that are stored in the outer ray caches during the coarse sampling

step. Therefore complexity of searching the outer caches for each primary ray

is approximately constant. However, the ray cast time begins to increase as r

continues to increase to 0.009 despite the greater probability that a suitable
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(a) Rendered without caches

(b) r = 0.003 (c) RMS-error = 0.0887

(d) r = 0.007 (e) RMS-error = 0.113

Figure 5.1: Comparison of image quality with variation of r when rendering
a 3x3x3 voxel grid; each voxel containing a Stanford bunny model.
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ray may be found. Looking at the cache statistics shown in Table 5.1b, when

r = 0.009, the ray casting step appears to retrieve a cached ray from the outer

caches for almost 100% of all primary rays that intersect the scene bounding

box. Essentially this means that the single processor responsible for casting

the primary rays must shoulder the majority of the rendering load, including

searching the ray caches, while very little work is assigned to the remaining

processors.

Looking now at the overall render time, as r approaches 0, overall perfor-

mance is actually worse than the naive ray tracer since the vast majority of

rays still traverse the voxels and are intersected normally, but with the added

overhead of searching multiple ray caches along each ray’s path. Once a more

reasonable value for r is found, in this case ∼ 0.003 to ∼ 0.005, overall perfor-

mance improves quite significantly. At r = 0.003, 54.6% of the rays cast into

the scene produce a cache hit at the scene boundary and do not require a com-

munication operation to compute a colour value. Adding this to the number

of rays that produce a cache hit at an inner voxel, the resulting overall cache

hit ratio increases to 72.1%. This produces an image in 7.73s and with rms-

error of 0.0887, which is quite reasonable compared to the naive render time.

Repeating this for r = 0.005 causes the outer hit ratio to increase significantly

to 92.2%, while the overall hit ratio increases to 95.6%. Note that, although

the inner hit ratio increases, the total number of rays passing through the

inner caches decreases quite significantly due to the higher number of outer

cache hits. This produces an image in 6.62s with rms-error of 0.111; a slight

performance improvement over r = 0.003 at the expense of further reduced
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image accuracy. This highlights the importance of the number of cache hits,

specifically cache hits at the outer scene boundaries, in achieving improved

performance.

5.1.1 Increasing Scene Size

The next set of results are primarily concerned with the effect of increasing

the scene size and increasing the number of voxels to match. Similar to the

previous tests, each voxel contains a Stanford Bunny model, however the num-

ber of voxels is increased to a 5x5x5 grid distributed among 125 processors.

Table 5.2 shows the performance and rms-error results, and Figure 5.3 shows

a selection of the rendered images and the resulting difference images.

As expected, looking at Table 5.2a, coarse sampling and ray cast time

both increase compared to the 3x3x3 voxel scene. This is partially due to the

increased number of voxels that a given ray may pass through, but is also

affected by the overall number of coarse sample rays and primary rays that

penetrate the scene bounding box; see Figure 5.2. The scene size in this case

is 69,451 × 125 = 8,681,375 triangles, approximately 5 times larger than the

3x3x3 voxel scene. Overall render time, however, only increases by approxi-

mately 2.25-2.75 times. This is an encouraging result as it suggests that the

distributed out-of-core ray tracer render time will increase at a proportionally

lower rate than the increase in scene size. Of course these render times are

also highly dependent on the camera position and voxel size with respect to

the image plane. For example, in Figure 5.2b, some voxels of the 5x5x5 grid

appear to reside just outside the view frustum and potentially don’t receive
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Coarse Ray Cast Render RMS
r Time (s) Time (s) Time (s) error

w/o caching - 4.33 32.92 -
0.001 7.23 14.08 37.02 0.027
0.002 7.45 12.71 27.03 0.0829
0.003 7.08 12.68 18.09 0.139
0.004 7.16 12.35 14.68 0.175
0.005 6.78 12.77 14.72 0.19
0.007 6.47 12.71 14.32 0.194
0.009 6.80 13.88 15.46 0.201

(a) Render time performance and RMS-error.

Inner Inner Inner Outer Outer Outer Total
r Searches Hits Ratio Searches Hits Ratio Ratio

0.001 4048369 15881 0.00392 1047664 70297 0.0671 0.0823
0.002 3158712 87526 0.0277 1047664 267296 0.255 0.339
0.003 1972687 140975 0.0715 1047664 535113 0.511 0.645
0.004 948663 119243 0.126 1047664 778988 0.743 0.857
0.005 354439 67338 0.19 1047664 934154 0.892 0.956
0.007 29599 9681 0.327 1047664 1034698 0.988 0.997
0.009 2295 935 0.407 1047664 1046482 0.999 0.999

(b) Cache search and hit statistics.

Table 5.2: Rendering performance for a 5x5x5 voxel grid on 125 processors;
each voxel containing a Stanford bunny model. Voxel dimensions are (0.3, 0.3,
0.3) in world space coordinates. All other parameters are constant: Cache hit
angle cosφ = 0.005; 2562 coarse samples, 10242 pixels.

many rays, whereas in the 3x3x3 grid all voxels are visible in the view frustum.

Performance improvement for the varying values of r follow a similar pat-

tern to the smaller scene, reaching a peak performance improvement of ∼

56.5% around a value for r of ∼ 0.003 to ∼ 0.005. Once again, a smaller

r value causes the ray tracer to perform worse than the naive method, while

larger values begin to overburden the processor responsible for casting primary

rays. The RMS-error is greater overall for the larger scene since the scene now

72



(a) 3x3x3 voxel scene. (b) 5x5x5 voxel scene.

Figure 5.2: The above images show the extents of the voxels when rendering
scenes of varying size. Each processor assigns an alternating default colour to
any ray that exits the scene, giving the checkered pattern which corresponds
to the boundaries of each voxel. Notice the larger screen area covered by the
voxel backgrounds for the larger 5x5x5 voxel scene. This means that a greater
number of primary rays penetrate the scene bounding box and traverse the
voxels.

covers a much larger area of the screen space. This causes a larger number of

the primary rays to search and retrieve cached colour values, rather than re-

turn a default scene colour. Contrasting this with the difference images shown

in Figure 5.3, the visual changes in the local areas around the edges of each

bunny remain very similar to those of the smaller scene in Figure 5.1.

5.1.2 Subdivision and Irregular Distribution Results

The next set of tests are to compare variations in r for scenes that are unevenly

distributed among the grid of voxels. The test scene used for these tests is

a set of polygonal stream tubes constructed from streamline paths through a

real-world 3D vector dataset from a hurricane. In total, the scene consists of
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(a) Rendered without caches

(b) r = 0.003 (c) RMS-error = 0.139

(d) r = 0.007 (e) RMS-error = 0.194

Figure 5.3: Comparison of image quality with variation of r when rendering
a 5x5x5 voxel grid; each voxel containing a Stanford Bunny model.
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Coarse Ray Cast Render RMS
r Time (s) Time (s) Time (s) error

w/o caching - 3.55 59.27 -
0.00075 4.16 11.57 52.33 0.0762
0.00100 4.15 11.61 44.21 0.130
0.00125 4.14 11.66 35.25 0.167
0.00150 4.18 11.29 26.95 0.201
0.00200 4.16 11.50 18.21 0.252
0.00250 4.18 11.70 13.87 0.265
0.00300 4.21 11.98 12.44 0.264

(a) Render time performance and RMS-error.

Inner Inner Inner Outer Outer Outer Total
r Searches Hits Ratio Searches Hits Ratio Ratio

0.00075 2038036 23171 0.0114 1016741 161472 0.159 0.182
0.00100 1736018 120197 0.0692 1016741 278064 0.273 0.392
0.00125 1392919 133769 0.0960 1016741 411679 0.405 0.536
0.00150 1050261 118313 0.113 1016741 546251 0.537 0.654
0.00200 485881 122636 0.252 1016741 771546 0.759 0.879
0.00250 197790 74080 0.375 1016741 897866 0.883 0.956
0.00300 87022 42028 0.483 1016741 956005 0.940 0.982

(b) Cache search and hit statistics.

Table 5.3: Rendering performance for hurricane stream tube scene subdi-
vided by a 3x3x3 voxel grid on 27 processors. Voxel dimensions are (0.315607,
0.275606, 0.112471) in world space coordinates. All other parameters are con-
stant: Cache hit angle cosφ = 0.005; 2562 coarse samples, 10242 pixels.

355,248 triangles. This is actually a typical example of a worst case test for

this implementation. In contrast to the scene containing the Stanford Bunny

models, the voxel dimensions do not make a perfect cube and the number

of polygons they contain will vary between voxels. This may produce voxels

that contain no triangles at all. Also, the relative size of the individual tubes

is significantly smaller than that of each individual bunny model. This can

cause many rays to be cached that do not intersect the geometry at all, causing
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some portions of the model to be lost in the final image. Lastly, a more subtle

difference from the bunny scene, the bounding grid used to accelerate ray

tracing locally on each processor covers the entire area of the voxel, rather

than only covering the area of the contained triangles. This means each ray

that enters a voxel is much more likely to traverse a bounding hierarchy, instead

of passing through the voxel without interruption.

Table 5.3 shows the performance, image quality and cache statistics for

rendering the hurricane tubes scene subdivided among a 3x3x3 voxel grid on

27 processors. In this case the voxel dimensions are (0.316, 0.276, 0.112). The

x and y components are very similar to those of the bunny scene (0.3, 0.3),

resulting in 2D ray cache planes with dimensions (0.316, 0.276), only for those

caches perpendicular to the z-axis. However for the remaining caches, the z

component is much smaller, resulting in ray caches in the shape of elongated

rectangles with dimensions (0.316, 0.112) and (0.276, 0.112), see Figure 5.4.

This smaller size does not inherently reduce or otherwise affect the cache

effectiveness overall since the search area is still significantly smaller than the

area of the cache.

These tests show similar performance improvements to those found for the

bunny scene, where a very small r value can potentially worsen performance

compared to the naive method, and performance reaches a maximum improve-

ment when bottlenecked by the ray casting step. Looking at the rendered im-

ages in Figure 5.5, image quality is still quite good for r=0.001 with rms-error

of 0.130 and overall performance improvement of ∼15s or 25.4%. For r=0.002

overall performance improvement increases to ∼41s or 69.3%. However image
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(a) Subdivided by 3x3x3 voxel grid. (b) Subdivided by 5x5x5 voxel grid.

Figure 5.4: The above image show the extents of each voxel when rendering
the hurricane stream tubes scene. Notice in this case the extents of the scene
bounding box do not change. Also notice the elongated rectangular shape of
some of the voxel walls caused by the relative size of the scene on the z axis.

quality does appear to suffer much more significantly, primarily due to the

relatively small size of the tubes which reduces the effect of ray coherence.

This causes the stream tubes to appear more like a series of blobs, however

the overall direction and length of a given tube is still reasonably visible and

can provide useful visual information.

To examine the effect of further subdividing the scene, Table 5.4 shows

the rendering results of the same hurricane scene, this time subdivided among

a 5x5x5 voxel grid on 125 processors. The ray casting time increases quite

significantly compared to the 3x3x3 grid, specifically the coarse sampling step

takes considerably longer due to the increased number of voxels that each

ray must traverse. Overall render time, however, transitions from showing

improved performance over the 3x3x3 grid to performance that is slightly

worse. The improvement seen in the naive ray tracer and for smaller values of
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(a) Rendered without caches

(b) r = 0.001 (c) RMS-error = 0.130

(d) r = 0.002 (e) RMS-error = 0.252

Figure 5.5: Comparison of image quality with variation of r when rendering
hurricane stream tubes scene subdivided by 3x3x3 voxel grid.
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Coarse Ray Cast Render RMS
r Time (s) Time (s) Time (s) error

w/o caching - 7.38 46.51 -
0.00075 6.98 15.60 44.75 0.0761
0.00100 6.80 13.78 36.52 0.129
0.00125 7.01 14.34 31.19 0.167
0.00150 7.13 14.14 27.45 0.201
0.00200 6.79 13.43 19.69 0.250
0.00250 7.10 13.20 16.29 0.265
0.00300 6.81 13.41 14.76 0.266

(a) Render time performance and RMS-error.

Inner Inner Inner Outer Outer Outer Total
r Searches Hits Ratio Searches Hits Ratio Ratio

0.00075 3983606 26162 0.00657 1016741 161243 0.159 0.184
0.00100 3393093 144536 0.0426 1016741 277532 0.273 0.415
0.00125 2722359 167320 0.0615 1016741 410754 0.404 0.569
0.00150 2053422 150086 0.0731 1016741 544963 0.536 0.684
0.00200 960274 111696 0.116 1016741 769505 0.757 0.867
0.00250 395318 75460 0.191 1016741 895817 0.881 0.955
0.00300 174784 48385 0.277 1016741 954286 0.939 0.986

(b) Cache search and hit statistics.

Table 5.4: Rendering performance for hurricane stream tube scene subdivided
by a 5x5x5 voxel grid on 125 processors. Voxel dimensions are (0.189364,
0.165363, 0.0674826) in world space coordinates. All other parameters are
constant: Cache hit angle cosφ = 0.005; 2562 coarse samples, 10242 pixels.

r can be attributed to the increased number of voxels, since a smaller set of

geometry is stored at each processor, thereby reducing complexity of finding an

intersection within. For larger values of r, performance degrades compared to

the 3x3x3 grid due to the increased ray casting time, which causes a bottleneck

to the overall render performance. Note that images rendered with the 5x5x5

voxel grid are not shown since they are very similar to the images shown in

Figure 5.5.
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Coarse Coarse Coarse Ray Cast Render RMS
Samples Cast (s) Receive (s) Time (s) Time (s) error

w/o caching - - 7.38 46.51 -
1282 2.08 5.73 13.36 44.91 0.115
2562 2.40 7.01 14.34 31.19 0.167
3842 3.41 10.12 17.70 24.29 0.195
5122 4.32 16.43 23.19 24.84 0.187

(a) Render time performance and RMS-error.

Coarse Outer Outer Outer Outer Total
Samples Stored Searches Hits Ratio Ratio

1282 15952 1016741 112916 0.111 0.334
2562 63602 1016741 410754 0.404 0.569
3842 143036 1016741 723447 0.712 0.811
5122 254222 1016741 902976 0.888 0.956

(b) Cache search and hit statistics.

Table 5.5: Performance measurement with variation of number of coarse
samples when rendering hurricane stream tube scene subdivided by a 5x5x5
voxel grid on 125 processors. All other parameters are constant: Cache hit
radius r=0.00125, Cache hit angle cosφ = 0.005, 10242 pixels.

5.2 Coarse Sample Density

The coarse sampling step is performed to provide a certain minimum number of

samples that can be searched and retrieved from the ray caches as primary rays

are cast into the scene. The density of these coarse samples has a significant

impact on performance and image quality. An increased number of samples

requires more time for the coarse sampling step to complete but provides a

higher number of samples that can potentially be retrieved from the caches.

Table 5.5 shows the performance, image quality and cache hit rates when

rendering the 5x5x5 voxel hurricane tubes scene with a varying number of

coarse samples. Recall the coarse samples are cast in a similar manner to
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casting the primary rays for the naive ray tracing method where caches are

not employed. For example, coarse sample rays are cast through a 128x128

grid across the image plane and fully traverse the scene until an intersection

is found or the ray exits the scene. The resulting colour value is then inserted

into the appropriate cache at the scene boundary where the ray entered; it is

also inserted into one or more of the inner ray caches.

Looking at Table 5.5a, coarse sampling time has been split into casting and

receiving. Casting refers to the time to send the sample rays to the respective

voxels, while receiving refers to the total time (including casting) to receive and

store the returned colour values in the ray caches. For Table 5.5b, Outer Stored

refers to the total number of coarse samples that are stored in the outer ray

caches before the primary rays are cast. As expected, the increased number of

coarse samples causes the coarse sampling time to increase, thereby increasing

the overall time to cast the primary rays. This also increases the number of

samples that are stored in the ray caches when primary ray casting begins.

The effect this has on the rendered image quality is actually quite interesting.

When fewer samples are taken, 1282 for instance, render performance does

not significantly improve due to the relatively low number of samples that

are stored in the cache, resulting in an overall hit rate of 33.4%. Increasing

the number of samples then increases the chance for a primary ray to find a

suitable colour value, thereby improving performance while degrading image

quality. An interesting result occurs when 5122 samples are taken, where

rms-error actually decreases slightly. This sample density provides the caches

with a significantly higher number of samples which inherently increases the
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accuracy of any colour values that are retrieved. Unfortunately this increases

coarse sampling time by such a large amount that overall render performance

does not continue to improve. See Figure 5.6 for a visual comparison of image

quality and Figure 5.7 for a closer look at the less apparent differences between

images rendered using 3842 and 5122 coarse samples.

5.2.1 Randomized Coarse Sampling

One other aspect of the coarse sampling method is the distribution of the sam-

ple rays. As eluded to in Section 4.5.1 casting only a single ray for each coarse

sample can cause aliasing similar to that which occurs when a ray tracer uses

only one ray per pixel to render an image. Typically this is solved by casting

additional rays, but this is not useful here since coarse sampling time must be

kept to a minimum. Instead, the use of randomized rays within the area of

each coarse sample on the image plane can replace aliasing with randomized

noise when rendering the final image. Figure 5.8 shows the difference between

the regular and randomized coarse sampling techniques when rendering both

the Stanford bunny scene and the hurricane stream tube scene. Recall that

the overall cache hit ratio and render performance are not significantly affected

by the randomized distribution of coarse samples. However, randomized sam-

pling clearly results in a much more visually appealing image. For the Stanford

Bunny scene, since the models are fairly large contiguous objects, the edges of

the model and the edges created by specular highlights show signs of aliasing

when regular coarse sampling is performed. The hurricane tubes scene suffers

similar aliasing artifacts, however they are much more pronounced due to the
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(a) 1282 samples (b) RMS-error = 0.115

(c) 3842 samples (d) RMS-error = 0.195

(e) 5122 samples (f) RMS-error = 0.187

Figure 5.6: Comparison of image quality with variation of total coarse samples
when rendering hurricane stream tubes scene subdivided by 5x5x5 voxel grid.
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(a) 3842 samples; rms-error 0.187 (b) 5122 samples; rms-error 0.195

Figure 5.7: Closer comparison of 10242 pixel images rendered with 3842 and
5122 coarse samples. Notice the slightly more coherent and less “blotchy”
tubes in the 5122 sample image.

very small thickness of the tubes, which causes discontinuities at some points

in the image. With randomized sampling, the edges of the bunny models and

continuity of the stream tubes appear much smoother.

5.3 Cache Retrieval and Colour Reproduction

This set of results examines the different methods of extracting a colour from

the cache, as described in Section 3.3. This is again measured by rendering

the hurricane stream tubes scene, subdivided by a 5x5x5 voxel grid on 125

processors. Recall, the three retrieval methods are 1) find the first cached

ray that meets r and φ tolerance and immediately return its colour value for

display, 2) search through all rays within tolerance and retrieve the ray with

minimum distance between cache intersection points, and 3) average the result

of all rays within tolerance. Table 5.6 shows the performance and RMS-error
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(a) Regular coarse sampling (b) Randomized coarse sampling

(c) Regular coarse sampling (d) Randomized coarse sampling

Figure 5.8: These images show the difference between coarse sampling the
image plane in a regular grid pattern and randomized sampling. For the
hurricane stream tubes, aliasing is quite extreme with regular coarse sampling.
For the bunny scene the aliasing effect is most noticable at the edges of each
bunny model and the edges of specular highlights.

85



Sampling Render RMS-
Method Time (s) error

w/o caching 46.51 -
r = 0.001 first 36.17 0.130

nearest 36.15 0.129
average 36.52 0.129

r = 0.0015 first 27.27 0.210
nearest 27.74 0.204
average 27.45 0.201

r = 0.002 first 20.33 0.273
nearest 20.16 0.258
average 19.69 0.249

Table 5.6: Performance and image quality comparison for different cache
retrieval methods when rendering hurricane stream tubes subdivided by 5x5x5
voxel grid. “First” means first cache result is used; “nearest” means best or
most similar result is used; “average” means average of all results is used.
Cache hit angle cosφ = 0.005, 2562 coarse samples, 10242 pixels.

for these retrieval methods when rendering with differing cache search radius,

r, values.

Somewhat surprisingly this has virtually no overall effect on render time

performance despite the added computation required by the nearest and aver-

age methods. Note that the nearest and average retrieval methods are highly

dependent on the number of rays that are found within tolerance. For ex-

ample, if only one suitable ray is found in the cache, then the nearest and

average methods will retrieve the same colour value as the first result method.

Because of this, the difference in rms-error between the three retrieval meth-

ods increases as the search radius increases, which allows a higher number of

samples to be considered by the nearest and average methods. This is most

evident for r=0.002 which is shown in Figure 5.9. Retrieving the first re-
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(a) First result.

(b) Nearest result.

(c) Average result.

Figure 5.9: Comparison of image quality between first, nearest and average
cache retrieval methods when r=0.002.
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sult found in the cache appears to cause more severe discontinuities due to

its lower accuracy, and since it does not provide any meaningful performance

improvement this method should be avoided. The difference between nearest

and average results is somewhat superficial. Selecting the nearest result will

tend to provide a more accurate colour value, however, if the nearest result is

nearer the maximum tolerance this may not provide a better image than the

first result method. The average result method can compensate for this situa-

tion by considering multiple rays, rather than just one, which trades accuracy

for a slightly more blurred image.

5.4 Memory Usage

The previous results have shown that several hundred thousand rays rays may

traverse the voxels that contain the scene. Each processor then has to accom-

modate many thousands of rays and colour values that may be received in

its incoming queue, as well as many thousands of rays and colours that may

be stored in its ray caches. Due to the parallel nature of this system it is

quite difficult to display the number of items in the incoming queue at any

given time and for all processors. Instead, memory is assessed by measuring

the maximum memory usage attained throughout the entire run time for one

particular processor that exhibits the highest memory usage. Table 5.7 shows

typical highest memory usage for a processor that is responsible for a single

voxel.

Highest memory usage is typically attained for voxels that are located
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Maximum Total Rays Total
Queue Size Cached Memory

3x3x3 bunny scene 5636 2497 484KB
5x5x5 bunny scene 1729 2565 212KB
3x3x3 tubes scene 38269 3435 2.75MB
5x5x5 tubes scene 11458 1158 846KB

Table 5.7: Overview of memory usage when rendering bunny and hurri-
cane stream tubes scenes. Bunny scene parameters are r=0.003, cosφ=0.005,
2562 coarse samples, 10242 pixels. Tubes scene parameters are r=0.0015,
cosφ=0.005, 2562 coarse samples, 10242 pixels.

adjacent to the scene boundary and are the first voxel traversed by primary

rays entering the scene. Voxels located further into the scene will typically

receive fewer rays in its incoming queue since many rays will be terminated

at a previous voxel, and thus the processor will store fewer rays in its caches.

Notice the incoming queue size of the tubes scene is considerably larger than

that of the bunny scene. This occurs because many rays passing through the

bunny scene will find an intersection and immediately return a colour, while

many rays passing through the tubes scene will pass straight through a given

voxel. Most rays will pass through the tubes scene voxel due to the smaller

relative size of the individual tubes. This causes many rays to be sent to a

neighbouring processor, which will eventually send a colour value back through

the incoming queue, thus increasing its size. The total number of rays stored

in the caches stays approximately constant for the bunny scene since the voxel

size remains the same. However, for the hurricane tubes scene, the increased

voxel grid dimensions causes the voxel size to decrease and thus fewer rays

intersect it.

Memory usage is not measured directly, rather it is calculated from the
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number of objects stored multiplied by the size of their respective containers.

This gives a good gauge for the amount of memory that is required for each

processor. The memory requirements for a single voxel appears to peak at

∼2.75MB. Considering that the cluster processors have upwards of 8GB-16GB

of memory available, overall memory usage for a voxel is negligible.

The ray casting processor, rank 0, has the added responsibility to store

all the outer caches around the scene bounding box as well as its own voxel

caches. For this processor, maximum incoming queue size appears to peak at

approximately 400,000 in the worst case while the total number of rays stored

in the outer caches is dependent on the number of coarse samples that are

cast. When 2562 coarse samples are stored, memory usage for rank 0 peaks at

∼28.2MB, while if the number of coarse samples is increased to 5122, memory

peaks at ∼34.8MB. Although this is a significant increase over the individual

voxel memory requirements, overall memory usage is still quite minimal.

90



Chapter 6

Conclusions and Future Work

This work has presented a novel approach to distributed out-of-core ray trac-

ing and demonstrated a prototype implementation that leverages the Shar-

cnet cluster super computing environment. There is a growing need within

the Sharcnet community to integrate visulization with simulation computa-

tion to avoid the pitfall of offline visuzliation. This work contributes to this

need by demonstrating a method of reducing the bottleneck of communica-

tion through the use of ray caches in order to quickly produce a visualization

without significantly delaying a simulation in progress.

Ray caches certainly show potential in providing a significant performance

boost to distributed out-of-core ray tracing. A ray cache placed at the bound-

ary between the datasets stored on two processors can collect and store any

ray that passes through it. When a new ray is cast through this boundary, it

can search the cache and retrieve a stored ray where appropriate, rather than

incurring an expensive communication and intersection calculation. The cost
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of searching the ray cache is kept to a minimum by storing the rays in a kd-

tree structure. The implementation presented here demonstrates that the ray

cache can have a drastic effect on overall rendering performance, even when

a fairly simplistic search method is used. Also, under suitable conditions, ray

caches do not severely reduce image quality. This can be extremely valuable in

applications such as viewing or steering a live simulation where a reasonably

good quality image, generated quickly, can yield important information. How-

ever, there are clearly several aspects of ray caches that would benefit from

further examination and research.

As with most rendering acceleration methods, there are some instances

where the out-of-core ray tracer and ray caches perform quite poorly. For

instance if the camera is located within the bounds of a scene or its view is

concentrated on one particular voxel, then all primary rays will have to pass

through one processor before reaching other processors in the cluster. This

prevents an even distribution of work among the processors, which are forced

to idle for extended periods, and will adversely affect performance.

Another shortcoming of the current implementation is the static nature of

the cache search criteria. Rays are compared based on the distance between

their cache plane intersection points followed by the similarity in their direction

of travel. This method can become ineffective when the ray cache plane is at

an oblique angle in relation to the ray (see Figure 6.1). When this occurs,

two rays that follow a similar path may intersect the cache plane at very

distant points. To compare the ray intersection points with the static radius

parameter, r, would then yield no results despite a similar ray that is present
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r

cache plane

oblique angled cache plane

Figure 6.1: Notice the two rays follow a similar path and would produce a
cache hit in the first cache plane on the left. However, in the cache oriented
at an oblique angle, the rays would not intersect at a close enough position to
produce a hit.

in the cache. Another more subtle issue can occur when two rays that appear

similar at a cache plane may travel large distances and find intersections in

very different areas of the scene. Ray caching would then benefit from a more

sophisticated method of cache search and retrieval that takes cache orientation

and ray intersection distance into account.

Currently the distributed out-of-core ray tracer only performs a ray casting

algorithm to render an image. This is intentional since the system is primarily

focused on scientific visualization rather than photo realistic image synthesis.

However, the ray caches themselves are agnostic to the ray tracing algorithm

that each processor performs. Therefore reflections, shadows and global illu-
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mination could be supported relatively easily. One major consideration for

implementing these effects is the added volume of rays and colour values that

would be sent and received, which would potentially overwhelm the incoming

queue in the render loop.

Casting the primary rays into the scene is also quite limited. Currently, ray

casting is front loaded since all rays are cast by one processor before it proceeds

with rendering in its local voxel. This could be improved by casting rays in

parallel where each processor is responsible for a subset of the image pixels to

distribute the burden currently placed on a single processor. This could also

be improved by casting only a subset of the rays periodically rather than all

rays at once. This allows one set of computed rays to be returned and stored

in the caches where a subsequent set of rays can then retrieve them. This

is already performed to a limited extent in this implementation through the

coarse sampling step, but it is limited to only casting two sets of rays: coarse

samples and primary rays for each pixel. Casting rays periodically would also

be beneficial if the out-of-core ray tracer were extended to support animation,

i.e. camera movement. The ray caches would also provide a significant benefit

to animation since small camera movements would not significantly change

the direction of most primary rays. This means rays added to the caches in

one frame can be retrieved for display in a subsequent frame.

Ray caches show encouraging results for distributed out-of-core visualiza-

tion, but much work is still needed to apply them in more realistic applications.
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