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Intelligent perception is a fundamental requirement of systems that exhibit sophisticated

autonomous operation in complex dynamic worlds. It combines low-level, bottom-up, data-

driven vision with high-level, top-down, knowledge-based processes. This thesis develops

two embodied, task-oriented vision systems that exhibit autonomous, intelligent, goal-driven

behavior through intelligent perception.

In Part I of the thesis, we develop a prototype surveillance system featuring a visual sen-

sor network comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom active

cameras. Novel multicamera control strategies enable the camera nodes to collaborate both in

tracking pedestrians of interest that move across the FOVs of different cameras and in acquiring

close-up videos of pedestrians as they travel across extended areas. Impediments to deploying

and experimenting with appropriately extensive camera networks in large, busy public spaces

would make our research more or less infeasible in the real world. However, a unique cen-

terpiece of our approach is the virtual vision paradigm, in which we employ a visually and

behaviorally realistic simulator in the design and evaluation of our surveillance systems. In

particular, we employ a virtual train station populated by autonomous, lifelike virtual pedestri-

ans, wherein easily reconfigurable virtual cameras generate synthetic video feeds that emulate

those acquired by real surveillance cameras monitoring public spaces.

In Part II of the thesis, we develop a cognitively-controlled vision system that combines

ii



low-level object recognition and tracking with high-level symbolic reasoning to tackle difficult

space robotics problems, specifically satellite rendezvous and docking. There is significant

interest in performing these operations autonomously, and our work is a step in this direction.

Reasoning and related elements, among them intention, context, and memory, contribute to

improve performance. We demonstrate the vision system controlling a robotic arm that au-

tonomously captures a free-flying satellite. To date, this is the only satellite-capturing system

that relies exclusively on vision to estimate the pose of the satellite and can deal with an unco-

operative satellite.

iii



Dedication

I dedicate this thesis to my parents, Zubair and Masuma, and to my wife, Lisa.

iv



Acknowledgements

First and foremost, I thank Professor Demetri Terzopoulos, my advisor, without whose guid-

ance, support, and encouragement this thesis would never have been completed. I am fortunate

to have worked with him. It has been a pleasure all along. I dare say that I have had the best

supervisor ever and I couldn’t have asked for more.

I would like to thank Professor Sven Dickinson, who provided me with encouragement,

collaboration, and sane advice during our many meetings. I am grateful to him for his guid-

ance, and for serving on my thesis committee. Next, I would like to thank professors Allan

Jepson, and Hector Levesque for serving on my proposal and dissertation committees. My

special thanks to Professor Christopher Brown of the University of Rochester for serving as

the external examiner of my thesis.

I owe my gratitude to Wei Shao and Mauricio Plaza whose work on the autonomous pedes-

trians and virtual Penn station model at New York University enabled us to develop the virtual

vision paradigm for camera network research. Their enabling work was supported in part by a

grant from the Defense Advanced Research Projects Agency (DARPA) of the US Department

of Defense. I am thankful to Dr. Tom Strat, formerly of DARPA, for his generous support and

encouragement.

For the second part of the thesis, I acknowledge the valuable technical contributions of

Piotr Jasiobedzki, Ross Gillett, Hong Ng, Shawn Greene, Josh Richmond, Michael Greenspan,

Michael Liu, and Amy Chan. This work was funded by MDA Space Missions, Ltd. (formerly

MD Robotics, Ltd.) and Precarn Associates. My thanks to Dr. Loris Gregoris for motivation,

encouragement, and support.

I owe my thanks to my colleagues and lab mates, among them Kiam Choo, Diego Macrini,

Sam Hasinoff, Ady Ecker, Stratis Ioannidis, Qinxin Yu, and Chakra Chennubhotla. Thank you

everybody at the DGP Lab and the Computer Vision Lab for the discussions, laughter, food

and drink.

I am grateful to my parents, Zubair Masood and Masuma Zubair, and my siblings, Ayesha

v



and Usman, for their love, support, and encouragement during my long years in graduate

school.

Finally, I am indebted to my wife, Lisa Tam, whose love and support saw me through to

the completion of this thesis. Thank you, Lisa.

vi



Contents

1 Introduction 1

1.1 Intelligent Perception for Visual Sensor Networks . . . . . . . . . . . . . . . . 2

1.2 Intelligent Perception for Space Robotics . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Intelligent Perception for Visual Sensor Networks 11

2 Introduction and Motivation 12

2.1 The Virtual Vision Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Surveillance System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 18

3.1 Artificial Worlds for Computer Vision . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Multi-Camera Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Video Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Camera Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Smart Camera Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Self-Organization and Distributed Problem Solving . . . . . . . . . . . . . . . 30

3.5.1 Negotiation as a Means to Distributed Problem Solving . . . . . . . . . 32

vii



3.5.2 Active Camera Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.3 Smart Camera Network . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The Virtual Vision System 37

4.1 Synthetic Video Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Camera Color Response . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Compression Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 Detector Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.4 Data Drop-Out Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.5 Interlaced Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Visual Analysis for Pedestrian Tracking . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Pedestrian Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 44

Background Modeling for Pedestrian Segmentation . . . . . . . . . . . 45

Background Model Maintenance . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Pedestrian Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Pedestrian Tracking without Segmentation . . . . . . . . . . . . . . . 50

Pedestrian Tracking with Segmentation . . . . . . . . . . . . . . . . . 54

4.3 Pedestrian Localization in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 The Triangulation Procedure . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 PTZ Active Camera Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Learning the Gaze Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Nearest Neighbor Approximation to M . . . . . . . . . . . . . . . . . 65

4.5.2 Radial Basis Function Approximation to M . . . . . . . . . . . . . . 66

4.5.3 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Scheduling Active Cameras 70

5.1 Surveillance System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



5.2 Camera Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Online Scheduling Paradigms . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Camera Scheduling Problem Formulation . . . . . . . . . . . . . . . . 78

5.2.3 Camera Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Perceptive Scene Coverage 92

6.1 Camera Node Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Sensor Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Node Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Solving CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.3 Node Failures & Communication Errors . . . . . . . . . . . . . . . . . 105

6.3 Video Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Computing Camera Node Relevance . . . . . . . . . . . . . . . . . . . 108

6.3.2 Surveillance Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Larger Sensor Network Simulations . . . . . . . . . . . . . . . . . . . 115

6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

II Intelligent Perception for Space Robotics 122

7 Introduction and Motivation 123

7.1 Vision-based AR&D System and CoCo . . . . . . . . . . . . . . . . . . . . . 125

8 Related Work 128

8.1 Space Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



8.1.1 The Need for Increased Autonomy . . . . . . . . . . . . . . . . . . . . 129

8.1.2 Autonomy Initiatives in Space Exploration . . . . . . . . . . . . . . . 130

8.2 Vision and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Robotic Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.3.1 Deliberative Agent Architectures . . . . . . . . . . . . . . . . . . . . . 135

Integrating Planning and Execution . . . . . . . . . . . . . . . . . . . 137

Emphasis on Internal Representations . . . . . . . . . . . . . . . . . . 137

Knowledge-Granularity . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3.2 Reactive Agent Architectures . . . . . . . . . . . . . . . . . . . . . . 138

Tight Connection between Stimulus and Action . . . . . . . . . . . . . 138

Complex Behavior Does Not Imply Complex Internal Structure . . . . 139

The World is its Own Best Model . . . . . . . . . . . . . . . . . . . . 139

Emergent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

The Role of Deliberation . . . . . . . . . . . . . . . . . . . . . . . . . 140

Implications of the Lack of Internal Representation . . . . . . . . . . . 141

Computation Centric View of a Reactive Robotic Agent . . . . . . . . 141

Ethologically-Inspired Behavior Based Systems . . . . . . . . . . . . . 142

Engineering Concerns for Behavior Based Systems . . . . . . . . . . . 143

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3.3 Combining Reactive and Deliberative Agent Architectures . . . . . . . 147

Unified Approaches to Robotic Agent Design . . . . . . . . . . . . . . 147

Hybrid Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Intelligent, Autonomous Virtual Characters . . . . . . . . . . . . . . . 156

8.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4 Comparison of the CoCo Architecture . . . . . . . . . . . . . . . . . . . . . . 159

9 Autonomous Satellite Rendezvous and Docking 160

9.1 The CoCo Control Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 160

x



9.2 Motor Skills: Visual Servo Behaviors . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Visual Sensors: Satellite Recognition and Tracking . . . . . . . . . . . . . . . 165

9.4 The Reactive Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.1 Perception Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Communicating with the Vision Module . . . . . . . . . . . . . . . . . 172

Visual Processing Handover . . . . . . . . . . . . . . . . . . . . . . . 173

Target Pose Estimation using Multiple Visual Processing Streams . . . 174

9.4.2 Behavior Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Motivational Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.4.3 Memory Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Abstracted World State (AWS) . . . . . . . . . . . . . . . . . . . . . . 181

9.5 The Deliberative Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.5.1 Scene Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.5.2 Cooperation Between Active Planners . . . . . . . . . . . . . . . . . . 187

9.6 Plan Execution and Monitoring Module . . . . . . . . . . . . . . . . . . . . . 188

9.6.1 Plan Execution Control Knowledge . . . . . . . . . . . . . . . . . . . 190

9.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.7.1 CoCo Outperformed CSA’s Controller . . . . . . . . . . . . . . . . . . 195

III Conclusion 197

10 Summary and Research Directions 198

10.1 Space Robotics and CoCo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.2 Virtual Vision and Visual Sensor Networks . . . . . . . . . . . . . . . . . . . 201

IV Appendices 206

A αβ Tracker for Satellite Pose Validation 207

xi



A.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

B Vision Module Handover 209

B.1 Handover Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C Fuzzy Logic Based Sensor Fusion 211

D Quaternion Representation for Rotations 214

Bibliography 216

xii



List of Tables

6.1 Optimal sensor assignment when the number of relevant nodes is small . . . . . 102

6.2 Sensor assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Four classes of asynchronous processes . . . . . . . . . . . . . . . . . . . . . 169

9.2 The abstracted world state for the satellite servicing task . . . . . . . . . . . . 183

9.3 The primitive actions available to the planner . . . . . . . . . . . . . . . . . . 185

9.4 The primitive actions available to the planner . . . . . . . . . . . . . . . . . . 185

9.5 A linear plan generated by the GOLOG program to capture the target . . . . . . 188

9.6 Planner B uses the error model to determine possible explanations of an error . 188

9.7 CoCo handled these error conditions . . . . . . . . . . . . . . . . . . . . . . . 192

xiii



List of Figures

1.1 The virtual vision paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Synthetic video feeds from multiple surveillance cameras . . . . . . . . . . . . 3

1.3 A pedestrian is tracked by cameras . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Satellite capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 The servicer robot captures the satellite using vision in harsh lighting . . . . . . 7

2.1 The virtual Penn Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Synthetic video feeds from multiple surveillance cameras . . . . . . . . . . . . 14

2.3 Plan view of the virtual Penn Station environment . . . . . . . . . . . . . . . . 15

4.1 Pedestrian tracking failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Compression artifacts in synthetic video . . . . . . . . . . . . . . . . . . . . . 40

4.3 Simulated imaging artifacts in synthetic video . . . . . . . . . . . . . . . . . . 40

4.4 Video interlacing effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Learning a background model . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Pedestrian detection through background subtraction . . . . . . . . . . . . . . 47

4.7 Pedestrian tracking while zooming . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Pedestrian signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Histogram intersection/backprojection for pedestrian tracking . . . . . . . . . . 51

4.10 Multi-scale target localization in histogram backprojected images . . . . . . . . 52

4.11 Target localization in backprojected images . . . . . . . . . . . . . . . . . . . 54

xiv



4.12 Pedestrian localization through triangulation . . . . . . . . . . . . . . . . . . . 56

4.13 Anatomy of a virtual camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 Camera projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Camera behavioral controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.16 Active PTZ camera: Fixation and zooming . . . . . . . . . . . . . . . . . . . . 62

4.17 The fixation routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.18 Zooming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.19 The architecture of a radial basis function network . . . . . . . . . . . . . . . . 66

4.20 Learning the gaze direction map for an active PTZ camera . . . . . . . . . . . 68

5.1 Active camera scheduling: An overview . . . . . . . . . . . . . . . . . . . . . 71

5.2 Active camera scheduling: With and without preemption . . . . . . . . . . . . 74

5.3 Active camera scheduling in single and multiple observation modes . . . . . . 76

5.4 Active camera scheduling: Priority-based preemption . . . . . . . . . . . . . . 77

5.5 Views from the four wide-FOV passive cameras . . . . . . . . . . . . . . . . . 80

5.6 Sample close-up images captured by the PTZ active cameras . . . . . . . . . . 81

5.7 Scheduling cameras to observe pedestrians . . . . . . . . . . . . . . . . . . . . 82

5.8 Weighted and non-weighted scheduling schemes . . . . . . . . . . . . . . . . 84

5.9 Camera scheduling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Camera scheduling with and without preemption . . . . . . . . . . . . . . . . 87

5.11 Camera scheduling: Preemption cutoff time . . . . . . . . . . . . . . . . . . . 87

5.12 Comparison of various scheduler configurations . . . . . . . . . . . . . . . . . 91

6.1 Top-level camera controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Node grouping via task auction . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Group evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Grouping and conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Leader detection and conflict detection . . . . . . . . . . . . . . . . . . . . . . 99

xv



6.6 Demotion sequence 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Demotion sequence 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Demotion negotiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9 Camera network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.10 The relevance metric returned by a camera node . . . . . . . . . . . . . . . . . 109

6.11 A pedestrian is successively tracked by cameras . . . . . . . . . . . . . . . . . 111

6.12 “Follow” sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.13 Camera grouping sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.14 Camera grouping sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.15 Group splitting and merging . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.16 Simultaneous node failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.17 Group merging and leader failure . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.1 The CoCo three-tiered architecture . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 CoCo system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.3 Six phases during a satellite rendezvous and docking operation . . . . . . . . . 164

9.4 The satellite recognition and tracking system . . . . . . . . . . . . . . . . . . 166

9.5 Images from a sequence recorded during a docking experiment . . . . . . . . . 167

9.6 Functional decomposition of the reactive module . . . . . . . . . . . . . . . . 169

9.7 Daemon processes for servicing satellite sensors . . . . . . . . . . . . . . . . . 170

9.8 The perception center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.9 Vision system handover and the prediction error . . . . . . . . . . . . . . . . . 175

9.10 Priority among motivations and level-of-interest modeling . . . . . . . . . . . 177

9.11 Mutual inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.12 The perceptual support for behavior activation . . . . . . . . . . . . . . . . . . 178

9.13 The confidence in the target’s pose . . . . . . . . . . . . . . . . . . . . . . . . 179

9.14 The abstracted world state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.15 Discretization for constructing the Abstracted World State . . . . . . . . . . . 182

xvi



9.16 The plan execution and monitoring module . . . . . . . . . . . . . . . . . . . 189

9.17 Linear, conditional, and hierarchical plans . . . . . . . . . . . . . . . . . . . . 191

9.18 A successful satellite capture mission . . . . . . . . . . . . . . . . . . . . . . 194

9.19 Satellite rendezvous simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.1 Satellite tracking handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.1 Sensor Fusion: Fuzzy inference system . . . . . . . . . . . . . . . . . . . . . 212

C.2 Sensor Fusion: Fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xvii



Chapter 1

Introduction

This thesis is concerned with intelligent perception. Intelligent perception goes beyond bottom-

up, data-driven, low-level vision to also include top-down, knowledge-driven, high-level visual

processes. Intelligent perception is needed if we are to realize fully functional, truly intelligent

systems, such as intelligent multi-camera surveillance systems and smart robotic agents ca-

pable of performing useful work in complex environments. The operation of these systems,

along with their performance, need to be understood within the context of their environments

as well as the goals of the system. With the objective of developing systems with intelligent

perception, the focus of this thesis is to develop theory, computational tools, and algorithms for

integrated low-level and high-level aspects of image understanding. In particular, we are inter-

ested in embodied, task-oriented vision systems that combine low-level vision with high-level

symbolic reasoning. The latter encodes knowledge about the world and uses this knowledge to

guide the vision system in a deliberative, task-directed manner.

Within the above intelligent perception framework, this thesis develops two systems capa-

ble of supporting sophisticated, autonomous behavior. One system is in the domain of sensor

networks and visual surveillance, while the other is in the domain of space robotics. Both

systems draw heavily upon the intelligent agent metaphor; i.e., their overall architecture is

the result of local interactions between low-level perception routines mediated by high-level,

1
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Machine Vision 

Algorithms:

Tracking, pedestrian
recognition etc.

High-level Processing:

Camera control,
assignment, handover,
etc.

Synthetic video feed

Figure 1.1: The virtual vision paradigm.

deliberative processes. The next two sections motivate and preview each of the two major

components of this thesis in more detail.

1.1 Intelligent Perception for Visual Sensor Networks

Recent advances in camera and video technologies have made it possible to network numerous

video cameras together in order to provide visual coverage of large public spaces such as

airports and train stations. As the size of the camera network grows and the level of activity in

the public space increases, it becomes infeasible for human operators to monitor the multiple

video streams and identify all events of possible interest, or even to control individual cameras

in performing advanced surveillance tasks, such as zooming in on a moving subject of interest

to acquire one or more facial snapshots. Consequently, a timely challenge for computer vision

researchers is to design camera sensor networks capable of performing visual surveillance tasks

automatically, or at least with minimal human intervention.

In the first part of this thesis, we develop Virtual Vision, a paradigm that prescribes visually

and behaviorally realistic virtual environments for the design of intelligent surveillance systems

and the meaningful experimentation with such systems (Figure 1.1). Virtual vision investigates

the possibility of developing and evaluating camera network control algorithms, such as camera
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Figure 1.2: Synthetic video feeds from multiple virtual surveillance cameras situated in the
(empty) Penn Station environment.
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assignment and hand-off, by deploying virtual networks in simulated environments. It allows

us to study high-level control problems that frequently arise in networks comprising smart

cameras under realistic conditions. We believe that virtual vision is a powerful visual sensor

network research paradigm and that the theory and algorithms developed within virtual vision

will work without significant modification in the real world.

Skeptics might argue that virtual vision relies on simulated data, which can lead to inaccu-

rate results. In particular, they may worry that virtual video lacks the subtleties of real video

and that meaningful evaluation of a machine vision system is impossible in the absence of real

video. But our high-level camera control routines do not directly process any raw video. They

are dependent on the lower-level recognition and tracking routines, which mimic the perfor-

mance (including failure modes) of a state-of-the-art pedestrian localization and tracking sys-

tem and generate realistic input data for the high-level routines. We believe that our simulator

enables us to develop and test camera network control algorithms under realistic assumptions

derived from physical camera networks, and that these algorithms should readily port to the

real world.

An important issue in smart camera networks is how to compare camera network algo-

rithms. Two possible approaches are: 1) time-shared physical camera networks and 2) realis-

tic simulation environments. Gathering benchmark data from time-shared physical networks

comprising passive, fixed-zoom cameras involves simple video capture. On the other hand,

gathering benchmark data for networks comprising active pan/tilt/zoom cameras requires scene

reenactment for every run, which is clearly infeasible in most cases. Costello et al. [2004], who

compared various schemes for scheduling an active camera to observe pedestrians present in

the scene, ran into this issue and resort to Monte Carlo simulation to evaluate camera schedul-

ing approaches. They conclude that evaluating scheduling policies on an physical testbed com-

prising a single active camera is extremely complicated. Our virtual vision approach provides

a viable alternative that, among other benefits relative to a physical camera network, offers

convenient and unlimited repeatability.
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(a) Camera 1; 30s (b) Camera 7; 1.5min (c) Camera 7; 2min (d) Camera 6; 2.2min (e) Camera 6; 3min

(f) Camera 2; 4.3min (g) Camera 3; 5min (h) Camera 3; 6min (i) Camera 3; 13min (j) Camera 10; 13.4min

Figure 1.3: A pedestrian is tracked by cameras as she makes her way through the train station.

Within the virtual vision paradigm, we develop a prototype surveillance system featuring a

visual sensor network comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom

(PTZ) active cameras (Figure 1.2). Novel multi-camera control strategies enable the camera

nodes to collaborate both in tracking pedestrians of interest that move across the FOVs of dif-

ferent cameras and in capturing close-up videos of pedestrians as they travel through designated

areas (Figure 1.3). The sensor network supports task-dependent node selection and aggrega-

tion through local decision-making and inter-node communication. We treat node selection

as a constraint satisfaction problem. Lacking a central controller, our solution is scalable and

robust against node failures.

1.2 Intelligent Perception for Space Robotics

Satellite servicing is the task of maintaining and repairing a satellite in orbit. It extends the

operational life of the satellite, mitigates technical risks, reduces on-orbit losses, and helps

manage orbital debris. Hence, it is of interest to multiple stakeholders, including satellite op-

erators, manufacturers, and insurance companies [Middleton et al. 1984; Davinic et al. 1988].
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Figure 1.4: Images acquired during satellite capture. The left and center images were captured
using the shuttle bay cameras. The right image was captured by the end-effector camera.
The center image shows the arm in hovering position prior to the final capture phase. The
shuttle crew use these images during satellite rendezvous and capture to locate the satellite at
a distance of approximately 100m, to approach it, and to capture it with the Canadarm—the
shuttle’s manipulator.

Although replacing a satellite is more cost-effective in some cases, on-orbit servicing is critical

for more expensive satellite systems, such as space-based laser and global positioning system

constellations, or for one-of-a-kind systems like the Hubble telescope, which costs $2.5 billion.

As early as the 1980s, the US National Aeronautics and Space Administration (NASA) real-

ized the importance of on-orbit servicing for protecting their assets in space [Middleton et al.

1984].

Our space robotics work reported in this thesis was done in collaboration with MD Robotics,

Ltd. (currently MDA Space Missions), a Canadian company that has supported human space

flight since the early 1980s through advanced robotic systems, such as the Space Shuttle’s

Canadarm and the Mobile Servicing System for the International Space Station. The company,

which undertakes extensive R&D projects in-house and through collaborations with univer-

sities and research institutions, regards autonomy as a necessary capability for future space

robotics missions. The reported work was done as part of the ROSA (Remote Operation with

Supervised Autonomy) project [Gillett et al. 2001], which arose from this long-term vision.

ROSA’s goal is to advance the state of the art (operator commands and discrete-event scripted

control) by making possible a remote system that can perform decisions in real time within a

dynamic environment using high-level artificial intelligence techniques combined with robotic

behavioral control and machine vision.
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Figure 1.5: The servicer robot captures the satellite using vision in harsh lighting conditions
approximating those in orbit.

In the second part of this thesis, we develop an intelligent perception system whose pur-

pose is to solve difficult space robotics problems; in particular satellite rendezvous and docking

(AR&D) (Figure 1.4). Our system combines low-level object recognition and tracking with

high-level symbolic reasoning, in a novel architecture that we call the Cognitive Controller

or CoCo. The reasoning module, which encodes a model of the environment, performs de-

liberation to 1) guide the vision system in a task-directed manner, 2) activate vision modules

depending on the progress of the task, 3) validate the performance of the vision system, and

4) suggest corrections to the vision system when the latter is performing poorly. Reasoning

and related elements, among them intention, context, and memory, contribute to improve the

performance (i.e., robustness, reliability, and usability). We demonstrate the prototype vision

system in an MDRobotics Ltd. lab environment emulating relevant conditions in space that can

autonomously capture a satellite (Figure 1.5).

1.3 Thesis Contributions

Although intelligent perception is the theme that underlies our research, the work reported

in this thesis straddles multiple disciplines, not just machine vision, but also classical artificial

intelligence, sensor networks, and computer graphics. Our work also contributes to the fields of

agent architectures, space robotics, and multi-camera surveillance systems (sometimes referred

to as visual sensor networks). The research presented in this thesis has appeared in part in the

following publications: [Qureshi et al. 2004b] [Qureshi et al. 2004a] [Qureshi et al. 2005a]
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[Qureshi et al. 2005b] [Qureshi and Terzopoulos 2005a] [Qureshi and Terzopoulos 2005b]

[Qureshi and Terzopoulos 2006a] [Qureshi and Terzopoulos 2006b]. Our specific contributions

are as follows:

• Combining computer graphics and computer vision, we develop and demonstrate the ad-

vantages of the virtual vision paradigm in designing, experimenting with, and evaluating

a prototype large-scale surveillance system [Qureshi and Terzopoulos 2005b; Qureshi

and Terzopoulos 2005a]. Other researchers should be able to use our virtual vision

simulator and build upon our results, or do the work necessary to implement our new

algorithms in physical camera networks.

• In the context of sensor networks and visual surveillance, we propose a novel camera

network control strategy that does not require camera calibration, a detailed world model,

or a central controller [Qureshi and Terzopoulos 2005b]. The overall behavior of the

network is the consequence of the local processing at each node (camera) and inter-

node communication. The network is robust to node and communication link failures;

moreover, it is scalable due to the lack of a central controller. Visual surveillance tasks

are performed by groups of one or more camera nodes. These groups, which are created

on the fly, define the information sharing parameters and the extent of collaboration

between nodes. A group keeps evolving—i.e., old nodes leave the group and new nodes

join it—during the lifetime of the surveillance task. One node in each group acts as the

group supervisor and is responsible for group level decision making.

• We present a new constraint satisfaction problem formulation for resolving group-group

interactions among multiple cameras.

• We propose a sensor management scheme that appears well suited to the challenges of

designing camera networks for surveillance applications that are potentially capable of

fully automatic operation.
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• Furthermore, our effort has resulted in 1) new image-driven pan/tilt and zoom controllers

for active PTZ cameras, 2) an automatic scheme for learning the mapping between 3D

points and the internal pan/tilt settings of a PTZ camera, and 3) an online surveillance

camera scheduling scheme [Qureshi and Terzopoulos 2005a].

• In the context of space robotics, we develop an intelligent vision system capable of cap-

turing a non-cooperative, free-flying satellite without human assistance [Qureshi et al.

2004b; Qureshi et al. 2005b]. The system is novel and unique inasmuch as it is the only

AR&D system that uses vision as its primary sensory modality and can deal with an un-

cooperative target satellite. Other AR&D systems either deal with target satellites that

communicate with the servicer craft about their heading and pose, or use other sensing

aids, such as radars and geostationary position satellite systems. Our autonomous satel-

lite rendezvous and docking demonstration is a proof of concept. The fact that Boeing

won the contract for building such a prototype satellite rendezvous and docking system

is in part due to our work. We understand that interested space agencies and contractors,

notably including NASA and Boeing, were planning to develop a prototype system for

in-orbit testing. NASA launched the Orbital Express in September 2006.

• An important technical contribution of our work is CoCo, which is a new approach

to high-level control architectures for vision-based autonomous robots [Qureshi et al.

2004a]. CoCo’s reactive module is an ethologically-inspired behavior-based system,

whereas its deliberative module is based on cognitive robotics. CoCo’s deliberative mod-

ule can support multiple specialized planning modules, which makes it truly taskable.

CoCo also features a powerful and non-intrusive scheme for combining deliberation and

reactivity, which heeds advice from the deliberative module only when it is safe to do

so. Here, the deliberative module advises the reactive module through a set of motiva-

tional variables. In addition, the reactive module presents the deliberative module with

a tractable, appropriately-abstracted interpretation of the real world. The reactive mod-
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ule constructs and maintains the abstracted world state in real-time using contextual and

temporal information.

1.4 Thesis Overview

The remainder of the thesis is presented in two major parts. Chapters 2–6 comprise Part I on

sensor networks, while Chapters 7–9 comprise Part II on space robotics.

Chapter 2 introduces and motivates our work on visual sensor networks, surveillance, and

virtual vision. Chapter 3 presents relevant literature on camera networks. We develop visual

analysis routines used by our virtual camera networks in Chapter 4. We demonstrate the virtual

vision paradigm by developing two camera networks capable of strategic visual surveillance

tasks with minimal reliance on a human operator in Chapters 5 and 6. Specifically, in Chap-

ter 5 we present a camera scheduling strategy that enables active PTZ cameras to capture high

resolution video of the pedestrians present in the designated area. In Chapter 6 we present a

fully distributed camera network capable of observing a pedestrian as he meanders through the

fields of view of multiple active PTZ cameras.

Chapter 7 introduces and motivates our work on satellite autonomous rendezvous and dock-

ing. Chapter 8 briefly reviews the relevant background literature. Chapter 9 presents the theo-

retical and practical aspects of our AR&D system implementation.

Part III concludes this thesis. Chapter 10 summerizes our work and suggests possible di-

rections for future research.

Finally, we present appendices in Part IV. Chapter A gives the details of αβ tracker for

satellite pose validation. Chapter B explains vision modules handover for our autonomous

satellite rendezvous and controller. Chapter C describes fuzzy logic based sensor fusion for our

space robotics application and Chapter D provides some background on representing rotations

using quaternions.



Part I

Intelligent Perception for Visual Sensor

Networks
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Chapter 2

Introduction and Motivation

As we mentioned in Chapter 1, a timely challenge for computer vision researchers is to design

camera sensor networks capable of performing visual surveillance tasks automatically, or at

least with minimal human intervention. We regard the design of an autonomous visual sensor

network as a problem in resource allocation and scheduling, where the sensors are treated as

resources required to complete the desired sensing tasks. Imagine a situation where the camera

network is asked to capture high-resolution videos of every pedestrian that passes through a

region of interest.1 Passive cameras alone cannot satisfy this requirement and active PTZ cam-

eras must be recruited to capture high-quality videos of pedestrians. Often there will be more

pedestrians in the scene than the number of available cameras, so the PTZ cameras must intel-

ligently allocate their time among the different pedestrians. A resource management strategy

can enable the cameras to decide autonomously how best to allocate their time to observing the

various pedestrians in the scene. The dynamic nature of the observation task further compli-

cates the decision making process; e.g., the amount of time a subject spends in the designated

area can vary dramatically between different pedestrians, an attempted video recording by a

PTZ camera might fail due to occlusion, etc.

1The captured video can subsequently be used for further biometric analysis, e.g., by a facial, gesture, or gait
recognition routine.

12
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(a) Waiting Room (b) Concourses and Platforms

(c) Arcade (d) Concourses and Platforms

Figure 2.1: A large-scale virtual train station populated by self-animating virtual humans
(Courtesy Shao and Terzopoulos).

2.1 The Virtual Vision Paradigm

Deploying a large-scale surveillance system is a major undertaking whose cost can easily be

prohibitive for most computer vision researchers interested in designing and experimenting

with multi-camera systems. Moreover, privacy laws impede the monitoring of people in public

spaces for experimental purposes. To overcome these obstacles, Terzopoulos [2003] proposed

a Virtual Vision approach to designing surveillance systems using a virtual train station environ-

ment populated by fully autonomous, lifelike virtual pedestrians that perform various activities
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(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 8 (f) Camera 9

(g) Camera 10 (h) Camera 15 (i) Camera 16

Figure 2.2: Synthetic video feeds from multiple virtual surveillance cameras situated in the
Penn Station environment. Camera numbers represents the cameras shown in Figure 2.3.
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Figure 2.3: Plan view of the virtual Penn Station environment with the roof not rendered, re-
vealing the concourses and train tracks (left), the main waiting room (center), and the long
shopping arcade (right). (The yellow rectangles indicate station pedestrian portals.) An ex-
ample visual sensor network is shown comprising 16 simulated active (pan-tilt-zoom) video
surveillance cameras. Figure 2.2 shows a sampling of images captured by cameras 1, 2, 3, 4,
8, 9, 10, 15, and 16.

(Figure 2.1) [Shao and Terzopoulos 2005a]. Cost considerations and legal impediments aside,

the use of realistic virtual environments also offers significantly greater flexibility during the

design and evaluation cycle, thus enabling many more iterations of the scientific method.

Pursuing the virtual vision philosophy, we demonstrate a surveillance system comprising

static and active simulated video cameras that provide perceptive coverage of a large virtual

public space; in our case, a train station (Figure 2.3), a reconstruction of the original Pennsyl-

vania Station in New York City, which was demolished in 1963. The virtual cameras situated

throughout the expansive chambers of the station generate multiple synthetic video feeds (Fig-

ure 2.2) that emulate those generated by real surveillance cameras monitoring public spaces.

The station is populated by autonomously self-animating virtual pedestrians (Figure 2.1). The

advanced pedestrian animation system combines behavioral, perceptual, and cognitive human

simulation algorithms [Shao and Terzopoulos 2005a]. The simulator can efficiently synthe-
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size well over 1000 self-animating pedestrians performing a rich variety of activities in the

large-scale indoor urban environment. Like real humans, the synthetic pedestrians are fully

autonomous. They perceive the virtual environment around them, analyze environmental situ-

ations, make decisions and behave naturally within the train station. They can enter the station,

avoiding collisions when proceeding though portals and congested areas, queue in lines as nec-

essary, purchase train tickets at the ticket booths in the main waiting room, sit on benches when

they are tired, purchase food/drinks from vending machines when they are hungry/thirsty, etc.,

and eventually proceed to the concourse area and down to the train tracks. A graphics pipeline

renders the busy urban scene with considerable geometric and photometric detail, as shown in

Figure 2.1.

Our unique combination of computer vision and advanced graphics technologies offers

several advantages:

1. Our simulator runs on (high-end) commodity PCs, obviating the need to grapple with

special-purpose hardware and software.

2. The virtual cameras are very easily relocated and reconfigured in the virtual environment.

3. The virtual world provides readily accessible ground-truth data for the purposes of surveil-

lance algorithm/system validation.

4. Simulation time can be prolonged relative to real, “wall-clock time”; i.e., arbitrary amounts

of computation can be performed per simulation time unit, thereby enabling one to eval-

uate the competence of collections of sophisticated visual surveillance algorithms that

cannot currently be expected to run in real time.

5. Experiments are perfectly repeatable in the virtual world, so we can easily modify algo-

rithms and parameters and immediately determine their effect.
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2.2 The Surveillance System

Within the virtual vision paradigm, we develop and evaluate a visual sensor network consisting

of fixed, wide field-of-view (FOV) passive cameras and PTZ active cameras. We develop novel

multi-camera control strategies that enable the simulated camera nodes to collaborate both in

tracking pedestrians of interest that move across the FOVs of different cameras and in capturing

close-up videos of pedestrians as they travel through designated areas. The network supports

task-dependent node selection and aggregation through local decision-making and inter-node

communication. Treating node selection as a constraint satisfaction problem, we propose a

solution that is scalable and robust against node failures, since it lacks a central controller.

For the task of capturing high-quality videos of pedestrians as they move through a desig-

nated area, we assume that the wide-FOV stationary cameras are calibrated,2 which enables the

network to estimate the 3D locations of pedestrians through triangulation. However, we do not

require the PTZ cameras to be calibrated. Rather, during a learning phase, the PTZ cameras

learn a coarse mapping between the 3D locations and the gaze-direction by observing a single

pedestrian in the scene. A precise mapping is unnecessary since we model each PTZ camera as

an autonomous agent that can invoke a search behavior to find the pedestrian using only coarse

hints about the pedestrian’s 3D position. The network uses a weighted round-robin strategy to

assign PTZ cameras to the various pedestrians. Each pedestrian creates a new sensing request

in the task queue. Initially, each sensing request is assigned the same priority; however, the

decision making process uses domain-specific heuristics, such as the distance of the pedestrian

from a camera or the heading of the pedestrian, to evaluate continuously the priorities of the

sensing requests. The PTZ cameras handle each task in priority sequence. A warning is issued

when a sensing request cannot be met.

2This assumption is justifiable given the success of numerous automatic static camera calibration schemes
[Pedersini et al. 1999; Gandhi and Trivedi 2004].
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Related Work

Our virtual vision approach towards designing smart camera networks is made possible by re-

cent developments in advanced modeling of virtual environments populated with autonomous,

artificial humans, advances in computer vision towards detecting, identifying, and tracking

targets, and advances made by the sensor networks community. In this chapter, we review

approaches related to our virtual vision paradigm, and we provide background on areas of

multi-camera systems and sensor networks. Both offer unique challenges and opportunities for

developing and studying distributed problem solving; thus, we also discuss distributed problem

solving, albeit briefly. We conclude the chapter with a comparative summary highlighting the

novel aspects of our work.

3.1 Artificial Worlds for Computer Vision

Ten years ago, Terzopoulos and Rabie introduced a purely software-based approach to design-

ing active vision systems, called animat vision [Terzopoulos and Rabie 1997]. The animat

vision approach prescribes replacing real, hardware cameras/robots, which are typically used

by computer vision researchers, with artificial animals, or animats [Wilson 1990], situated in

physics-based virtual worlds to study and develop active vision systems. They demonstrate the

animat vision approach by implementing biomemetic active vision systems for artificial fishes

18
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and virtual humans [Rabie and Terzopoulos 2000]. These active vision systems comprise algo-

rithms that integrate motion, stereo, and color analysis to support robust color object tracking,

vision-guided navigation, visual perception, and obstacle recognition and avoidance abilities.

Together, these algorithms enable the artificial animal to sense, understand, and interact with

its dynamic virtual environment. The animat vision approach appears particularly useful for

modeling and ultimately reverse-engineering the powerful vision systems found in higher-level

animals. Furthermore, it obviates the need for grappling with real hardware—cameras, robots,

and other paraphernalia—at least during the initial stages of research and development, thereby

yielding in huge savings in terms of both the effort involved in maintaining the supporting hard-

ware and the cost involved in acquiring it. The algorithms developed within the animat vision

approach were later adapted for a mobile vehicle tracking and traffic control system [Rabie

et al. 2002], which is a testimony to the usefulness of animate vision approach for designing

and evaluating complex computer vision systems.

As mentioned earlier, Terzopoulos [2003] proposed the Virtual Vision paradigm for video

surveillance systems research. He envisions designing and evaluating video surveillance sys-

tems using Reality Emulators. These are virtual environments of considerable complexity,

inhabited by autonomous, lifelike agents. The work presented in the next few chapters realizes

his vision. We have developed our virtual camera networks within a reality emulator devel-

oped by Shao and Terzopoulos [2005b; 2005a]—a virtual train station populated with lifelike,

self-animating pedestrians.

In concordance with the virtual vision paradigm, Santuari et al. [Santuari et al. 2003;

Bertamini et al. 2003] advocate the development and evaluation of pedestrian segmentation

and tracking algorithms using synthetic video generated within a virtual museum simulator

containing scripted characters. Synthetic video is generated via a sophisticated 3D rendering

scheme, which supports global illumination, pedestrians’ shadows, and visual artifacts like

depth of field, motion blur, and interlacing. Presently they have used their virtual museum

environment to develop static background modeling, pedestrian segmentation, and pedestrian
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tracking algorithms. They focus on low-level computer vision, whereas our work goes far be-

yond this and focuses on high-level computer vision issues, especially multi-camera control in

large-scale camera networks.

3.2 Multi-Camera Systems

Previous work on multi-camera systems has dealt with issues related to low and medium-level

computer vision, namely identification, recognition, and tracking of moving objects [Collins

et al. 2002; Comaniciu et al. 2002; Trivedi et al. 2000; Stillman et al. 1998; Javed et al. 2003].

The emphasis has been on tracking and on model transference from one camera to another,

which is required for object identification across multiple cameras [Khan and Shah 2003].

Multiple cameras have also been employed either to increase the reliability of the tracking al-

gorithm [Kang et al. 2003] (by overcoming the effects of occlusion or by using 3D information

for tracking) or to track an object as it meanders through the fields of view (FOVs) of different

cameras. In most cases, object tracking is accomplished by combining some sort of back-

ground subtraction strategy and an object appearance/motion model [Siebel 2003]. Numerous

researchers have proposed camera network calibration to achieve robust object identification

and classification from multiple viewpoints, and automatic camera network calibration strate-

gies have been proposed for both stationary and actively controlled camera nodes [Pedersini

et al. 1999; Gandhi and Trivedi 2004; Devarajan et al. 2006]. References [Ihler et al. 2004;

Marinakis et al. 2005; Mallett 2006] present schemes to learn sensor (camera) network topolo-

gies.

Little attention has been paid, however, to the problem of controlling or scheduling active

cameras when there are more objects to be monitored in the scene than there are active cameras.

Some researchers employ a stationary wide-FOV camera to control an active tilt-zoom camera

[Collins et al. 2001; Zhou et al. 2003; Costello et al. 2004; Hampapur et al. 2003]. Generally

speaking, the cameras are assumed to be calibrated and the total coverage of the cameras is
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restricted to the FOV of the stationary camera. We discuss some of the more relevant systems

in the following section.

3.2.1 Video Surveillance

Video surveillance is among the most recognized applications of multi-camera systems and

in the last five years a large fraction of multi-camera systems have been developed for the

purposes of video surveillance. We restrict our discussion to video surveillance systems that

combine passive and active cameras in order to provide multi-resolution visual coverage of the

designated area, as these are more relevant to the work presented in this thesis. We point the

reader to [Hu et al. 2004] for a recent survey of the many image analysis techniques being

explored in the context of the video surveillance.

Video surveillance is becoming ever more pervasive in today’s society [Marcenaro et al.

2001]. Presently, it is used for transportation monitoring [Pavlidis et al. 2001], urban security

[Kettnaker and Zabih 1991], tourism [Sacchi et al. 1999], and battlefield awareness [Oppelt

1995].1 As the size of the surveillance system grows, however, the enormous flux of video

data renders the central monitoring paradigm—a hallmark of the so called first [Collins and

Williams 1961] and second [Sacchi et al. 1999] generation surveillance systems—infeasible.

First and second generation surveillance systems rely solely on the human operator to iden-

tify events of interest. Most surveillance systems in use today are said to be third generation

systems. These employ visual analysis to assist the operator in monitoring events of interest.

Still they adhere to the central processing/monitoring paradigm and skirt networking and intel-

ligent camera control issues. Here, the monitoring center is a potential bottleneck, which can

adversely affect the overall scalability of third generation surveillance systems. Researchers

acknowledge the limitations of third generation surveillance systems and stress the need for

more flexible architectures that support distributed computing and employ intelligent and mi-

1Interestingly, video surveillance has been used by military and security agencies for the last four decades,
since the invention of closed-circuit television cameras, commonly known as CCTVs.
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gratory agents as part of the solution [Marcenaro et al. 2001]. There is currently considerable

interest within the research community, and also in the industry, to develop next generation

video surveillance systems.

Enhancing situational awareness is the foremost purpose of a surveillance system, smart or

otherwise. Situational awareness, argues Hampapur et al. [2005], requires information to be

collected and analyzed at various spatio-temporal scales. Low-resolution video, for example,

is sufficient for detecting and tracking a person, yet identifying a person typically requires a

closeup facial snapshot. It is infeasible to provide high-resolution video coverage of a large

space, such as an airport or train station, using static cameras alone. A possible solution is to

design surveillance systems comprising both static and active PTZ cameras. Static cameras

collect low-spatial, high-temporal resolution data, whereas PTZ cameras collect high-spatial

and low-temporal resolution data. Static and PTZ cameras thus complement each other and

collaborate to provide multi-scale visual coverage of the designated area.

The Visual Surveillance and Monitoring (VSAM) project looked at several fundamental

issues in detection, tracking, classification, and in-situ calibration in multi-camera systems

[Collins et al. 2000]. Several enabling technologies, such as robust target tracking, localization,

event detection, and recognition [Haritaoglu et al. 1998; Stauffer and Grimson 2000], were

developed within the umbrella of VSAM. Relevant to the work presented here are the two

camera coordination strategies investigated for VSAM—camera handover and camera slaving.

During camera handover, the 3D location of the target is used to select the most suitable camera

to attend to the target. Here, the camera selection is based on the proximity of the camera to the

target. The 3D location of the target is estimated either through triangulation or by intersecting

the backprojected viewing rays with the terrain. In camera slaving, a calibrated wide field-

of-view stationary camera drives an active pan/tilt camera to view the target. The viewing

direction of the active camera is computed by establishing the correspondences between the 3D

locations and the pan/tilt settings of the active camera. When the 3D location of a pedestrian

is not available, the viewing direction for the active camera (to bring the pedestrian within the
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field of view) is computed using a learned mapping between the pixel locations in the static

camera image and the internal pan/tilt settings of the active camera [Collins et al. 2001].

Karuppiah et al. present a multi-camera system consisting of panoramic and PTZ cameras

[Karuppiah et al. 2001; Zhu et al. 2000]. A noteworthy feature of this system is the lack of

a central processing station. Panoramic cameras together form a virtual stereo sensor capable

of estimating the 3D location of a target either through triangulation or via monocular cues.

The active cameras are calibrated and rely on the target’s 3D position while servoing to keep

it in view. The system is organized into three layers. Sensors (panoramic and PTZ cameras)

constitute the lowest layer. The second layer comprises the software entities, called Resource

Managers, that establish the communication between the various sensors. User Agent entities,

which make up the third layer, enable the resource managers to communicate with the user.

A similar approach involving calibrated static and pan/tilt cameras is presented in [Mich-

eloni et al. 2005]. Data from multiple static cameras is fused to estimate the 3D location of

the pedestrian. An active camera uses calibration information to bring the target into the cen-

ter of its view. After initial repositioning, the active camera autonomously tracks the target

[Foresti and Micheloni 2003], thereby avoiding the communication overhead associated with

master-slave configurations. The active camera periodically sends its pan/tilt settings to the

static cameras. The static cameras can use this information to decide whether or not the active

camera is tracking the correct target. If it is not, the active camera is repositioned. Foresti and

Micheloni [2003] propose a robust real-time tracking system for outdoor image sequences us-

ing an active pan/tilt camera. The system assumes a moving object (the target) against a mostly

static background. The motion induced during the pan/tilt operation is modeled via translation,

which is estimated by tracking features that belong to the background. The Lucas-Kanade

feature tracker is employed for this purpose. The current frame and the motion-compensated

background image are processed to locate mobile objects. This scheme does not handle the

zoom operation, as the camera motion induced between two frames during a zoom operation

violates the assumption that the two successive frames are related through a translation.
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Remaginino et al. [2001] describe a two-camera system that employs image analysis—

specifically, object tracking, stereo-localization, and activity inference—to assist the operators

in the monitoring task.

Collins et al. [2002] demonstrate a surveillance system where multiple calibrated active

PTZ cameras track a single person in 3D. Here, the PTZ cameras actively adjust their PTZ

settings to track the target. The 3D position of the target is estimated through triangulation

when the target is visible in multiple cameras, and the 3D position is used to select appropriate

pan/tilt and focus settings to maintain the target within the field-of-view. This allows a PTZ

camera to follow the estimated position of the target even during occlusions. PTZ cameras

use appearance-based pedestrian signatures (mean-shift algorithm [Comaniciu et al. 2000]) to

track a pedestrian. Cameras continuously servo to maintain the center of the tracked person

within the image. The zooming operation requires detailed zoom-parameter calibration. Fix-

ation parameters from multiple cameras are combined at a central location to estimate the 3D

position of the target through triangulation.

Zhou et al. [2003] track a single person using an active camera. When multiple people are

present in the scene, the person who is closest to the last tracked person is chosen.

Camera Scheduling

Ser-Nam et al. present a scheme for scheduling available cameras in a task-dependent fashion

[Lim et al. 2003]. Here, the tasks are defined within a world model that consists of the ground

plane, traffic pathways, and detailed building layouts. The scheduling problem is cast as a

temporal logic problem that requires access to a central database consisting of current camera

schedules, viewing parameters, and pedestrian trajectories. Unlike ours, this scheme requires

a detailed scene model, which is cumbersome to acquire.

The work of Hampapur et al. [2003] deals with the issues of deciding how cameras should

be assigned to various people present in the scene. They use PTZ cameras to capture close-

up facial images of the persons present in the scene for recognition purposes. Unlike the work
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presented here, however, they only provide general guidelines for assigning cameras to persons:

1) location specific, 2) orientation specific, 3) round-robin, and 4) activity-based assignment.

They do not propose a scheduling scheme. Their system consists of multiple PTZ cameras

driven by a 3D wide-baseline stereo tracking system (master-slave configuration).

Costello et al. [2004] evaluate various strategies for scheduling a single active camera to

acquire biometric imagery of the people present in a scene. They evaluate three static priority

policies—Random, First Come, First Serve (FCFS+), and Earliest Deadline First (EDF+)—and

one non-static priority policy—Current Minloss Throughput Optimal (CMTO) [Givan et al.

2002]—on a Monte Carlo simulation that models pedestrian arrival as a Poisson process and

pedestrian locomotion via a random waypoint model. They also demonstrate their approach

on a cooperative active camera system comprising a passive and an active PTZ camera in a

master-slave configuration. Here, a static camera estimates the 3D positions of the pedestrians

(and vehicles) and drives the PTZ camera. Correspondences between the two cameras are es-

tablished manually. They assume near perfect tracking during evaluations. They conclude that

active camera scheduling is an online scheduling problem and that given the uncertainty inher-

ent in the sensing process, a greedy approach is more suited to the task of scheduling active

cameras. They show that EDF+ and CMTO perform poorly when the predictions about the

pedestrians departure times are inaccurate. Furthermore, they stress that predicting pedestrian

departure times is nontrivial. FCFS+ exhibits comparable performance to that of EDF+ when

the pedestrians spend roughly the same amount of time in the designated area.2 Unlike the

work of Costello et al., our work can handle more than one active PTZ camera. Interestingly,

Costello et al. argue that Monte Carlo simulation is necessary to evaluate camera scheduling

approaches, as evaluating scheduling policies on an actual setup is extremely complicated. Our

Virtual Vision approach provides a viable alternative to using an actual physical setup, at least

during the development and evaluation phase.

Recently Costello and Wang [2005] propose a distributed scheduling algorithm for task-

2This assumption is true for a wide range of scenarios.
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ing multiple active cameras to observe pedestrians. The proposed algorithm is scalable as it

restricts communication between neighboring cameras; however, it operates under restrictive

assumptions: 1) observation duration is constant for each person (i.e., no preemption), 2) the

path that the person takes through the designated area is known a priori or can be predicted

with reasonable accuracy (i.e., offline, clairvoyant), 3) there is no overlap between the regions

of coverage of active cameras (to avoid potential camera coordination issues), 4) a person

passes through the region of coverage of each camera only once, and 5) calibrated cameras and

known network topology. The path taken by a person determines the time he spends in the re-

gions of coverage of each active camera, and in turn, his entry and departure times with respect

to each active camera. Active cameras employ the Earliest Deadline First (EDF) scheduling

scheme to observe persons present in their regions of coverage. The list of observed persons is

passed onto the next neighbor. The EDF scheduling algorithm is myopic and does not consider

how its decisions will affect other active cameras in the future, which can adversely affect the

performance of the network. Costello and Wang propose a load balancing algorithm to mitigate

this effect. Each camera is aware of its neighbors’ loads (the number of unobserved persons)

and attempts to observe persons that appear to be moving towards the regions of coverage of

those neighbors with the highest loads.

We refer the reader to [Stewart and Khosla 1992], which discuss real-time scheduling al-

gorithms for sensor-based control systems. The problem of online scheduling has been studied

extensively in the context of scheduling jobs on a multi-tasking computer [Bar-Noy et al. 2002;

Sgall 1998] as well as for packet routing in networks [Ling and Shroff 1996; Givan et al. 2002].

3.3 Sensor Networks

Networked systems of small, untethered, battery-powered smart sensors is a new paradigm of

computing with the potential to revolutionize the way people interact with their environments

by linking together a range of devices/sensors that allow information to be collected, shared,
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stored, and processed in new ways [Kahn et al. 1999; Estrin et al. 2001]. Typical applications

of sensor networks include environmental monitoring, surveillance, inventory tracking, and

smart spaces, among others [Sinopoli et al. 2003]. Camera networks are high-performance

multimedia sensor networks, ergo sensor networks are seen as a key enabling technology for

designing next generation video surveillance systems.

Unlike the data communication networks in use today, the goal of a sensor network is not

just data communication, but event detection and estimation. Acceptable performance for event

detection and estimation is typically achieved through the fusion of information from multiple

nodes. Energy conservation is a huge concern for sensor networks, as it directly impacts the

lifespan of the network. Self-organization is a crucial ability for sensor networks, as manual

configuration of sensor networks is infeasible given the large number of nodes (10,000 or even

100,000 nodes). These constraints pose challenging engineering, networking, and distributed

control problems, and currently, there is a considerable interest within the research community

in developing communication and control strategies for node selection, localization, and ag-

gregation, data routing, bandwidth optimization, and energy conservation in sensor networks

[Akyildiz et al. 2002; Xing et al. 2005].

Node communications have large power requirements; therefore, sensor network control

strategies attempt to minimize inter-node communication [Chang and Tassiulas 2000; Zhao

et al. 2002]. In the Berkeley motes [Levis et al. 2004], for example, the ratio of energy con-

sumption for communication and computation is in the range of 1000–10000. Researchers

have proposed task-dependent node aggregation [Zhao et al. 2002], data routing algorithms

[Intanagonwiwat et al. 2003], and multi-tier node organization [Kulkarni et al. 2005b] to limit

the communication to relevant nodes.

The problem of forming sensor groups based on task requirements and resource availability

has received much attention within the sensor networks community [Zhao et al. 2003]. Col-

laborative tracking, which subsumes the above issue, is considered an essential capability in

many sensor networks. Zhao et al. [2002] introduces an information-driven approach to collab-
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orative tracking, which attempts to minimize the energy expenditure at each node by reducing

inter-node communication. A node selects the next node by utilizing the information gain vs.

energy expenditure trade-off estimates for its neighbor nodes. Here, the network nodes are

either acoustic or seismic sensors. Huang et al. [2002] start with an initial sparse tree topology

of connected nodes and construct a more fully connected network over time. Directed diffu-

sion is another scheme for automatically establishing communication paths in ad hoc networks

[Intanagonwiwat et al. 2003].

The Berkeley motes is a recent example of smart sensor-based networked systems [Hill

et al. 2000; Levis et al. 2004]. This work has led to a succession of more capable devices and

new distributed control algorithms tailored towards sensor networks. Reference [Sinopoli et al.

2003] presents an overview of the research activities dealing with distributed control within

sensor networks.

He et al. [2004] network 70 magnetometers (MICA2 motes) to construct an energy-aware

surveillance system capable of detecting and tracking targets. Their fully automatic sensor

network configures itself in multiple phases. The first phase, initialization, requires system-

wide message broadcasts for time synchronization, network backbone creation, and system-

wide reconfiguration. The nodes discover their immediate network structure during the second

phase. A subset of the nodes is selected as sentry (leader) nodes in the third phase. Each

sensing region requires at least one sentry. It is important to note here that sentry selection is

not task dependent, rather its selection reflects local topological/geographical conditions. Next,

in Phase 4, each node reports its status to the base station. Non-sentry nodes alternate between

sleep and wake states for power conservation. Each mote that is awake sends its location to the

base station upon detecting an event for tracking purposes.

3.4 Smart Camera Networks
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Smart cameras are an essential component of the next generation camera networks. These are

self-contained vision systems, complete with image sensors, power circuitry, communication

interface, and on-board processing capabilities. Smart cameras promise to reduce the com-

munication overhead by distributing the processing across across multiple nodes, effectively

turning the network itself into one giant computer. We refer the reader to Section 2.2 of [Mal-

lett 2006], which discusses currently available smart cameras.

The centralized processing paradigm is clearly infeasible for large networks. Distributed

processing strategies that restrict communication to the relevant nodes provide a possible solu-

tion. Task dependent node aggregation, argues Mallett [2006], is an essential capability to keep

the communication overhead within acceptable limits in large networks. She proposes a node

aggregation protocol to create a bottom-up organization among nodes based on their locality.

She demonstrates her approach by partitioning a camera network into the groups of cameras

with overlapping fields of view.

IrisNet is a sensor network architecture tailored towards high-capability multi-media sen-

sors connected via high-capacity communication channels [Gibbons et al. 2003; Campbell

et al. 2005]. IrisNet takes a centralized view of the network and models it as a distributed

database. The distributed database infrastructure provided by IrisNet supports load balancing

and data replication. The data is organized into geographical hierarchies using application-

specific XML schemas. Data organization allows efficient access to sensor readings. Campbell

et al. [2005] develop a parking space finder application within IrisNet, which is intended to

direct a driver to the nearest available parking spot. Calibrated passive video cameras identify

vacant parking spots via image analysis (background analysis). A coastal imaging application

has also been developed using IrisNet. Cameras deployed along the Oregon coastline monitor

near-shore phenomena, such as riptides and sandbar formations. Data collected by multiple

cameras is combined to provide a composite overhead view of the coastline. To support these

applications Campbell et al. have developed low-level image analysis routines for passive cam-

era calibration and image stitching.
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A recent sensor-network-inspired multi-camera system is SensEye [Kulkarni et al. 2005b;

Kulkarni et al. 2005a]. It is an energy-aware camera network comprising three classes of

smart camera nodes: 1) Mote nodes equipped with low-fidelity Cyclops or CMUcam camera

sensors3, 2) Stargate nodes equipped with web-cams4, and 3) high-resolution PTZ cameras

connected to PCs. SensEye demonstrates the benefits of a multi-tiered network—each tier

defines a set of sensing capabilities and corresponds to a single class of sensors—over single-

tiered networks in terms of low-latencies and energy efficiency. Energy efficiency is achieved

by adhering to the following three principles: waking up nodes on demand, favouring the

least powerful tier with sufficient resources, and exploiting camera redundancy to localize the

events of interest. SensEye assumes calibrated sensor nodes and a known network topology,

which limits its capabilities, yet perhaps the biggest weakness of the proposed architecture

is that inter-tier and intra-tier interactions results in a much more complex distributed control

problem. The authors have demonstrated SensEye on four tasks, object detection (background

subtraction), localisation (triangulation), recognition (face recognition plus color signatures),

and tracking (a combination of detection, localisation, and recognition). The main operation is

as follows: Tier 2 and 3 cameras are kept deactivated to conserve energy and Tier 1 cameras

are cycled between the on and off state. When a Tier 1 camera detects an object, Tier 2 and 3

cameras are activated for further processing.

3.5 Self-Organization and Distributed Problem Solving

Grouping computer processes to design fault-tolerant, real-time applications, such as air traffic

controllers and stock market visualization tools, is well-established in computer science [Bir-

man et al. 2000]. Process grouping protocols operate under the assumption that processes can

reliably communicate with each other. It is unclear how process grouping strategies developed

3Crossbow wireless sensor platform: http://www.xbow.com/Products/Wireless Sensor
Networks.htm (Last accessed on 25 January 2007)

4Stargate Platform: http://www.xbow.com/Products/xscale.htm (Last accessed on 25 January
2007)
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for real-time control can be adapted for sensor networks where lost messages are the norm, not

the exception. Moreover, without significant communication overhead, it is difficult to ensure

that messages arrive at the destination in order. These issues assume even greater importance

for sensor networks that are spread over a large geographical area.

Self-organizing protocols are also found in peer-to-peer file sharing applications, such as

Napster and Gnutella. In early instances of peer-to-peer applications, a node would send re-

quests to every other node within a specified radius (number of links), which can potentially

lead to a large communication overhead. Napster resolved this issue by requiring nodes to

register to a central server to find other relevant nodes in the vicinity. Here, the central server

acts as a bottleneck [Biddle et al. 2003]. In some purely peer-to-peer applications, each node

randomly establishes connections with other nodes [Markatos 2002]. Another solution is to

organize nodes hierarchically. A few nodes, called super peers, act as aggregation points for

less capable nodes and behave as routing intermediaries [Yang and Garcia-Molina 2003].

Distributed problem solving is closely related to the resource allocation problem in multi-

agent systems, which is an active area of research in computer science and economics [Cheva-

leyre et al. 2006]. Distributed vehicle monitoring as an example application of distributed

situation assessment and more generally distributed resource allocation has been studied in

the multi-agent systems community since its infancy [Smith 1980; Lesser and Erman 1980;

Conway et al. 1983]. Multi-agent resource allocation problems can be studied along vari-

ous dimensions, namely agent preferences and externalities, allocation strategies (centralized

vs. distributed), and objectives (feasible, optimal, or social welfare). For the moment, we

ignore agent preferences and objectives, which are typically implicitly defined within sensor

networks. Resource allocation strategies studied in multi-agent systems, however, are relevant

to sensor networks. Generally speaking, resource allocation strategies for multi-agent systems

could be either centralized [Cramton et al. 2006] or distributed [Smith 1980]. We are interested

in distributed resource allocation schemes.



CHAPTER 3. RELATED WORK 32

3.5.1 Negotiation as a Means to Distributed Problem Solving

The Contract-Net scheme, proposed by Smith [1980], is perhaps the most widely used ap-

proach for distributed resource allocation in multi-agent systems. Initially proposed as a gen-

eral distributed problem solving paradigm, it was quickly adapted by the multi-agent systems

and sensor networks community. Interestingly, in their 1983 article, Davis and Smith [1983]

explained the Contract-Net protocol using a distributed sensing scenario. Contract-Net is a

bilateral trading model consisting of four interactions:

Announcement: An agent (node), referred to as the manager, advertises the resource/task to

a number of other nodes.

Bidding: The interested nodes, referred to as the contractors/bidders, send their bids to the

manager node.

Assignment: The manager elects the best bid and assigns the resource accordingly.

Confirmation: The selected bidders confirm their intention to take the resource/perform the

task.

Any node can assume the role of a manager and commence the resource allocation/problem

solving phase by following the Contract-Net protocol.

Many extensions to the Contract-Net protocol have been proposed; reference [Chevaleyre

et al. 2006] presents a brief overview of some of the more notable extensions. It is known

that when multiple managers negotiate simultaneously with many contractors, the Contract-

Net protocol leads to unsatisfactory results [Aknine et al. 2004]. The Concurrent Contract-Net

protocol attempts to resolve this issue by 1) allowing temporary bidding and assignments and

2) allowing a bidder node to go back on its commitment. It is worthwhile to keep in mind that

the Concurrent Contract-Net protocol obviously has higher communication requirements than

that of its classical counterpart.
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In distributed problem solving, argue Davis and Smith [1983], no single agent (node) has

a complete view of all the activities in the system. Consequently, coherent and organized

overall behavior is difficult to guarantee, as an appropriate local organization might not be

globally optimal. Distributive systems that attempt to maintain correctness in all aspects of the

computation require the local knowledge residing at each node to be correct and consistent.

Such distributive systems can be viewed as a centralized system distributed over a network.

Lesser and Corkill [Lesser 1991] call such systems, completely accurate, nearly autonomous

(CA/NA).5 Such systems are not suitable for sensor networks where algorithms and control

structures cannot be replicated and partitioned. Besides, CA/NA approaches come with a sig-

nificant communication overhead to ensure that the local view at each node is consistent.

Lesser and Corkill [1981] propose an alternative to CA/NA, calling it functionally accurate,

cooperative (FA/C) distributed systems. Here, local decisions made at each node may lead to

unnecessary, redundant, or incorrect processing; however, the system still produces acceptable

results. It is expected that the amount of additional communication resulting from incorrect lo-

cal decisions is less than that required to ensure that the nodes are in consistent states across the

network. This notion stems from the idea of satisficing problem solving, which explains how

complex organizations are able to operate under significant uncertainty coupled with bounded

rationality [March and Simon 1958].

Resolving group-group interactions requires sensor assignment to various tasks, which

shares many features with Multi-Robot Task Allocation (MRTA) problems studied in multi-

agent systems community [Gerkey and Matari 2004]. Specifically, according to the taxon-

omy provided in [Gerkey and Matari 2004], our sensor assignment formulation belongs to the

single-task robots (ST), multi-robot tasks (MR), instantaneous assignment (IA) category. ST-

MR-IA are significantly more difficult than single robot task MTRA problems. Task-based

robot grouping arises naturally in ST-MR-IA problems, which are sometimes referred to as

coalition formation. ST-MR-IA is extensively studied and can be reduced to a Set Partition-

5IrisNet is an example of CA/NA distributed system.
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ing Problem (SPP), which is strongly NP-hard [Garey and Johnson 1978]. However, many

heuristics-based set partitioning algorithms exist that have shown to produce good results on

large SPPs [Atamturk et al. 1995]. Fortunately, the sizes of MRTA problems, and by extension

SPPs, encountered in our camera sensor network setting are small due to the spatial/locality

constraints inherent to camera sensors.

We model sensor assignments as a CSP, which we solve using “centralized” backtracking.

We have intentionally avoided distributed constraint optimization techniques, such as [Modi

et al. 2006] and [Yokoo 2001], due to their explosive communication requirements even for

small CSPs. Additionally, it is not obvious how these handle node and communication failures.

We consider our strategy to lie somewhere between purely distributed and fully centralized

schemes for sensor assignments: Sensor assignment is distributed at the level of the network;

whereas, it is centralized at the level of a group.

3.5.2 Active Camera Scheduling

The work presented here differs from existing camera scheduling systems in several important

ways: First, it can handle multiple PTZ cameras. Second, the proposed scheduling strategy

supports preemption and a multi-class pedestrian model. Third, the PTZ cameras are modeled

as autonomous agents that are not driven by the passive cameras. Master-slave configurations,

ubiquitous in surveillance systems comprising passive and active PTZ cameras, are inherently

limited, not to mention fragile. They do not exploit the full potential of such camera systems.

Fourth, the PTZ cameras can automatically learn the mapping between the 3D locations in the

world and their internal pan/tilt settings by fixating on a pedestrian during an initial learning

phase (Section 4.5). When available, the mapping is used to suggest an initial “look” direction

to a PTZ camera; otherwise, the PTZ camera performs an exploratory sweep to find the desired

pedestrian.
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3.5.3 Smart Camera Network

Our camera network model presented in Chapter 6 has many novel aspects. It does not re-

quire camera calibration, a detailed world model, or a central controller. The overall behav-

ior of the network is the result of local computation at each node and bi-lateral interactions

between neighboring nodes. Inter-node communications is patterned after the Contract-Net

model; however, we augment the communication protocol to address the unique challenges

posed by sensor networks, namely unreliable communication and node failures. The network

is robust to node and communication link failures; moreover, it is scalable due to the lack of

a central controller. Visual surveillance tasks are performed by groups of one or more camera

nodes. These groups, which are created on the fly, define the information sharing parameters

and the extent of collaboration between nodes. A group keeps evolving—i.e., old nodes leave

the group and new nodes join it—during the lifetime of the surveillance task. One node in

each group acts as the group supervisor and it is responsible for group level decision making.

We also present a novel constraint satisfaction problem formulation for resolving group-group

interactions.

As mentioned earlier, Zhao et al. [2002] propose an energy-aware approach to collaborative

tracking, where each node selects the next node by utilizing the information gain vs. energy

expenditure tradeoff estimates for its neighbor nodes. Within the context of camera networks,

it is often difficult for a camera node to estimate the expected information gain by assigning

another camera to the task without explicit geometric and camera-calibration knowledge—such

knowledge is tedious to obtain and maintain during the lifetime of the camera network. The

camera networks presented here, therefore, do without such knowledge, and a node needs to

communicate with the nearby nodes before selecting new nodes.

Mallett [2006] also proposes task-specific camera grouping to aid distributed problem solv-

ing. However, our work differs from theirs in the following ways: 1) group formation is through

mutual selection, 2) leader nodes, one for each group, manage group memberships and group-

group interactions, 3) each node can only belong to a single group at any given time, and 4)
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group destruction does not require dedicated group destruction nodes.

Our work is in some sense orthogonal to the SensEye camera sensor network [Kulkarni

et al. 2005b]. SensEye demonstrates that a multi-tier camera network can result in reduced

energy consumption while providing surveillance capability comparable to that of a single-tier

network. SensEye, however, does not address the camera grouping and calibration-less active

camera control issues.



Chapter 4

The Virtual Vision System

The performance of the camera network is ultimately tied to the capabilities of the low-level

machine vision routines responsible for gathering the sensory data. Consequently, when work-

ing with camera networks, it is important to make accurate assumptions about the capabilities

and performance of the low-level visual sensing processes. We ensure that our assumptions

about the low-level visual sensing are correct by implementing a pedestrian tracking system

that operates solely upon the synthetic video captured through the virtual cameras. In this

chapter, we describe the visual processing routines that support the low-level sensing require-

ments of the camera networks presented in the next two chapters.

Each camera has a suite of visual analysis routines for pedestrian recognition and tracking,

which we dub “Local Vision Routines” (LVRs). LVRs are computer vision algorithms that op-

erate upon the video generated by virtual cameras to identify, locate, and track the pedestrians

present in the scene. LVRs faithfully mimic the performance of a state-of-the-art pedestrian

recognition and tracking system and exhibit errors usually associated with a pedestrian track-

ing system operating upon real footage, including the loss of track due to occlusions, sudden

change in lighting, and bad segmentation (Figure 4.1). Tracking sometimes locks onto the

wrong pedestrian, especially if the scene contains multiple pedestrians with similar visual ap-

pearance, i.e., wearing similar clothes. Additionally, the virtual world affords us the benefit of

37
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Figure 4.1: Tracking Pedestrians 1 and 3. Pedestrian 3 is tracked successfully; however, (a)
track is lost of Pedestrian 1 who blends in with the background. (b) The tracking routine loses
Pedestrian 3 when she is occluded by Pedestrian 2, but it regains track of Pedestrian 3 when
Pedestrian 2 moves out of the way (c).

fine tuning the performance of the recognition and tracking module by taking into considera-

tion the ground truth data readily available from the virtual world. Our prototype surveillance

systems, which we describe in Chapters 5 and 6, is designed to operate robustly in the presence

of occasional low-level failures.

The remainder of the chapter is organized as follows: We begin by describing synthetic

video capture in the next section. Section 4.2 describes pedestrian segmentation and tracking.

We present a strategy for estimating the 3D location of the pedestrians using calibrated, static

cameras in Section 4.3. We describe the active PTZ camera controller in the following section.

Section 4.5 introduces a novel strategy for learning the mapping between the 3D locations and

the internal pan-tilt settings of an active PTZ camera. We summarize the chapter in Section 4.6.

4.1 Synthetic Video Feed

Virtual cameras use the OpenGL library and the standard graphics pipeline [Foley et al. 1990]

to render the synthetic video feed. Our imaging model emulates imperfect camera color re-

sponse, compression artifacts, detector and data drop-out noise, and interlaced scanning ef-
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fects; however, it does not yet account for such imaging artifacts as depth-of-field, imaging

vignetting, and chromatic aberration. Likewise, the rendering engine does not support pedes-

trian shadows and specular highlights. More sophisticated rendering schemes would address

these limitations. Noise is introduced during a post-rendering phase. The amount of noise

introduced into the process determines the quality of the input to the visual analysis routines

and affects the performance of the pedestrian segmentation and tracking module.

4.1.1 Camera Color Response

We model the variation in color response across cameras by manipulating the Hue, Saturation,

and Value channels of the rendered image. Here, Hue refers to the color (e.g., red, blue, or

yellow), Saturation refers to the vibrancy of that color (the amount of grayness present in the

color), and Value refers to the color brightness. Similarly, we can adjust the tints, tones, and

shades of an image by adding the desired amounts of blacks, whites, and grays, respectively

[Birren 1976]. Our visual analysis routines rely on color-based appearance models to track

pedestrians, ergo camera handovers are sensitive to the variations in the color response of

different cameras.1

4.1.2 Compression Artifacts

Bandwidth is at a premium in sensor networks, in general, and in camera networks, in particu-

lar. In many instances, images captured by camera nodes are transmitted to a central location

for analysis, storage, and monitoring purposes. Routinely camera nodes exchange information

among themselves during camera handover, camera coordination, and multi-camera sensing

operations. The typical data flowing in a camera network is the image/video data, which places

much higher demands on a network infrastructure than, say, alpha-numeric or voice data. Con-

sequently, in order to keep the bandwidth requirements within acceptable limits, camera nodes

1One solution might be to color-calibrate the camera network during an initial learning phase [Porikli 2003].
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(a) (b) (c) (d)

Figure 4.2: Image compression artifacts. (a) Uncompressed image. The box marks the region
enlarged in (b). (c) Compressed image (JPEG). The box marks the region enlarged in (d).
The 1000 × 1000 image shown in (a) is roughly 240Kb; after compression it is reduced to
approximately 24Kb (c).

(a) (b)

Figure 4.3: Simulating noise in synthetic video: (a) detector noise and (b) data drop-out noise.



CHAPTER 4. THE VIRTUAL VISION SYSTEM 41

compress the captured images and video before sending them off to other camera nodes or to

the monitoring station. JPEG2 [Wallace 1991] is a commonly used standard for image com-

pression and many hardware network cameras available in the market today employ JPEG com-

pression to optimize bandwidth resources. JPEG is a lossy compression standard that achieves

compression by discarding perceptually insignificant information, but introduces undesirable

artifacts—blockiness, color distortion, Gibbs effects, and blurring—during the process. These

artifacts are more noticeable at higher compression levels.

Compression artifacts together with the low-resolution of the captured images/video pose

a challenge for visual analysis routines. Compression artifacts, therefore, are relevant to cam-

era network research. We introduce compression effects into the synthetic video by passing it

through a JPEG compressor/decompressor stage before passing it onto the pedestrian recog-

nition and tracking module. Figure 4.2 shows compressed and uncompressed versions of a

1000 × 1000 image. Notice the compression artifacts around the region boundaries in Fig-

ure 4.2(d). The compressed version is roughly 10 times smaller than the uncompressed version.

4.1.3 Detector Noise

We model the ubiquitous detector noise as a data-independent, additive process where the noise

has a zero-mean Gaussian distribution. Each pixel in the noisy image (Figure 4.3(a)) is the sum

of the true pixel value and a random value drawn from a zero-mean Gaussian distribution. The

standard deviation of the Gaussian distribution controls the amount of noise introduced into

the image.

4.1.4 Data Drop-Out Noise

Data drop-out noise is caused by errors during the data transmission within the imaging device.

The corrupted pixels are either set to the maximum value (snow) or have their bits flipped.

2JPEG stands for Joint Photographic Experts Group (http://www.jpeg.org—Last accessed on 25 Jan-
uary 2007).
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(a) (b)

Figure 4.4: Video interlacing effects: (a) shows a deinterlaced video frame computed by weav-
ing two fields and (b) shows a close-up view of a pedestrian in (a).

Sometimes pixels are alternatively set to the maximum value or zero (salt and pepper noise).

The amount of noise determines the percentage of the corrupted pixels and the unaffected

pixels remain unchanged (Figure 4.3b).

4.1.5 Interlaced Video

Interlaced scanning was the de facto standard for video display until the 1970s and it is still

used by all analogue TV broadcast systems, namely PAL, SECAM, and NTSC.3 It was de-

veloped to reduce video flicker in Cathode Ray Tube (CRT) video terminals by improving

temporal resolution at the expense of spatial resolution. Interlaced scanning records a frame in

two phases: every odd row is scanned during the first phase and the remaining, even rows are

scanned during the next phase. The final image consists of both, odd (Field 1) and even (Field

2) rows. Interlaced scanning consumes less bandwidth than the alternative—progressive scan-

3NTSC stands for National Television Standards Committee, PAL stands for Phase Alternating Line, and
SECAM stands for Sequential Color Memory.



CHAPTER 4. THE VIRTUAL VISION SYSTEM 43

ning, which records the entire image in one step; therefore, a large number of CCTV cameras

available today use interlacing to minimize bandwidth requirements.

Interlaced video (a sequence of fields) is converted into non-interlaced video (a sequence

of frames) through a process called deinterlacing. Moving objects might appear at different

locations in even and odd fields due to the time elapsed between their respective captures, ergo

the corresponding pixels in the two fields do not always line up leading to jagged edges or a

saw-tooth appearance in the deinterlaced frame.

We model interlaced video by rendering twice as many frames as desired and keeping only

even and odd rows of alternating frames. Figure 4.4 shows a 640×480 deinterlaced frame. The

frame was generated by weaving two fields that were rendered 1/60 seconds apart. Pedestrians

that are moving across the image plane appear blurred around the edges. The amount of blur

is proportional to the speed of the pedestrian. Interlacing affects also appear during panning

and zooming operations in active PTZ cameras. Deinterlacing artifacts can be lessened by

employing more sophisticated algorithms [De Haan and Bellers 1998], yet they cannot be

entirely removed.

4.2 Visual Analysis for Pedestrian Tracking

We employ appearance-based models to track pedestrians. Pedestrians are segmented to con-

struct unique and robust color-based signatures, which are then matched across the subsequent

frames. In the case of passive cameras, pedestrian segmentation is carried out automatically

through background subtraction, whereas for active cameras, where a background model is

unavailable, the user provides the initial segmentation, say by initializing a bounding rectangle

around the pedestrian of interest. Our background model represents each pixel by its color

distribution in HSV space. We store color distributions as histograms.4 Passive cameras learn

their background models by observing the scene without any assistance from the operator and

4The histogram is not the best non-parametric density estimate [Scott 1992]. However, it suffices for our
purpose.
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without using any 3D information.

Segmenting and tracking multiple humans is a challenging problem, one that has drawn

considerable attention from the research community over the last two decades. Object tracking

and segmentation strategies developed so far rely on one or more of the following visual cues,

motion, shape, and appearance (texture/color).5 Color-based appearance signatures, in particu-

lar, have found widespread use in object tracking and segmentation applications [Terzopoulos

and Rabie 1997; Fieguth and Terzopoulos 1997; Wren et al. 1997; Comaniciu et al. 2000; Sigal

et al. 2004]. More recently, many pedestrian surveillance systems have employed color-based

signatures for tracking purposes [Javed et al. 2003; Siebel 2003; Seitner and Hanbury 2006].

Swain and Ballard [1991] showed that object color distribution is a powerful cue for object

recognition even in the absence of geometric information. Color-based signatures are efficient,

robust to partial occlusions, and invariant to in-image rotations and scale variations. Unfortu-

nately, color-based signatures are sensitive to illumination changes; however, this shortcoming

can be mitigated by operating in HSV space instead of RGB space.6

4.2.1 Pedestrian Segmentation

Many pedestrian tracking applications exploit the fact that pedestrian segmentation can enor-

mously simplify the subsequent recognition and tracking tasks [Haritaoglu et al. 1998; Oliver

et al. 2000; Orwell et al. 2000; Seitner and Hanbury 2006]. Furthermore, pedestrian segmen-

tation can aid in constructing signatures, which can later be used for pedestrian recognition

and tracking. Background subtraction is a widely used approach for detecting moving objects

against mostly static backgrounds, as is the case for our passive cameras. The intuition is that

moving objects can be detected by comparing the current frame to a reference frame, which is

often called the “background model” [Piccardi 2004].

5[Gavrila 1999] provides a slightly outdated, though still relevant, survey of pedestrian tracking algorithms
and applications.

6We point the reader to [Lee et al. 2001], which constructs color-based object signatures that are robust to
irregular illumination changes.
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Many techniques for background subtraction have been explored, all of which estimate the

background model from a sequence of frames. These can be broadly divided into two classes:

1) those that assume that the color probability density function (PDF) for a pixel is unimodal

and 2) those that allow the pixel color PDF to be multi-modal. Frame differencing, running

averages [Toyoma et al. 1999], temporal median filtering [Lo and Velastin 2001; Cucchiara

et al. 2003], and running Gaussian averaging [Koller et al. 1994; Wren et al. 1997] schemes

belong to the first class. These perform well in situations where background objects are either

static or change relatively slowly, so as to allow the background model to adapt to the current

value of the background object. A typical scene where the unimodal assumption fails, for

example, would be an indoor scene illuminated by a flickering bulb. Methods that allow multi-

modal PDFs for each pixel—such as mixture of Gaussians [Stauffer and Grimson 1999], kernel

density estimation [Elgammal et al. 2000], and Eigenbackgrounds [Comaniciu 2003]—can

handle a wider variety of scenes and, in general, outperform methods belonging to the first

class.

Background Modeling for Pedestrian Segmentation

We approximate the PDF of each pixel as a color histogram in HSV color space. HSV space

separates the chromaticity (H and S) from the effects of intensity (V); therefore, by sampling

the intensity axis V more coarsely than the H and S axes, we can improve the robustness of

the background model to lighting changes in the acquired scene. The main advantages of our

approach are its simplicity and ease of implementation. Moreover, its performance is adequate

for our purposes.

The color histogram (i.e., the PDF) for each pixel is estimated by sampling the pixel val-

ues over a sequence of frames. The intuition is that the stationary (background) objects are

responsible for the dominant color(s) of the pixel; whereas, moving (foreground) objects are

transitory and make smaller contributions to the histogram associated with the pixel. Conse-

quently, the dominant color(s) of the pixel gain more strength in the associated color histogram
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Without compression With compression

Figure 4.5: Background modeling. The entropy of each pixel after observing 15 (Row 1),
50 (Row 2), and 150 (Row 3) frames (the scene is similar to that shown in Fig. 4.6). The
left column corresponds to the background model that is learned by observing uncompressed
frames. In the right column, note the blocking artifacts when the background model is learned
by observing compressed frames. Regions of high entropy (Red) indicate higher statistical
randomness for the corresponding pixels, which in turn leads to poor foreground detection
performance.
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Source frames Without compression With compression

Figure 4.6: Pedestrian detection through background subtraction. Rows 1, 2, and 3 represent
frame # 10, 20, and 40, respectively. Uncompressed source frames are shown in the first
column. Column 2 shows segmented foreground objects for uncompressed frames using a
background model that is learned by observing roughly 200 uncompressed frames. Column 3
shows the segmented foreground objects (after convolution with a Gaussian kernel to suppress
noise) for compressed source frames. The background model used in the last column is learned
by observing approximately 200 compressed frames. In almost all cases, the water spray is
incorrectly labeled as a foreground object (false positive).
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as more frames become available. Our observations confirm this intuition.

The entropy value of a pixel is a good indicator of the discriminative power of the learned

model (Figure 4.5). A high entropy value for a pixel suggests that the associated PDF is “spread

out”; i.e., according to the learned model, the pixel in question takes on many values with,

say, almost equal probability. Such a model does a poor job of classifying a pixel as either a

foreground or background pixel.7

Background subtraction is carried out by comparing the current value of a pixel against the

color histogram associated with that pixel (Figure 4.6). The probability that a pixel belongs to

the background is computed by backprojecting the associated normalized color histogram. If

the result of the histogram backprojection is above a certain threshold, the pixel belongs to the

background; otherwise, the pixel is labeled as a foreground pixel.

Background Model Maintenance

The background model must be able to adapt to a changing background. Given a new sample,

there are three mechanisms to update the background model: 1) blind update, 2) selective up-

date, and 3) blind+selective update. In the first case, each new pixel is added to the background

model. Each target becomes part of the background, inevitably leading to false negatives. We

can counter this effect by increasing the time window over which the samples are taken. In-

creasing the time window leads to more false positives as the adaptation rate of the model

is slow and rare events are not well modeled. In the second case, only those new samples

are added to the current background model that are classified as background pixels (through

the current background model). Consequently, incorrect detection decisions will result in in-

correct detection later, leading to a deadlock situation [Karmann and von Brandt 1990]. The

third scheme for updating the background model maintains two models: the short-term model

generally uses selective update and only consists of the N most recent samples taken over a

7Entropy values associated with a pixel can be used to select an appropriate threshold value for deciding
whether or not the pixel belongs to the background [Otsu 1979; Pun 1980].
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(a) (b) (c) (d)

Figure 4.7: Color (Hue) image pixel histograms of a tracked object change drastically with
zooming operations. To address this issue, a list of histograms is maintained for different zoom
settings. (c) The histogram of the (boxed) subject (a) when the FOV of the camera is set to 45
degrees. (d) The histogram of the same subject when the camera has zoomed in on the subject.

small time window, and the long-term model is updated via blind update and consists of N

samples taken over a much longer duration. The intersection of the two detection results will

eliminate the false positives from both short-term and long-term models. Unfortunately, it also

suppresses those true positives in the first model result that are false negatives in the second

model.

Visual surveillance applications are much more sensitive to false negatives than to false

positives. For this reason, and for the sake of simplicity, we have selected the blind update rule

for background model maintenance.

4.2.2 Pedestrian Tracking

We use appearance-based pedestrian signatures that encode pedestrian color distributions as

3D histograms in HSV colorspace (Figure 4.8). We have empirically selected 32 bins along

the first two (Hue-Saturation) dimensions and 16 bins along the last (Value) dimension. These

pedestrian signatures are matched across successive frames to track pedestrians.

For PTZ cameras, zooming can drastically change the appearance of a pedestrian (Fig-

ure 4.7), thereby confounding conventional appearance-based schemes, such as color his-
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(a) Cam. 2, Frame 1 (b)

Figure 4.8: The user selects the pedestrian indicated by label 1 in image (a) to construct the
pedestrian signature. (b) The user selection. Notice that the scene also contains another pedes-
trian (indicated by the label 2) that has a similar color distribution as the selected pedestrian.
Pedestrian 1’s signature is constructed without first segmenting out the pedestrian through
background segmentation, so the constructed signature contains contributions from the back-
ground.

togram signatures. We tackle this problem by maintaining HSV color histograms for several

camera zoom settings for each pedestrian. Thus, a distinctive characteristic of our pedestrian

tracking routine is its ability to operate over a range of camera zoom settings.

Pedestrian Tracking without Segmentation

Pedestrian segmentation is difficult for active PTZ cameras due to the lack of a background

model. In the absence of pedestrian segmentation, we match pedestrian signatures across

frames through color indexing. Color indexing, proposed by Swain and Ballard [1991], ef-

ficiently identifies objects present in an image using object color distributions in the presence

of occlusions and scale and viewpoint changes. It was later adapted by Terzopoulos and Rabie
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(a) Cam. 2, Frame 2 (b) Correct pedestrian identification

(c) Cam. 4, Frame 2 (d) Incorrect pedestrian identification

Figure 4.9: Pedestrian signature in Figure 4.8 is matched in two different snapshots of the
scene captured synchronously for pedestrian tracking purpose. The image (a) is captured by
the same camera used to construct the pedestrian signature in Figure 4.8; where as, the image
in (c) is captured by a camera located on the opposite side of the Waiting Room. Histogram
intersection/backprojection based pedestrian tracking successfuly finds Pedestrian 1 in image
(a) inspite of the presence of Pedestrian 2 with similar appearance (b). Pedestrian tracking,
however, fails to identify the “correct” pedestrian (i.e., Pedestrian 1) in image (c) and instead
locks on Pedestrian 2 (d). Pedestrian tracking does not require the pedestrians segmentation.
In (b) and (d) Red indicates a higher match value.
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I = 0 0 1 1 1 0 0

I ∗ 1 = 0 0 1 1 1 0 0

I ∗ 1 1 1 = 0 1 2 3 2 1 0

I ∗ 1 1 1 1 1 = 1 2 3 3 3 2 1

Figure 4.10: Multi-scale target localization in histogram backprojected images: Convolving
an idealized 7-pixel 1D backprojected image I with 1-tap, 3-tap, and 5-tap summing kernels.
Image I is extended with 0 borders for convolution purposes.

[1997] for active vision in artificial animals. In color indexing, targets with similar color dis-

tributions are detected and localized through histogram backprojection, which finds the target

in an image by emphasizing colors in the image that belong to the target being observed.

For target histogram T (n) and image histogram I(n), where n is the number of bins, define

the ratio histogram R(n) as

Ri =
T i

I i
, (4.1)

i = 1, · · · , n and T i, I i, and Ri are the number of samples in the ith bin of histograms T (n),

I(n), and R(n), respectively. R(n) is backprojected into the image, which involves replacing

the image pixel values by the values of R(n) that they index. Mathematically,

Bxy = Rmap(cxy), (4.2)

where cxy is the value of the pixel at location (x, y), the function map(c) maps a 3 dimensional

color value (HSV) to the appropriate histogram bin, and Bxy is the value of the backprojected

image at location (x, y). The backprojected image is then convolved with the a circular disk of

area equal to the expected area of the target in the image,

Br = Dr ∗B, (4.3)

where Dr is the disk of radius r. The peak in the convolved image gives the expected (x, y)

location of the target in the image. We point the reader to [Swain and Ballard 1991] for a

thorough description of this process.
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The last step of the color indexing procedure assumes that the area of the target in the image

is known a priori. Active PTZ cameras violate the above assumption, as the area covered by

the target in the image can vary drastically depending upon the current zoom settings of the

camera. We propose a novel scheme to localize targets in a histogram backprojected image

when the size of the targets in the image is not known beforehand. Our scheme is based on

the observation that when the size of the target is equal to the size of the localization kernel

(i.e., the disk Dr), the filter response forms a peak at the “true” location of the target. On the

other hand, the filter response forms a plateau centered at the “true” location of the target in

the image for kernel sizes that are either too large or too small when compared to the size of

the target in the image. Figure 4.10 illustrates this phenomenon.

Target Localization in Backprojected Images:

(Step 1) Compute Bl = B ∗K l, where B is the backprojected image, K l is the kernel

of size l, and l = 1, · · · , n.

(Step 2) Find (x∗, y∗) = arg max
(x,y)

n∑

l=1

Bl

(Step 3) Find (xl
∗, y

l
∗) = arg max

(x,y)∈K
Bl. K is the domain of K l centered at (x∗, y∗).

(Step 4) Find l∗ = arg max
l

∑
(x,y)∈K((Bl

xl
∗yl

∗
)2 − (Bl

xy)
2)

|K|

(Step 5) Construct color histogram H(n) of the region of size l centered at (x∗, y∗) using

the original image. If
P

i min(T i,Hi)P
i T i > ρ, output region of size l at location (x∗, y∗);

otherwise quit. ρ is a user-specified threshold.

(Step 6) Remove the region of size l centered at (x∗, y∗) from Bl and repeat steps 1, · · · , 5.

Multi-zoom Color Signatures: For multi-zoom color signatures T = {Tθ|θ = 1, · · · , Nθ},

where θ represents the field-of-view setting corresponding to the stored histogram Tθ and Nθ
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(a) (b) (c) l = 2 · · · 11

(d) l = 3 (e) l = 5 (f) l = 7

Figure 4.11: Target localization in backprojected images. We demonstrate our multi-scale
localization procedure on synthetic data. We employ rectangular summing kernels (6l + 1 ×
2l+1). (a) An idealized 2D backprojected image that contains four targets with different sizes.
(b) Salt and Pepper noise is added to the image to make the problem more challenging. (c)
The proposed multi-scale localization procedure successfully identified all four regions. (d)-(f)
show localization results using the default procedure for kernel sizes 3, 5, and 7, respectively.

is the total number of histograms stored across multiple zoom settings, we take a union of

backprojection results for every stored histogram Tθ.

Pedestrian Tracking with Segmentation

When pedestrian segmentation is available, we can perform signature matching by means of

histogram intersection. Unlike the color indexing scheme that operates upon the entire im-

age, this scheme focuses on foreground regions as determined through background subtrac-

tion, which results in computational savings when the number of detected foreground objects

(pedestrians) is low. We begin by constructing color histograms Pr(n) for each foreground
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region r. Next, we compute match score for each region r with respect to the target using the

target histogram T (n) through histogram intersection,

T ∩ Pr =

∑
i min (T i, P i

r)∑
i T

i
. (4.4)

T∩Pr takes on values between 0 and 1, where the larger the value of the histogram intersection,

the more similar the histograms are deemed to be, The region r∗ with the highest match score

is selected as the location of the target in the current frame:

r∗ = arg max
r

T ∩ Pr, (4.5)

r indices over the number of foreground regions detected in the frame.

Multi-zoom Color Signatures: The match score of a histogram Pr against a stored multi-

zoom color signature T is then

d(T, Pr) =
1

nθ

∑

θ

(Tθ ∩ Pr) , (4.6)

where θ represents the field-of-view setting corresponding to the stored histogram Tθ, and nθ

is the total number of histograms stored across multiple zoom settings.

4.3 Pedestrian Localization in 3D

When a pedestrian is visible in two or more passive calibrated cameras, the 3D position of the

pedestrian can be computed through triangulation. To estimate the 3D location of a pedestrian,

we begin by identifying the set of cameras that are successfully tracking the pedestrian. The

3D positions of pedestrians that are tracked in only one camera cannot be estimated. For every

camera correctly tracking the pedestrian, we construct a line passing through the center of pro-

jection of the camera and the top extremal point of the regions (black crosses in Figure 4.12(a))

occupied by the pedestrian. Under the assumption that the cameras are synchronized, the in-

tersection of these lines yields an estimate of the 3D position of the pedestrian.8

8Camera synchronization is a challenging problem for real cameras, especially when the cameras are dis-
tributed over a large region. However, synchronizing the virtual cameras is straightforward: We pause the simula-
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(a)

o1 o2
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c1 c2
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p( 1 p( 2

ci oi

(b)

Figure 4.12: (a) Pedestrian segmentation identifies regions occupied by one or more pedestri-
ans. Black crosses indicate the top extremal point of the regions occupied by single pedestrians.
Yellow crosses indicate the top extremal points for regions where the pedestrian segmentation
failed to separate multiple pedestrians. (b) Lines passing through the center of projection and
the top extremal points of the pedestrian regions for the same pedestrian in images captured
by two cameras. Lines in 3D rarely intersect, so we solve the intersection problem within a
minimization framework.

The above computation is carried out at each frame. The 3D trajectory of a pedestrian thus

obtained is usually noisy due to poor segmentation and tracking. The 3D trajectory is smoothed

on the fly using an exponentially weighted moving averages scheme

pf = γpold + (1− γ)pc, (4.7)

where pf, po, and pc is the final, old, and current estimates of the 3D position of the pedestrian,

respectively, and 0 ≤ γ ≤ 1. The parameter γ is set to 1 when pc − po > η and the time

difference tc − to < tη, capturing the intuition that the pedestrian cannot cover more than η

units of distance in less than tη units of time. Here, tc is the current time and to is the timestamp

of the last estimated position. The parameter γ is set to 0 when tc−to > tg, a time threshold for

which the last estimate is considered no longer relevant. Old values are updated when γ '= 0

for subsequent computations: po = pf and tc = to. Values for parameters, γ, η, tη, and tg are

tion clock and render the scene using every virtual camera. It is also straightforward, however, to make the virtual
cameras drift out of sync.
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Figure 4.13: Anatomy of a virtual camera: l, r, t, and b are left, right, top, and bottom extents
of the image plane, respectively, f is the distance between the center of projection and the
image plane, also called the focal length, and c is the far plane bounding the view frustum.
Any point behind the image plane or outside the view frustum is not rendered in the image.

selected empirically to be 0.6, 10, 330 ms, and 3000 ms, respectively. Next, we describe the

triangulation procedure.

4.3.1 The Triangulation Procedure

Our current virtual cameras are ideal pinhole cameras with no radial/lens distortion, so the

relationship between a 3D point m = (x, y, z)T and its image projection m̃ = (u, v)T is given

by

m̃H =
1

s
AMcmH, (4.8)

where s is an arbitrary scale factor and the subscript H denotes augmented vectors: mH =

(x, y, z, 1)T and m̃H = (u, v, ẑ, w)T, where ẑ, w ∈ ). The 4×4 matrix Mc encodes the extrinsic

parameters of the camera; i.e., the translation and rotation that relates the world coordinate

system the to camera coordinate system, while the 4× 4 matrix A is the perspective projection

matrix that encodes the intrinsic parameters of the camera. For real cameras, A and Mc can be

computed through a camera calibration process [Forsyth and Ponce 2002]. For virtual cameras,
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Figure 4.14: m lies on the line passing through the center of projection and m′. m̃ is the
projection of m on the image plane. m′ is m̂ expressed in the world coordinates.

on the other hand, the A and Mc are readily available through the rendering equation

m̃H =
1

s
MvMoMp︸ ︷︷ ︸

A

McmH, (4.9)

where

Mp =





1 0 0 0

0 1 0 0

0 0 f+c
f −c

0 0 1
f 0





, (4.10)

Mo =





2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 2
f−c −f+c

f−c

0 0 0 1





, (4.11)

Mv =





ux
2 0 0 −ux−1

2

0 uy

2 0 −uy−1
2

0 0 1 0

0 0 0 1





. (4.12)

Parameters n, f , l, r, t, and b are defined in Figure 4.13. The quantities ux and uy represent the

size of the image in pixels.

For a point m in world coordinates and its projection m̃ in the image, we can compute a

point m′ in world coordinates such that m approximately lies on the line passing through the
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center of projection of the camera and m′ (Figure 4.14). m′ can be computed by re-arranging

(4.9) as follows:

m′ = M−1
c M−1

p M−1
o M−1

v [u v − 1 1]T (4.13)

To estimate the 3D location of a pedestrian, we employ the fact that a point m that projects

to m̃i in the ith camera lies at the intersection of lines p(λi) = oi + λidi, where i ∈ [1, n], n

(> 1) is the number of cameras in which the point m is visible, oi is the center of projection

of the ith camera, di =
(
m

′
i − oi

)
/|m′

i − oi|, and 0 ≤ λi ≤ ∞ (see Figure 4.12(b)). Here, m′
i

are computed from m̃i using (4.13).

The intersection of lines cannot be computed in closed-form as the probability of lines

actually intersecting is a probability zero event due to imaging artifacts and numerical impre-

cisions. We instead cast the intersection estimation as an optimization problem. The point of

intersection of n lines is then (1/n)
∑

i p(λ∗i ), where the λ∗i are computed as

arg min
λ

∑

i,j,i<j
i,j∈[1,n]

|p(λi)− p(λj)|2. (4.14)

We noticed that the intersection process was highly sensitive to the errors in pedestrian

segmentation and tracking. Errors during the segmentation and tracking stage get amplified

during the intersection process, and sometimes even a small error in one of the cameras results

in a large deviation from the “true” position of the pedestrian. We propose the following

Random Sample Consensus (RANSAC) [Fischler and Bolles 1981] based strategy to resolve

this issue:

RANSAC-Based Intersection of Lines: Assuming that a pedestrian is visible in n cameras,

the 3D position of the pedestrian lies at the intersection of n lines, p(λi) = oi+λidi, i ∈ [1, n].

(Step 1) Randomly pick m < n lines and estimate their intersection point pk using the

technique described above.
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Idle

Search Track

Wait

Track

Acquired Lost

Acquired
Timeout

Timeout

Done

Figure 4.15: Camera behavioral controller.

(Step 2) Compute the perpendicular distance di of the point pk from the ith line as

di =
|di × (oi + di − pk)|

|di|
(4.15)

(Step 3) Let nc be the number of lines for whom di is below the user-specified threshold.

(Step 4) If nc/n is greater than a user defined threshold, exit with success.

(Step 5) Repeat steps 1, · · · , 4 at most k times.

(Step 6) Exit with failure.

4.4 PTZ Active Camera Controller

We treat every PTZ active camera as a behavior-based autonomous agent. The overall behavior

of the camera is determined by the pedestrian tracking module and the current task. The cam-

era behavioral controller, which we model as an augmented finite state machine (Figure 4.15),

enables an autonomous camera to achieve its high-level sensing goals as determined by the

current task. Typical sensing goals might be, “look at the pedestrian i at location (x, y, z) for t

seconds,” or “track the pedestrian whose appearance signature is h.” Our approach severs the

ubiquitous master-slave relationship between the originator of the sensing goal and the camera
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in the sensor network that will perform the sensing action [Zhou et al. 2003]. Communication

requirements and scalability considerations aside, the master-slave relationship between mul-

tiple cameras is undesirable as it requires the camera network to be calibrated. Unfortunately,

active PTZ cameras are notoriously difficult to calibrate; moreover, the calibration deteriorates

over time and needs to be recomputed. Our camera network model does not require calibrated

active cameras, so it is easier to change the topology of the network by adding/removing/mod-

ifying cameras.

When carrying out a new sensing request, the camera selects a suitable FOV setting and

either chooses an appropriate gaze direction using the estimated 3D location of the pedestrian

(Section 4.5), or performs an exploratory sweep when the pedestrian’s 3D location is unavail-

able. Upon the successful identification of the pedestrian within the FOV, the camera uses

fixation and zooming algorithms to follow the subject. The fixation and zooming routines are

image driven and do not require any 3D information such as camera calibration or a global

frame of reference. Furthermore, the 3D location of the pedestrian is not required by a PTZ

camera for the purposes of fixation/zooming/tracking.

We discovered that traditional proportional derivative (PD) controllers generate unsteady

control signals resulting in jittery camera motion. The noisy nature of tracking forces the

PD controller to strive to minimize the error metric continually without ever succeeding, so

the camera keeps servoing. Hence, we model the fixation and zooming routines as dual-state

controllers. The states are used to activate/deactivate the PD controllers. In the Act state the PD

controller tries to minimize the error signal; whereas, in the Maintain state the PD controller

ignores the error signal altogether and does nothing.

The fixate routine brings the region of interest—e.g., the bounding box of a pedestrian—

into the center of the image by tilting the camera about its local X and Y axes (Figure 4.16,

Row 1). We provide the fixate routine in Figure 4.17. The zoom routine controls the FOV of

the camera such that the region of interest occupies the desired percentage of the image. This

is useful in situations where, for example, the operator desires a closer look at a suspicious
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Figure 4.16: Row 1: A fixate sequence. Row 2: A zoom sequence. Row 3: Camera returns to
its default settings upon losing the pedestrian; it is now ready for another task.
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Require: Size of the video image: w × h {Origin of the image coordinate space coincides with the
left-bottom corner of the image}

Require: Region of interest (ROI): left-bottom (l, b) and right-top (r, t) corners defined in the image
space

Require: Camera’s field of view (FOV) settings along the image’s x and y axes: θx and θy, respectively
Require: Camera’s pan and tilt settings (rotation about local y and x axis): α and β, respectively

Center of the image, cI = (1/2)(w, h)
Center of the region of interest, cROI = (1/2)(l + r, t + b)
Rectangle r1 with corners cI ∓ η1(w, h)
Rectangle r2 with corners cI ∓ η2(w, h)
if ROI is enclosed within r1 then

State = Maintain {No change}
else if ROI is not enclosed within r2 then

State = Turn
Error, e = cI − cROI

end if
if state is Maintain then

αnew = α
βnew = β

else
αnew = −gpe1θx/w − gd∆e1/∆t
βnew = gpe0θy/h + gd∆e0/∆t

end if
Figure 4.17: The fixation routine. Here, 0 < η1 < η2 < 1. We have empirically selected
η1 = 0.025 and η2 = 0.225. ∆t is the time-elapsed between two control cycles. gp and gd are
empirically selected proportional and derivative gains.

pedestrian (Figure 4.16, Row 2). The details of the zoom routine are given in Figure 4.18.

Fixation and zooming routines operate independently of each other, each trying to achieve

its respective goals. Consequently, an active PTZ camera can simultaneously zoom and fixate

on the pedestrian being tracked. When a tracking failure is detected, the camera controller goes

into a recovery mode where the fixation routine is deactivated and the camera begins to increase

its FOV setting with the aim to keep the pedestrian within the field of view. Visual analysis

is performed to reacquire the pedestrian using the stored pedestrian signature. If unsuccessful,

the camera reports a failure and returns to its default state (Figure 4.16, Row 3).

4.5 Learning the Gaze Direction
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Require: Size of the video image: w × h {Origin of the image coordinate space coincides with the
left-bottom corner of the image}

Require: Region of interest (ROI) defined in the image space
Require: Camera’s field of view (FOV) setting along the image’s y axis (vertical FOV): θ
Require: Desired coverage factor dr ∈ [0, 1] {e.g. ROI covers the entire image when dr = 1}

Compute the smallest rectangle that encloses ROI and whose aspect ratio is w/h: r
Error, e = area(r)/(wh)− dr

if |e| < η1 then
State = Maintain

else if |e| > η2 then
State = Zoom

end if
if state is Maintain then

θnew = θ {No change}
else

if e > 0 then
θnew = θ + gp min(1, e)+ gd∆e/∆t, where gp and gd are empirically selected proportional and
derivative gains, respectively {Zoom out}

else
Rectangle rvalid with corners (1/2)(w, h)∓ δ(w, h)
if r is not enclosed within rvalid then

θnew = θ {No change}
else

Let (vx, vy) be the corner of r that is farthest from the point (1/2)(w, h)

Let s =
{

2vx/w if vx ≥ vy

2vy/h if vx < vy

Let s′ = 1− s2/(a + s2)
θnew = θ − (gp min(1, s′|e|) + gd∆e/∆t) {Zoom in. The change in FOV during a zoom-in
phase depends upon the current FOV settings with smaller changes for small FOV settings to
avoid zooming in too much, too quickly, which can result in tracking failures.}

end if
end if

end if
Figure 4.18: Zooming Algorithm. Here, 0 < η1 < η2 < 1 and δ ∈ [0, 1]. Specifically, we have
empirically selected η1 = 0.01, η2 = 0.03, δ = 0.45, and a = 0.4.
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Computing an appropriate gaze direction in order to bring the desired pedestrian within the

FOV of a camera requires a map between 3D locations in the scene and the associated inter-

nal gaze-direction parameters (i.e., the pan-tilt settings) of the camera. This map is learned

automatically by observing a pedestrian directed to move around in the scene during an initial

learning phase. While the active PTZ cameras are tracking and following the pedestrian, the

3D location of the pedestrian is estimated continuously through triangulation using the cali-

brated, passive FOV cameras. A lookup table is computed for each PTZ camera that associates

the estimated 3D scene location of the target pedestrian with the corresponding gaze angles of

the camera. Specifically, for PTZ camera i, this yields tuples of the form (xj, yj, zj, αj, βj),

where j indexes over the scene locations (x, y, z) and corresponding camera pan and tilt angles

(α, β). The lookup table constitutes the training dataset used for learning a continuous map

M : )3 → )2 between the locations and associated angles. We tried two approaches for

learning M, which we explain in the next two sections.

4.5.1 Nearest Neighbor Approximation to M

Given any 3D input point p = (x, y, z), the system estimates the values for αi and βi of

any camera i that can observe p as follows: Let Sk be the set of k nearest neighbors to p in

{pj = (xj, yj, zj)}, where proximity is computed using the L2 norm ‖p− pj‖. Then

αi =
1

k

∑

j:pj∈Sk

αj; (4.16)

βi =
1

k

∑

j:pj∈Sk

βj. (4.17)

This provides only a coarse map between the 3D scene points and the camera pan-tilt angles,

but the map is accurate enough in practice to bring the pedestrian within the field of view of

the camera. We noticed, however, that the learnt map deteriorates rapidly for points far from

those in the lookup table (Figure 4.20, Rows 1 and 3). As the PTZ cameras end up performing

a visual search operation to locate the pedestrian, poor mapping results in longer lead times

(the time it takes for an active PTZ camera to lock onto the desired pedestrian).
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bias

inputs

outputs

basis
functions

x z

B

y

weights

Figure 4.19: The architecture of a radial basis function network. Each basis function acts as
an hidden unit. The lines from basis function φj to the inputs represent the corresponding
elements of µj . The weights wjα are represented by lines from the basis functions to the output
α, and wjβ are represented by lines from the basis functions to the output β. The output of the
bias is fixed at 1.

4.5.2 Radial Basis Function Approximation to M

We addressed the above issue to some extent by modeling the mapping M as a radial basis

function (RBF) network, since such networks are known to have excellent interpolation prop-

erties and are relatively easy to train. Referring to Figure 4.19, the network is given by

α(p) =
B∑

j=1

wjαφj(p) + wα0; (4.18)

β(p) =
B∑

j=1

wjβφj(p) + wβ0, (4.19)

where B is the number of basis functions, the weights w are defined in the figure, and

φj(p) = exp

(
−
|p− µj|2

2σ2
j

)
, (4.20)

where µj and σj determine the center and standard deviation of the basis function φj , respec-

tively. The RBF networks are trained by choosing the number of hidden units (basis functions),

choosing their centers and standard deviations, and training the output layer weights w. We

train the RBF using an adaptive approach that adds nodes and estimates their means and vari-

ances successively, until the approximation error falls below a user-specified threshold. When

dealing with large training data sets, the resultant RBF network can potentially have a large
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number of hidden nodes. We did not encounter this issue; however, one way to deal with it is

to sub-sample the training set.

4.5.3 Results and Comparison

Figure 4.20 shows the results obtained for the k-nearest neighbor and the RBF network ap-

proaches. Each of the plots shows a plan view of a 3D space, covering the XY -plane (Z = 0).

The red dots denote 3D points used in learning the map between the 3D world and the pan-tilt

settings of the active, PTZ camera. The optical center of this camera is indicated by the green

dot at the upper right of each plot. The red points indicate the triangulation-estimated locations

of the visually tracked pedestrian, where the active PTZ camera fixating on the pedestrian has

stored an associated pan-tilt setting. Note that the training uses no information about the cam-

era’s 3D location. Rows 1 and 3 in Figure 4.20 show results obtained for k-nearest neighbor;

where as, Rows 2 and 4 show results obtained for the RBF network approach.

Each plot shows the squared error between the true and estimated quantities, where bright-

ness is proportional to the magnitude of the error. To generate the plots, we regularly sampled

points on the XY -plane and used the position of the camera to compute the true pan-tilt set-

tings for each of the sampled points (true α and β), which constitutes the ground truth. Next,

we used the learned map to estimate the camera’s pan-tilt settings for every sampled point

(estimated α and β).

The first two columns (from left) in Figure 4.20 plot the squared error in degrees between

the true and estimated pan-tilt settings. The last column in Figure 4.20 plots the Euclidean

distance between the true 3D location and the point where the XY -plane intersects the optical

axis of the PTZ camera when the camera’s pan-tilt angles are set to the estimated values. As

expected, we observed that the estimate exhibits smaller error in the vicinity of the training data

used to learn the map and that it improves over a larger area when the PTZ camera has had the

chance to observe longer, more varied, pedestrian tracks like the one shown in the bottom two

rows of Figure 4.20. Notice also that the RBF approach outperforms the k-nearest neighbor
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Figure 4.20: The map from 3D world locations to PTZ camera gaze direction using (Rows
1 and 3) k-nearest neighbor and (Rows 2 and 4) RBF approaches. Plots of the squared error
between the true and estimated (Column 1) pan α and (Column 2) tilt β settings. (Column 3)
Euclidean distance between the true 3D location and the point where the XY -plane (Z = 0)
intersects the optical axis of the PTZ camera when its pan-tilt angles are set to the estimated α
and β.
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approach.

For each camera, we store a subsampled version of the lookup table, which is later used

to estimate the accuracy of the estimated pan-tilt settings. The distance of p from the nearest

(x, y, z) in the stored sub-sampled lookup table is a good indicator of the accuracy of the

computed angles. If this distance is large, the PTZ camera invokes a search behavior to locate

the pedestrian. In order to minimize the reliance on the initial learning phase, the lookup table

is continously updated, and the RBF network re-trained, when the PTZ camera is following a

pedestrian whose 3D location is known.

4.6 Summary

In this chapter, we have developed the low-level sensing machinery for our synthetic cameras:

• Synthetic video capture.

• Pedestrian segmentation via an automatically learned background model.

• Pedestrian tracking using color-based signatures for both passive and active cameras.

• Image-based fixation and zooming routines for active PTZ cameras.

• A strategy for estimating the 3D locations of the pedestrians present in the scene using

passive wide-FOV cameras.

• A machine-learning based approach to learn the mapping between the 3D locations and

the pan-tilt settings of active PTZ cameras.

The visual processing routines developed here will satisfy the low-level sensing requirements

of the prototype camera networks presented in the next two chapters.



Chapter 5

Scheduling Active Cameras

Wide-FOV passive cameras are well-suited for providing continual, low-resolution coverage of

a large area, and the video collected through these cameras is suitable for pedestrian detection

and tracking. It is, however, unfit for activity recognition and pedestrian identification tasks,

which require much higher resolution video. It is not feasible to provide high-resolution visual

coverage over a large region using only passive cameras, and many researchers have suggested

camera networks comprising both, wide-FOV passive and PTZ cameras to collect the necessary

data [Collins et al. 2001; Zhou et al. 2003; Costello et al. 2004; Hampapur et al. 2003].

Low-resolution video from the wide-FOV cameras is used to build an estimate about pedes-

trians’ locations within the designated region and the PTZ cameras are coordinated to collect

high-resolution videos of the pedestrians present in the scene. Controlling PTZ cameras to

observe the pedestrians present in the scene is a challenging task, which we cast as a resource

allocation/scheduling problem. We adopt ideas from the scheduling literature and propose a

novel camera scheduling strategy capable of controlling multiple uncalibrated active PTZ cam-

eras to observe the pedestrians present in the scene.

In this chapter, Section 5.1 overviews our system, Section 5.2 introduces our scheduling

strategy, we present results in Section 5.3, and Section 5.4 concludes with a summary of our

contributions.

70
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Figure 5.1: A central controller uses the scene information collected by calibrated, static cam-
eras to schedule active PTZ cameras for recording close-up videos of the pedestrians in the
region of interest. The PTZ cameras are autonomous agents that attempt to achieve the tasks
assigned to them by the central controller. The dashed arc indicates the intermittent flow of
instructions from the central controller to the PTZ cameras.

5.1 Surveillance System Overview

Our surveillance system is realized within the virtual Penn Station. The network comprises

calibrated wide-FOV static cameras and uncalibrated active PTZ cameras. A central server

acquires environmental information, such as the 3D positions of the pedestrians, through the

static cameras and employs this information to schedule the active cameras in order to visually

examine every pedestrian in the scene (Figure 5.1).

For the purposes of this active camera scheduling, we assume that the scene is monitored by

more than one calibrated wide-FOV passive camera plus at least one PTZ active camera. Each

camera has its own suite of Local Vision Routines (LVRs) that support pedestrian recognition,

identification, and tracking. The LVRs are computer vision algorithms that directly operate

upon the synthetic video generated by the virtual cameras and the information available from

the 3D virtual world (See Chapter 4 for the details). At present, we assume that pedestrians

can be reliably identified across multiple cameras. The static cameras track the 3D locations of

pedestrians through triangulation (Section 4.3). An offline machine learning scheme learns the

map between the gaze direction parameters (i.e., pan-tilt angles) of the PTZ cameras and target
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3D world locations (Section 4.5). Each PTZ camera is modeled as an autonomous agent capa-

ble of recording the detailed video of the pedestrian of interest without relying on continuous

feedback from the central controller. The PTZ camera uses image-based fixation and zooming

routines to follow a pedestrian reliably (Section 4.4).

5.2 Camera Scheduling

The sensor network maintains an internal world model that reflects the current knowledge

about the world. The model stores information about the pedestrians present in the scene,

including their arrival times and the most current estimates of their positions and headings.

The world model is available to the scheduling routine that assigns cameras to the various

pedestrians in the scene. Using the 3D information stored in the world model, the cameras

choose an appropriate gaze direction when viewing a particular pedestrian. The scheduling

algorithm must find a compromise between two competing objectives: 1) to capture high-

quality video for as many as possible, preferably all, of the pedestrians in the scene and 2)

to observe each pedestrian for as long or as many times as possible, since the chances of

identifying a pedestrian improve with the amount of data collected about that pedestrian. At

one extreme, the camera follows a pedestrian for their entire stay in the scene, essentially

ignoring all other pedestrians, whereas at the other extreme, the camera briefly observes every

pedestrian in turn and repeatedly, thus spending most of the time transitioning between different

pan, tilt, and zoom settings.

Following the reasoning presented in [Costello et al. 2004; Qureshi and Terzopoulos 2005a],

the camera scheduling problem shares many characteristics with the network packet routing

problem. Network packet routing is an online scheduling problem where the arrival times of

packets are not known a priori and where each packet must be served for a finite duration

before a deadline, when it is dropped by the router. Similarly, in our case, the arrival times

of pedestrians entering the scene is not known a priori and a pedestrian must be observed for
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some minimal amount of time by one of the PTZ cameras before he leaves the scene. That time

serves as the deadline.

However, our problem differs from the packet routing problem in several significant ways.

First, continuing with network terminology, we have multiple “routers” (one for every PTZ

camera) instead of just one. This aspect of our problem is better modeled using scheduling

policies for assigning jobs to different processors. Second, we typically must deal with addi-

tional sources of uncertainty: 1) it is difficult to estimate when a pedestrian might leave the

scene and 2) the time period during which a PTZ camera should track and follow a pedestrian

to record high-quality video suitable for further biometric analysis can vary depending on mul-

tiple factors; e.g., a pedestrian suddenly turning away from the camera, a tracking failure, an

occlusion, etc.

Consequently, camera scheduling is an online scheduling problem (in scheduling jargon,

a PTZ camera is a “processor” or “machine” and a pedestrian is a “job”) for which 1) jobs

are released over time, 2) have deadlines, 3) have different processing requirements, 4) can

be assigned to one of many processors, and 5) the scheduler must schedule them without any

knowledge of the future. Our approach is loosely related to the Multi Level Feedback Al-

gorithm used for process scheduling in the Unix and Windows NT operating systems [Sgall

1998].

5.2.1 Online Scheduling Paradigms

An online scheduling algorithm does not have access to the entire input instance as it makes its

decisions [Fiat and Woeginger 1998]. Thus, at each time t, the scheduler must decide which

job(s) to run at t. Here, jobs typically have release times, and the scheduler is not aware of the

existence of a job until its release time.

An online scheduler is referred to as “clairvoyant” when the processing times of the jobs

are available to the scheduler upon their arrival. Such schedulers are modeled within an online-

time paradigm. Alternatively, the lack of job processing time information is called “nonclair-
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Figure 5.2: Scheduling a single camera to observe multiple pedestrians with and without pre-
emption. (a), (b) A camera is scheduled to observe 4 pedestrians. (c), (d) A camera is scheduled
to observe 2 pedestrians. Triangles represent lead times, rectangles represent processing times.
Green indicates a successful recording, blue (or ‘p’) indicates a preemptive abort. Red (or ‘x’)
indicates a failed recording due to the departure of a pedestrian. C-1 refers to Camera 1.
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voyance” and such schedulers are modeled using the online-time-nclv paradigm. Since the exit

times of pedestrians are difficult to predict, our scheduler is nonclairvoyant.

Another issue that arises in scheduling algorithms is that of preemption; i.e., interrupting

a running job to process another job. A common scheme for implementing preemption is to

pause an active job and later resume it on the same processor. Another possibility, which only

exists in the online setting and is meaningless for offline scheduling algorithms, is to stop an

existing job and restart it from the beginning on the same or a different processor. It is well

known that if preemption is not allowed for problems in either the online-time or online-time-

nclv model, and jobs can have arbitrary processing times, then the schedules produced by any

online scheduler will be far from optimal [Sgall 1998]. This is why most online schedulers

generally allow preemption, unless all jobs have similar processing times. Preemption incurs

an overhead as job swapping (pausing and resuming jobs, saving and restoring job states, etc.)

consumes resources.

In the camera scheduling application, for example, job swapping involves, among other

overheads, locating the other pedestrian and initializing the tracking routine. Preemption is

especially relevant to our application, as without it a PTZ camera can potentially track a pedes-

trian indefinitely without ever succeeding in recording video suitable for further biometric

analysis. We therefore allow preemption. When there are multiple pedestrians in the scene,

a PTZ camera is assigned to a pedestrian for some fixed maximum duration, after which the

PTZ camera can be reassigned even if the video recording was unsuccessful.1 The pedestrian

whose video recording is terminated is treated as a new arrival and, later, the same or a different

camera can attend to the pedestrian.

Figure 5.2 shows examples of the scheduling of a single camera to observe multiple pedes-

trians with and without preemption. Without preemption, the camera observes Pedestrian 1

until sufficient video is collected, ignoring all other pedestrians (Figure 5.2(a)). By contrast,

1An observation is deemed successful when the recorded video is suitable for further biometric analysis. The
duration of the video depends on a number of factors, including the requirements of the biometric analysis routine,
the quality of the recorded video, etc.
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Figure 5.3: Scheduling a single camera to observe 3 pedestrians in single-observation and
multiple-observations modes. A pedestrian’s position in the priority sequence is computed
using the FCFS policy. C-1 refers to Camera 1.

preemption prevents the camera from being monopolized by Pedestrian 1, so the camera can

attend to Pedestrians 2, 3, and 4 even before sufficient video of Pedestrian 1 has been acquired

(5.2(b)). The camera later resumes observing Pedestrian 1; however, the pedestrian leaves the

scene before suitable video has been collected. Preemption is not advantageous in all situa-

tions and it can have unintended side effects. In Figure 5.2(c), Pedestrian 1 was successfully

observed; however, with preemption, none of the pedestrians were observed long enough in

5.2(d).

For more effective preemption, we have adopted a multi-class pedestrian (job) model (Fig-

ure 5.4(a)–(b)). Every pedestrian is assigned to a class based on how many times the pedes-

trian has been observed successfully by a PTZ camera. Each sensed pedestrian is initialized as

a member of Class 0 and advances to the next higher class after each successful observation.

The class numbers of pedestrians together with their arrival times determine their positions in

the priority queue, with priority given to pedestrians in lower classes. For example, cameras

currently observing pedestrians belonging to Classes 1, 2, 3, · · · , are immediately reassigned to

Class 0 pedestrians that have not yet been recorded (Figure 5.4(b)).

Figures 5.3 and 5.4 compare the naive FCFS-based priority calculation against the multi-
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Figure 5.4: A single camera is scheduled to observe 3 pedestrians in multiple observation
mode. The pedestrians’ positions in the priority sequence is calculated using their arrival times
and class memberships.

class priority computation scheme. The multi-class priority scheme is irrelevant when each

pedestrian is observed only once. In single observation mode, each pedestrian is observed ex-

actly once; e.g., in Figure 5.3(a) the camera is free after Pedestrian 3’s departure, yet the camera

is not assigned to observe Pedestrian 1 who is still present. However, it is desirable to observe

a pedestrian multiple times when possible, in order to collect more data. In Figure 5.3(b), the

camera is instructed to observe every pedestrian for as many times as possible, ergo Pedestrian

1 is observed twice. When the camera finishes observing Pedestrian 2, Pedestrian 1 is ahead of

Pedestrian 3 in the priority sequence since the arrival time of Pedestrian 1 preceded the arrival

time of Pedestrian 3.2 The scheduler uses the naive FCFS priority computation, which does

not differentiate between Pedestrians 1 and 3 based on their class memberships: Pedestrians

1 and 3 belong to Classes 1 and 0, respectively. Therefore, the camera is assigned to observe

Pedestrian 1 again and Pedestrian 3 goes unnoticed.

Multi-class priority calculation resolves the above issue (Figure 5.4(a)). After the camera

has successfully observed Pedestrian 2, priority is given to Pedestrian 3 (Class 0) over Pedes-

2In the multiple observations setting, the arrival time of a pedestrian is updated after each successful recording;
e.g., in Figure 5.4(b), the arrival time of Pedestrian 1 was changed from the true arrival time, 5, to 23 after the
pedestrian was successfully recorded.
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trian 1 (Class 1), even though the arrival time of Pedestrian 1 precedes that of Pedestrian 3.

Consequently, the camera is assigned to Pedestrian 3 and the camera successfully observes all

three pedestrians. Furthermore, multi-class priority calculation allows more intelligent preemp-

tion. Consider Figure 5.4(b): The camera is observing Pedestrian 1 for the second time when

Pedestrian 3 enters the scene. Upon sensing the new arrival, the camera immediately aborts

observing Pedestrian 1 (Class 1) and attends to the previously unseen pedestrian (Pedestrian 3,

Class 0).

5.2.2 Camera Scheduling Problem Formulation

The standard three-field notation for describing scheduling problems [Graham et al. 1997] is

α|β|γ, where α describes the processing environment, β encodes the job characteristics, and γ

is the performance criterion for the scheduling algorithm. Using this notation, we can describe

our camera scheduling problem as

P | rj, online-time-nclv, pmtn |
∑

Uj; (5.1)

i.e., find a schedule on m processors that minimizes the total unit penalty when jobs j with

deadlines dj are released at time rj . The jobs require arbitrary processing times and preemption

(pmtn) is allowed. Minimizing the total unit penalty is akin to maximizing the number of jobs

successfully completed prior to their deadlines. If Cj is the completion time of a job j, then

Uj =






0 if Cj ≤ dj;

1 otherwise.
(5.2)

The complexity of problem (5.1) is not known. However, the simpler problem P2 | rj, pmtn |
∑

Uj ,3

is at least NP-hard [Du et al. 1992]. Hence, our formulation of the camera scheduling problem

is likely NP-hard. Consequently, we resort to a greedy algorithm for scheduling cameras to

observe pedestrians.

3I.e., find a schedule on two processors that minimize the total unit penalty under release time constraints rj ,
where release times are known a priori and preemption is allowed.
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The obvious nonclairvoyant online algorithms are Round Robin (RR) and Shortest Elapsed

Time First (SETF). RR devotes identical processing resources to all jobs, whereas SETF de-

votes all resources to the job that has been processed the least. As SETF is known to perform

poorly when jobs are not fully parallelizable [Dobson 1984], we use weighted RR, a variant

of RR. The weighted RR scheduling scheme is used to assign jobs to multiple processors with

different load capacities. Each processor is assigned a weight indicating its processing capacity

and more jobs are assigned to the processors with higher weights. We model each PTZ camera

as a processor whose weights, which quantify the suitability of a camera with respect to ob-

serving a pedestrian, are adjusted dynamically. The weights are determined by two factors: 1)

the number of adjustments the camera needs to make in the PTZ coordinates to fixate on the

pedestrian and 2) the distance separating the pedestrian from the camera. In order to ensure

fairness, we use a First Come, First Served (FCFS) priority scheme to select jobs that should

be assigned to a processor (preemption forces job priorities to vary over time). Additionally,

FCFS is said to be optimal when the optimization criterion is to minimize the maximum flow

time, which is a measure of the quality of service defined as Cj−rj [Fiat and Woeginger 1998].

On the one hand, a camera that requires small adjustments in the PTZ coordinates to fixate

on a pedestrian usually needs less lead time (the total time required by a PTZ camera to fixate

on a pedestrian and initiate video recording) than a camera that needs to turn more drastically

in order to bring the pedestrian into view. Consequently, we assign a higher weight to a camera

that needs less redirection in order to observe the pedestrian in question. On the other hand, a

camera that is closer to a pedestrian is more suitable for observing this pedestrian, since such an

arrangement can potentially avoid occlusions, tracking loss, and subsequent re-initialization,

by reducing the chance of another pedestrian intervening between the camera and the subject

being recorded. The camera weights with respect to a pedestrian are computed as

w =






exp
(
− (θ−θ̂)2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)
if the camera is free;

0 if the camera is busy,
(5.3)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and β̂ = (βmin + βmax)/2, and where θmin and
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(a) (b) (c) (d) (e)

Figure 5.5: (a)–(d) Images from wide-FOV passive cameras situated at the 4 corners of the
main waiting room in the train station. (e) Image from a fish-eye camera mounted at the
ceiling of the waiting room. These static cameras are calibrated, enabling the 3D positions of
observed pedestrians to be estimated through triangulation.

θmax are extremal field of view settings, αmin and αmax are extremal rotation angles around the

x-axis (up-down), and βmin and βmax are extremal rotation angles around the y-axis (left-right).

The values of the variances σθ, σα, and σβ associated with each attribute are chosen empirically

(in our experiments, we assigned σθ = σα = σβ = 5.0). Here, α and β are the gaze parameters

corresponding to the 3D location of the pedestrian as computed by the triangulation process,

and θ is an approximate measure of the distance between the camera and the pedestrian. The

distance between the camera and the pedestrian can also be approximated by declination angle,

which can be estimated from α, under a ground-plane assumption.

A danger of using weighted round-robin scheduling is the possibility that a majority of

the jobs will be assigned to the processor with the highest weight. We avoid this situation

by sorting the PTZ cameras according to their weights with respect to a given pedestrian and

assigning the free PTZ camera with the highest weight to that pedestrian. The FCFS policy

breaks ties on the basis of arrival times and pedestrian classes. Pedestrians in Class 0 (i.e.,

never observed by a PTZ camera) have the highest priority. Among pedestrians belonging to

Class 0, the pedestrian that entered the scene first is selected. Pedestrians belonging to Classes

1 or higher are similarly selected on the basis of their arrival times. The arrival times of the

pedestrians are maintained by the sensor network and are made available to the PTZ cameras.

The amount of time a PTZ camera will observe a pedestrian depends upon the number of

pedestrians in the scene. However, we have specified a minimum time that a PTZ camera must
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Figure 5.6: Sample close-up images captured by the PTZ active cameras.

spend observing a pedestrian. This is determined by the minimum length of video sequence

required by the biometric routines that perform further evaluation plus the average time it takes

a PTZ camera to lock onto and zoom into a pedestrian. To implement preemption, we specify

the maximum time that a camera can spend observing a pedestrian when there are multiple

pedestrians in the scene. The proposed scheduling scheme strikes a balance between the two

often competing goals of following a pedestrian for as long as possible and observing as many

pedestrians as possible.

5.2.3 Camera Scheduling Algorithm

We now present our Preemption, Multiple Observations, Multi-class (PMOMC) camera schedul-

ing algorithm. All other variants discussed here can be realized within PMOMC.

Require: Lbusycam comprises of the PTZ cameras currently assigned to the different pedestrians
Require: Lfreecam contains the PTZ cameras that are currently available
Require: Lunsched comprises of the pedestrians that are currently not assigned a PTZ camera
Require: Lsched consists of the pedestrians that are currently being followed by a PTZ camera
Require: Initially Lbusycam, Lunsched, and Lsched are empty
Require: Initially Lfreecam consists of all available PTZ cameras

for time = 0, 1, 2, · · · do
Remove the pedestrians that appear to have left the scene from Lsched and Lunsched, and
move the corresponding cameras from Lbusycam to Lfreecam

for all New arrivals p do
Set p’s timestamp equal to the current time
Set p’s times-recorded count equal to 0
Add p to Lunsched

end for
for all Cameras c in the Lbusycam do

Camera c is assigned to pedestrian p



CHAPTER 5. SCHEDULING ACTIVE CAMERAS 82

0 100 200 300 400 500 600

Ca
m

er
a 

1

1 2 4 7 9 10 13 16

Time

(a) #Cam=1, #Ped=20
0 100 200 300 400 500 600

Ca
m

er
a 

1

Ca
m

er
a 

2

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

(b) #Cam=2, #Ped=20

0 100 200 300 400 500 600

Ca
m

er
a 

1Ca
m

er
a 

2Ca
m

er
a 

3Ca
m

er
a 

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Time

(c) #Cam=4, #Ped=20
0 50 100 150 200

Ca
m

er
a 

1
1 2 3

Time

(d) #Cam=1, #Ped=3

0 200 400 600 800 1000 1200 1400 1600

Ca
m

er
a 

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

(e) #Cam=1, #Ped=20

Figure 5.7: Pedestrians are assigned unique identifiers based on their entry times; e.g., Pedes-
trian 1 always enters the scene at the same time or before the arrival of Pedestrian 2. (a)–(c)
Twenty pedestrians are present in the scene. (a) The scheduling policy for one camera: Camera
1 successfully recorded Pedestrians 1, 2, 4, 7, 9, 10, 13, and 16. (b)–(c) Adding more cameras
improves the chances of observing more pedestrians. Only Pedestrians 12, 17, 18, 19, and 20
go unnoticed when two cameras are available. With four cameras all pedestrians are observed.
(d) The scene is populated with 3 pedestrians. (e) Twenty pedestrians, who tend to linger.
The chances of a set of cameras to observe the pedestrians increase when (d) there are fewer
pedestrians or when (e) pedestrians tend to linger.
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if Camera c has finished recording video then
Set p’s timestamp equal to the current time
Increment p’s times-recorded count
Move c from Lbusycam to Lfreecam

Move p from Lsched to Lunsched

else if ( Camera c has spent more than the allotted time on pedestrian p and Lunsched is
not empty and Camera c is relevant to at least one of the pedestrians in Lunsched ) or (
p’s times-recorded count ≥ 1 and A pedestrian p′ in Lunsched has times-recorded count
equal to 0 and Camera c is relevant to p′ ) then

Set p’s timestamp equal to the current time {A camera is considered relevant to a
pedestrian when the pedestrian weight values with respect to camera is above a pre-
scribed threshold. Weights are computed using Equation 5.3}
Move c from Lbusycam to Lfreecam

Move p from Lsched to Lunsched

end if
end for
for all Cameras c in Lfreecam do

Compute Lrelevantped, which consists of the pedestrians in Lunsched that are relevant to c
if Lrelevantped is empty then

Continue
else

Pick pedestrian p from Lrelevantped with the least times-recorded value
Assign c to p
Move c from Lfreecam to Lbusycam

Move p from Lunsched to Lsched

end if
end for

end for

5.3 Results

We populated the virtual train station with up to twenty autonomous pedestrians that enter, go

about their business, and leave the waiting room of their own volition. We tested our scheduling

strategy in various scenarios using from 1 to 18 PTZ active cameras. For example, Figure 5.5

shows our prototype surveillance system utilizing five wide-FOV static cameras situated within

the waiting room of the train station. Figure 5.6 shows sample close-up images captured by

four PTZ active cameras. The system behaved as expected in all cases, correctly tasking the

available cameras using weighted round-robin scheduling with an FCFS priority policy.
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Figure 5.8: A comparison of weighted (W) and non-weighted (NW) scheduling schemes.
Equation (5.3) is used to compute camera weights (relevances) with respect to a pedestrian.
The weighted scheduling strategy outperforms its non-weighted counterpart as is evident from
its higher success rates (a) and shorter lead (b), processing (c), and wait (d) times. The dis-
played results are averaged over several runs in each trial scenario. Trials 1–6 involve 5 pedes-
trians and from 1 to 6 cameras, respectively. Trials 7–12 involve 10 pedestrians and from 3 to
8 cameras, respectively. Trials 13–18 involve 15 pedestrians and 5, 6, 9, 10, 11, and 12 cam-
eras, respectively. Trials 19–24 involve 20 pedestrians with 5, 8, 10, 13, 15, and 18 cameras,
respectively.
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In a typical experiment (Figure 5.7(a)), when only one PTZ camera is available, Pedestrians

1, 2, 4, 7, 9, 10, 13, and 16 were recorded, but Pedestrians 3, 5, 6, 8, 11, 12, 14, 15, 17, 18, 19,

and 20 go unnoticed since they left the scene before the camera had an opportunity to observe

them. Figure 5.7(b) and (c) shows the results from the same run with 2 and 4 active cameras,

respectively. In the 2-camera case, even though the performance has improved significantly

from the added camera, Pedestrians 12, 17, 18, 19, and 20 still go unnoticed. With 4 PTZ

cameras, the system is now able to observe every pedestrian. As expected, the chances of

observing multiple pedestrians improve as more cameras become available.

For Figure 5.7(d), we have populated the virtual train station with only 3 autonomous

pedestrians, leaving all other parameters unchanged. Given that there are now only 3 pedestri-

ans in the scene, even a single camera successfully observes them. Next, we ran the simulation

with 20 pedestrians (Figure 5.7(e)). This time, however, we changed the behavior settings of

the pedestrians so they tend to linger in the waiting room. Here too, a single camera success-

fully observed each of the 20 pedestrians. We conclude that even a few cameras can perform

satisfactorily when there are either few pedestrians in the scene or when the pedestrians tend

to spend considerable time in the area.

In Figure 5.8, we compare the scheduling scheme that treats all cameras equally with the

weighted scheduling scheme that takes into account the suitability of any camera in observing a

pedestrian. As expected, the weighted scheduling scheme outperforms its non-weighted coun-

terpart, exhibiting higher success rates (the fraction of pedestrians successfully recorded) and

lower average lead time, processing time (the time spent recording the video of a pedestrian),

and wait time (the time elapsed between the entry of a pedestrian and when the camera begins

fixating on the pedestrian). The lower average lead and processing times are a consequence

of the use of (5.3) in computing the suitability of a camera to recording a pedestrian. As ex-

pected, the average wait times typically decrease as we increase the number of cameras. In

some cases, however, the average wait times increase slightly when a small number of cameras

are added (e.g., see Trials 5 and 6 in Figure 5.8(d)). The variation in the recording durations
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Figure 5.9: Scheduling results for Trial #19. Non-weighted (a): Success Rate=0.3, Average
Lead Time=62.2, Average Proc. Time=88.9. Weighted (b): Success Rate=0.7,Ave. Lead
Time=30.7, and Ave. Proc. Time=73.0. Blue lines represent the entry and exit times, the Blue
triangles represent the lead times, the Green rectangles represent the processing times, and the
Red crossed rectangles represent an aborted attempt at capturing the video of a pedestrian.

of different pedestrians accounts for this observation. The video recording duration depends

upon multiple factors, including when a camera is assigned to a pedestrian, which camera is

assigned to the pedestrian, what the position of the pedestrian is with respect to the camera and

the other pedestrians present in the scene, and the position of the obstacles present in the scene.

Figure 5.9 shows detailed results for the scenario with 20 pedestrians and 5 cameras.

The lack of preemption can impact the overall performance of the scheduler. In Fig-

ure 5.10(a), for example, the camera continues to observe Pedestrian 5 when preemption is

not allowed—disregarding all other pedestrians in the scene. On the other hand, the camera

decides to stop recording Pedestrian 5 and attend to the other pedestrians when preemption is

enabled (Figure 5.10(b)). Choosing an appropriate value for the preemption cutoff time is crit-

ical to achieving the balance between the competing goals of observing as many pedestrians as

possible and observing each pedestrian for as long as possible. Too small a value will result in

the cameras spending most of their time transitioning between pedestrians, whereas too large

a value will result in cameras myopically dwelling on pedestrians (Figure 5.11). We found

that the average camera assignment time is a good indicator of the preemption cutoff time. In
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Figure 5.10: A single camera is scheduled to observe 20 pedestrians. Without preemption, the
camera stays occupied with observing pedestrian 5, essentially ignoring all other pedestrians
in the scene. Preemption enables the camera to relinquish observing pedestrian 5 and attend
to other pedestrians in the scene. Triangles represent lead times and Rectangles represent
recording durations. Lines represent entry and exit times. Colors Green, Blue, and Red encode
a successful observation, an incomplete observation due to preemption, and a failed observation
due to departure, respectively.
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Figure 5.11: Two and four cameras are scheduled to observe 20 pedestrians. Smaller pre-
emption cutoff times—i.e., the duration after which a camera is reassigned to observe another
pedestrian even if its current assignment has not yet completed—results in smaller wait times;
i.e., the time after which a camera is assigned to a new pedestrian. On the other hand, large
preemption cutoff times results in a large wait times.
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the current setting, the camera assignment time equals lead time plus processing time, and the

preemption cutoff time should be no less than the average camera assignment time. However,

if the variation in camera assignment times is large, then the average assignment time is a poor

indicator of preemption cutoff times. Average assignment times can be computed on the fly

using; e.g., using a running average.

We compared the proposed camera scheduling algorithm in the following six configurations

in (Figure 5.12):

1. No preemption, single observation, single class (NPSOSC)

2. No preemption, multiple observation, single class (NPMOSC)

3. No preemption, multiple observation, multi-class (NPMOMC)

4. Preemption, single observation, single class (PSOSC)

5. Preemption, multiple observation, single class (PMOSC)

6. Preemption, multiple observation, multi-class (PMOMC)

For these tests, 1 to 4 cameras were scheduled to observe up to 20 pedestrians. The pedestrians

enter the main waiting room of the station in groups of 10. Each group precedes the next

by about 150 scheduler control cycles. Each pedestrian spends anywhere from 850 to 1500

scheduler control cycles in the waiting room. The preemption cutoff time is set to 170.

Preemption appears to be useful when the camera to pedestrian ratio is small or when there

is a potential for cameras to continually record videos of the assigned pedestrians without

success (a surprisingly common occurrence in camera scheduling due to tracking/occlusion is-

sues). Scheduling without preemption has similar, or in some cases even higher, success rates

than those achieved with preemption when the camera-to-pedestrian ratio is large (e.g., in Fig-

ure 5.12(a), when 3 or 4 cameras are available to observe up to 20 pedestrians). The success

rates for no-preemption scheduling, however, drop rapidly as the number of available cameras
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is reduced, and no-preemption scheduling is outperformed by its preemption-savvy counter-

part; e.g., when 1 or 2 cameras are scheduled to observe 10 or 20 pedestrians (Figure 5.12(a)).

Single observation (SO) scheduling features better success rates than the corresponding

multiple observation (MO) scheduling, which can be attributed to the longer wait times for

the latter (Figure 5.12(b)), except when the multi-class pedestrian model is employed. Multi-

class pedestrian modeling can reduce the wait times as it enables the scheduler to focus on the

pedestrians that have been overlooked. When using MO scheduling, the lowest wait times are

obtained by combining multi-class pedestrian models with preemption. PMOMC scheduling,

for example, achieves wait times comparable to PSOSC with the added advantage of mul-

tiple observations. Our tests also confirm the intuition that multiple observation scheduling

yields better data (i.e., longer duration video tracks) than single observation scheduling (Fig-

ure 5.12(d)). PMOMC offers the highest lead times as a result of the highest number of pre-

emptions combined with high success rates (Figure 5.12(c)).

Our results suggest that PMOMC has the best overall performance: high success rates,

low wait times, and longer recorded video durations. NPSOSC has better success rates under

favorable circumstances—a good camera to pedestrian ratio and when all pedestrians have

similar processing requirements.

5.4 Summary

In this chapter, we introduced a scheduling strategy for intelligently managing multiple, un-

calibrated, active PTZ cameras, supported by several static, calibrated cameras, in order to

satisfy the challenging task of automatically recording close-up, biometric videos of pedestri-

ans present in a scene. We have found the PMOMC (preemption, multiple observation, multi-

class) scheduling scheme to be the most suitable one for this purpose. At present, predicting

pedestrian behaviors is at best an inexact science, so we have intentionally avoided scheduling

policies that depend on such predictions.
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In the next chapter, we will examine the problem of perceptive scene coverage for surveil-

lance and propose a sensor network framework particularly suitable for designing camera net-

works for surveillance applications.
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Figure 5.12: Comparison of various scheduler configurations. One to four cameras are sched-
uled to observe 10 or 20 pedestrians. Along the X-axis, letters ‘c’ and ‘p’ refer to the number of
cameras and pedestrians, respectively. E.g, ‘4c,10p’ denotes the test consisting of scheduling
4 cameras to observe 10 pedestrians. The results are averaged over 5 trials each.



Chapter 6

Perceptive Scene Coverage

Effective visual coverage of large public spaces, such as a train station or an airport, requires

multiple cameras to work together towards common sensing goals. As the size of the camera

network grows and the level of activity in the public space increases, it becomes infeasible

for human operators to monitor the multiple video streams and identify all events of possi-

ble interest, or even to control individual cameras in performing advanced surveillance tasks,

such as closely monitoring a pedestrian of interest as he meanders through the field-of-view

(FOV) of multiple cameras, or zooming in on a particular subject to acquire one or more facial

snapshots. It is, therefore, desirable to design camera networks that are capable of performing

visual surveillance tasks autonomously, or at least with minimal human intervention.

Many of the characteristics and challenges associated with sensor networks are relevant

to the work presented here. A fundamental issue in sensor networks is the selection of sensor

nodes that participate in a particular sensing task [Zhao et al. 2003]. The selection process must

take into account the information contribution of each node against its resource consumption

or potential utility in other uses. Distributed approaches for node selection are preferable to

centralized approaches that compromise what are perhaps the greatest advantages of networked

sensing—robustness and scalability. Also, in a typical sensor network, each sensor node has

local autonomy and can communicate with a small number of neighboring nodes that are within

92



CHAPTER 6. PERCEPTIVE SCENE COVERAGE 93

the radio communication range.

Mindful of these issues, we propose a novel camera network control strategy that does

not require camera calibration, a detailed world model, or a central controller. The overall

behavior of the network is the consequence of the local processing at each node and inter-node

communication. The network is robust to node and communication link failures; moreover, it

is scalable due to the lack of a central controller. Visual surveillance tasks are performed by

groups of one or more camera nodes. These groups, which are created on the fly, define the

information sharing parameters and the extent of collaboration between nodes. A group keeps

evolving—i.e., old nodes leave the group and new nodes join it—during the lifetime of the

surveillance task. One node in each group acts as the group leader and is responsible for group

level decision making. We also present a new constraint satisfaction problem formulation for

resolving group-group interactions.

We explain the low-level vision emulation and behavior models for camera nodes in Sec-

tion 6.1. Section 6.2 introduces the sensor network communication model. In Section 6.3, we

demonstrate the application of this model in the context of visual surveillance. We present our

results in Section 6.4.

6.1 Camera Node Behaviors

Each camera node is an autonomous agent capable of communicating with nearby nodes. The

LVRs determine the sensing capabilities of a camera node, whose overall behavior is deter-

mined by the LVR (bottom-up) and the current task (top-down). We model the camera con-

troller as an augmented hierarchical finite state machine (Figure 6.1).

In its default state, Idle, the camera node is not involved in any task. A camera node

transitions into the ComputingRelevance state upon receiving a queryrelevance message from

a nearby node. Using the description of the task that is contained within the queryrelevance

message and by employing the LVRs, the camera node can compute its relevance to the task.
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Figure 6.1: Top-level camera controller. Dashed states indicate embedded child finite state

machines similar to the one shown in Figure 4.15.

For example, a camera can use visual search to find a pedestrian that matches the appearance-

based signature passed by the querying node. The relevance encodes the expectation of how

successful a camera node will be at a particular sensing task. The camera returns to the Idle

state when it fails to compute the relevance due to the fact that it can not find a pedestrian that

matches the description. On the other hand, when the camera successfully finds the desired

pedestrian, it returns the relevance value to the querying node. The querying node passes the

relevance value to the leader (leader node) of the group, which decides whether or not to include

the camera node in the group. The camera goes into PerformingTask state upon joining a group

where the embedded child finite state machine hides the sensing details from the top-level

controller and enables the node to handle short-duration sensing (tracking) failures. Built-in

timers allow the camera node to transition into the default state instead of being frozen in a state

waiting forever for a message from another node. An expected message might never arrive due

to a communication error or node failure.

Each camera can fixate and zoom in on an object of interest. Fixation and zooming routines
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are image driven and do not require any 3D information, such as camera calibration or a global

frame of reference. We discovered that traditional Proportional Derivative (PD) controllers

generate unsteady control signals, resulting in jittery camera motions. The noisy nature of

tracking forces the PD controller to try continuously to minimize the error metric without ever

succeeding, so the camera keeps servoing. Hence, we model the fixation and zooming routines

as dual-state controllers. The states are used to activate/deactivate the PD controllers. In the

act state the PD controller tries to minimize the error signal; whereas, in the maintain state the

PD controller ignores the error signal altogether and does nothing.

The fixate routine brings the region of interest—e.g., the bounding box of a pedestrian—

into the center of the image by tilting the camera about its local x and y axes (Figure 4.16, Row

1). The zoom routine controls the FOV of the camera such that the region of interest occupies

the desired percentage of the image. We provide the details of the fixate and zoom routines in

Algorithms 4.17 and 4.18, respectively.

A camera node uses the reset routine to return to its default stance after finishing a task.

The reset routine is modeled as a PD controller that attempts to minimize the error between

the current zoom/tilt settings and the default zoom/tilt settings. We expect that for real PTZ

cameras this would not be enough due to parameter drifting: a common occurrence in real

hardware where the “true” setting of a parameter is not necessarily equal to the “dial” setting.

We do not expect it to be a major issue though, as the true and dial settings typically follow

each other closely; moreover, an image-based approach can drive the last stages of the reset

operation and discover the dependencies between the dial and true settings.

6.2 Sensor Network Model

We now explain the sensor network communication scheme that enables task-specific node

organization. The idea is as follows: A human operator presents a particular sensing request

to one of the nodes. In response to this request, relevant nodes self-organize into a group with
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Figure 6.2: Node grouping via task auction. Filled square nodes represent leaders, filled circle
nodes represent group nodes, and empty circle nodes represent nodes that are currently idle.
The red cross indicates a lost message.

the aim of fulfilling the sensing task. The group, which formalizes the collaboration between

member nodes, is a dynamic arrangement that keeps evolving throughout the lifetime of the

task. At any given time, multiple groups might be active, each performing its respective task.

Group formation is determined by the local computation at each node and the communication

between the nodes. We require each node to compute its relevance to a task in the same

currency. Our approach draws inspiration from behavior-based autonomous agents where the

popularly held belief is that the overall intelligent behavior is a consequence of the interaction

between many simple processes, called behaviors, rather than being the result of some powerful

central processing facility. We leverage the interaction between the individual nodes to generate

global task-directed behavior.

¿From the standpoint of user interaction, we have identified two kinds of sensing queries: 1)

where the queried sensor itself can measure the phenomenon of interest—e.g., when a human

operator selects a pedestrian to be tracked within a particular video feed—and 2) when the

queried node might not be able to perform the required sensing and needs to route the query

to other nodes. For instance, an operator can request the network to count the number of

pedestrians wearing Green shirts. Currently, the network supports only the first kind of queries,

which are sufficient for setting up collaborative tracking tasks.
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6.2.1 Node Grouping

Node grouping commences when a node n receives a sensing query. In response to the query,

the node sets up a named task and creates a single-node group. Initially, as node n is the only

node in the group, it is chosen as the leader node. To recruit new nodes for the current task,

node n begins by sending queryrelevance messages to its neighboring nodes, Nn. This is the

announcement phase. A subset N ′ of Nn respond by sending their relevance values for the cur-

rent task (relevance message). This is the bidding phase. Upon receiving the relevance values,

node n selects a subset M of N ′ to include in the group, and sends join messages to the cho-

sen nodes. This is the selection phase. When there is no resource contention between groups

(tasks)—e.g., when only one task is active, or when multiple tasks that do not require the same

nodes for successful operation are active—the selection process is relatively straightforward;

node n picks those nodes from N ′ that have the highest relevance values. On the other hand,

a conflict resolution mechanism is required when multiple groups vie for the same nodes; we

present a scheme to handle this situation in the next section. A node that is not already part of

any group can join the group upon receiving a join message from the leader of that group. After

receiving the join message, a subset M ′ of M elect to join the group. Figure 6.2 illustrates this

process.

For multinode groups, if a group leader decides to recruit more nodes for the task at hand,

it instructs group nodes to broadcast task requirements. This is accomplished via sending

queryrelevance to group nodes. The leader node is responsible for group-level decisions, so

member nodes forward to the group leader all the group-related messages, such as the relevance

messages from potential candidates for group membership. During the lifetime of a group,

group nodes broadcasts status messages at regular intervals. Group leaders use status messages

to update the relevance information of the group nodes. When a leader node receives a status

message from another node performing the same task, the leader node include that node into

its group. The leader node uses the most recent relevance values to decide when to drop a

member node (Figure 6.3(a)–(b)). A group leader also removes a node from the group if it
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(a) (b) (c) (d)

Figure 6.3: Group evolution. (a)-(b) A node leaves a group after receiving a leave message
from the group leader. (c)-(d) Current leader selects a new group leader and leaves the group.

has not received a status message from the node in some preset time limit.1 Similarly, a group

node can choose to stop performing the task when it detects that its relevance value is below

a certain threshold. When a leader detects that its own relevance value for the current task is

below the predefined threshold, it selects a new leader from amongst the member nodes and

leaves the group (Figure 6.3(c)–(d)). The group vanishes when the last node leaves the group.

Neighborhood of a node n typically consists of nodes that are at one hop distance from

n. This, however, is an implementation detail, as we can as easily define neighborhoods to

include nodes that are at multiple hop distance from n. It suggests that neighborhoods can

be dynamically defined, e.g., a node can grow its neighborhood to include faraway nodes, if

any of the adjacent nodes become irrelevant to the task at hand. One must bear in mind that

larger group sizes can have negative effect on the overall performance of the network. Larger

groups can potentially lead to more conflicts (with other groups) and larger groups have longer

response times due the time it takes for a message to be seen by every node in the group. For

the pedestrian following task, we expect group sizes to not exceed 10 or 12 cameras.

6.2.2 Conflict Resolution

1The relevance value of a group node is decayed over time in the absence of new status messages from that
node. Thus, we can conveniently model node dependent timeouts; i.e., the time duration during which at least one
status message must be received by the node in question.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Grouping and conflict resolution. (a) Group 1: A and B; possible candidate: C (b)
Group 1: A, B, and C; possible candidates: E, F, and D. Group 2: J and K; possible candidate: I.
(c) Group 1: E and C; possible candidates: H, F, D, and B. Group 2: J and I; possible candidate:
F and K. (d) Group 1: E and H; possible candidate C. Group 2: C and F; possible candidates: B,
D, G, I, and E. (e) Group 1 and 2 require the same resources, so Group 1 vanished; task failure.
(f) A unique situation where both groups successfully use the same nodes; e.g., imagine two
groups tracking two pedestrians that started walking together.

leaveleave

makesupmakesup

queryrelevancequeryrelevance

queryrelevancequeryrelevance
leaveleave

makesupmakesup

queryrelevancequeryrelevance

queryrelevancequeryrelevance

(a) (b)

Figure 6.5: (a) A leader node detects another leader performing the same task; leader/supervi-
sor demotion commences. (b) Conflict detection between two resources.
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A conflict resolution mechanism is needed when multiple groups require the same resources

(Figure 6.4(e)–(f)). The problem of assigning sensors to the contending groups can be treated

as a Constraint Satisfaction Problem (CSP) [Pearson and Jeavons 1997]. Formally, a CSP con-

sists of a set of variables {v1, v2, v3, · · · , vk}, a set of allowed values Dom[vi] for each variable

vi (called the domain of vi), and a set of constraints {C1, C2, C3, · · · , Cm}. The solution to the

CSP is a set {vi ← ai|ai ∈ Dom[vi]}, where the ais satisfy all the constraints.

We treat each group g as a variable, whose domain consists of the non-empty subsets of

the set of sensors with relevance values (with respect to g) greater than a predefined threshold.2

The constraints restrict the assignment of a sensor to multiple groups. Assume, for example, a

group g and a set of nodes {n1, n2, n3} with relevance values (with respect to g) {r1, r2, r3},

respectively. If r3 is less than the predefined threshold, the set of nodes that will be considered

for assignment to g is {n1, n2}, and the domain of g is the set {{n1}, {n2}, {n1, n2}}. We

define a constraint Cij as ai ∩ aj = {Φ}, where ai and aj are sensor assignments to groups gi

and gj , respectively; k groups give rise to k!/2!(k − 2)! constraints.

We can then define a CSP problem P = (G, D, C), where G = {g1, g2, · · · , gk} is the

set of groups (variables) with non-empty domains, S = {Dom[gi]|i ∈ [1, k]} is the set of

domains for each group, and C = {Cij|i, j ∈ [1, k], i '= j} is the set of constraints. To solve P ,

we employ backtracking to search systematically through the space of possibilities. When P

does not have a solution, we recursively solve smaller CSP problems P ′ = (G′, D′, C ′), where

G′ ⊂ G and D′ and C ′ are defined accordingly, until we find a solution to a smaller problem

P ′.

A node initiates the conflict resolution procedure upon identifying a group-group conflict;

e.g., when it intercepts a queryrelevance message from multiple groups, or when it already

belongs to a group and it receives a queryrelevance message from another group. The con-

flict resolution procedure begins by centralizing the CSP in one of the leader nodes that uses

2We can reduce the domain of a group g by drawing upon other sources of information. For example, domain
of a group g can be restricted based upon the minimum and maximum number of sensors that must be assigned
to it.
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backtracking to solve the problem. The result is then conveyed to the other leader nodes.

CSPs have been studied extensively in the computer science literature and there exist more

powerful variants of the basic backtracking method; however, we employ the naive backtrack-

ing approach in the interest of simplicity. Naive backtracking can easily cope with the size of

problems encountered in the current setting. A key feature of the conflict resolution scheme

proposed here is centralization, which requires that all the relevant information is gathered at

the node that is responsible for solving the CSP. For smaller CSPs, the cost of centralization

is easily offset by the speed and ease of solving the CSP. One can perhaps avoid centralization

by using a scheme for distributed CSPs [Yokoo 2001]. Methods for solving distributed con-

straint satisfaction problems are in general more difficult to implement and have much higher

communication requirements.

Solving CSP

Any solution of the above CSP problem P is a valid sensor node assignment; however, some

solutions are better than others as not all nodes are equally suitable for any given sensing task.

Node relevance value with respect to a group quantify the suitability of the node to the task

performed by that group, and we can view the quality of a solution as a function of the quality

of sensor assignments to different groups. In a restrictive setting, we can define the quality of

a solution to be the sum of the quality of sensor assignments to individual groups.

When it is not possible to measure the quality of a partial solution to that of a full solution,

we need to find all solutions, rank these solutions according to the relevance values for sensors

(with respect to each group), and select the best solution to find the optimal assignments. This

can be extremely costly and it is only feasible when the number of relevant nodes to a particular

group is small. Results presented in Tables 6.1 and 6.2 confirm this expectation. For example,

the total number of solutions remains manageable when we increase the number of interacting

groups from 2 to 10, given that the average number of relevant sensors to a group stays at 4. On

the other hand, the total number of solutions explodes and quickly becomes unmanageable as
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Test cases 1 2 3 4 5
Number of groups 2 4 6 8 10
Number of sensors per group 3 3 3 3 3
Average number of relevant sensors 4 4 4 4 4
Average domain size 4 4 4 4 4
Number of solutions 7 14 28 56 112
Nodes explored 12 54 138 306 642
Number of Backtracks 20 160 440 1000 2120
Solver used AllSolu AllSolu AllSolu AllSolu AllSolu

Table 6.1: Finding optimal sensor node assignment. Three nodes each are assigned to upto 10
interacting groups. The average number of relevant nodes for each group is 4. AllSolu finds all
solutions, rank them, and pick the best one.

we increase the number of relevant sensors, even when we are finding sensor assignments for

two groups only. This is to be expected given the relationship between the number of relevant

sensors to a group and the domain size for the corresponding variable in the CSP problem.

When the number of relevant sensors to a group is n, the domain size for the corresponding

variable in the CSP problem can be as large as 2n − 1.3

Alternately, when it is possible to compare the quality of a partial solution to that of a

full solution, we can store the best result so far and backtrack whenever the current partial

solution is of poorer quality. Using this strategy, we can guarantee an optimal solution under

the assumption that the quality of solutions increase monotonically as values are assigned to

more variables. For example, compare test cases 1 and 2 in Table 6.2. The goal was to assign

3 sensors each to the two groups. Optimal assignments were found in both cases; however,

BestSolu that employs backtracking based on the quality of the partial solution visited only 175

nodes to find the optimal solution as opposed to AllSolu that visited 29290 nodes. The same

trend is observed in columns 3 and 4 in Table 6.2. BestSolu solver clearly outperforms AllSolu

solver in finding the optimal node assignment. Of course, we can always choose the first

solution or pick the best solution after a pre-determined number of nodes have been explored

when operating under time/resource constraints.

3A set with n elements has 2n subsets including the Null set.
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(a) (b)

(c) (d)

Figure 6.6: 25 single node groups merge to form one 25 node group with a single leader. Each
node can directly communicate with its four neighbors. Leader demotion / group merging was
carried out using the strategy outlined in Figure 6.8. Cube nodes represent leader nodes and
spherical nodes represent group nodes.
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(a) (b)

(c) (d)

Figure 6.7: 25 single node groups merge to form one 25 node group with a single leader.
Communication graph is shown in (a). Leader demotion / group merging was carried out using
the strategy outlined in Figure 6.8. Cube nodes represent leader nodes and spherical nodes
represent group nodes. Blue nodes represent idle nodes.
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Test cases 1 2 3 4
Number of groups 2 2 2 2
Number of sensors per group 3 3 3 3
Average number of relevant sensors 12 12 16 16
Average domain size 220 220 560 560
Number of solutions 29290 9 221347 17
Nodes explored 29511 175 221908 401
Number of Backtracks 48620 36520 314160 215040
Solver used AllSolu BestSolu AllSolu BestSolu

Table 6.2: Finding optimal sensor node assignment. The problem is to assign three sensors
each to two groups. The average number of relevant nodes for each group is 12 and 16. AllSolu
finds all solutions, rank them, and pick the best one; whereas, BestSolu computes the optimal
solution by storing the best solution so far and backtracking when partial assignment yields a
poorer solution. As expected BestSolu outperforms AllSolu.

6.2.3 Node Failures & Communication Errors

The purposed communication model takes into consideration node and communication fail-

ures. Communication failures are perceived as sensor failures; for example, when a node is

expecting a message from another node, and the message never arrives, the first node con-

cludes that the second node is malfunctioning. A node failure is assumed when the leader node

does not receive a status from the node during some predefined interval, and the leader node

removes the problem node from the group. On the other hand, when a member node does not

receive any message (status or queryrelevance) from the leader node during a predefined inter-

val, it assumes that the leader node has experienced a failure and selects itself to be the leader

of the group. An actual or perceived leader node failure can therefore give rise to multiple

single-node groups performing the same task. Multiple groups assigned to the same task are

merged by demoting all of the leader nodes of the constituent groups, except one. Consider,

for example, a group comprising three nodes a, b, and c; node a being the leader node. When

a fails, b and c form two single-node groups and continue to perform the sensing task. In due

course, nodes b and c discover each other—e.g., when b intercepts a queryrelevance or a sta-

tus message from c—and they form a new group comprising b and c, demoting node c in the

process. Thus, our proposed communication model is able to handle node failures.
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Demotion is either carried out based upon the unique ID assigned to each node—among

the conflicting nodes, the one with the highest ID is selected to be the group leader—or when

unique node IDs are not guaranteed, demotion can be carried out via the process shown in

Figure 6.8. Figures 6.6 and 6.7 show two demotion sequences using the strategy outlined in

Figure 6.8.

The following observations suggest that our leader demotion strategy is correct; i.e., only a

single leader node survives the demotion negotiations, every other leader node is demoted.

• Observation 1: Demotion process between two leader nodes either succeeds or fails. It

succeeds when one of the two nodes is demoted. Demotion between two nodes is based

on the contention management scheme that was first introduced in ALOHA network

protocol [Kuo 1995]. ALOHA network protocol was developed in the late 60s and it is

a precursor to the widely used Ethernet protocol. In its basic version, ALOHA protocol

states

– if you have data to send, send it.

– if there is a collision, resend after a random interval.

We point the interested reader to [Murthy and Manoj 2004] for more details about the

ALOHA network protocol. What is important here is to note that eventually one of the

two leader nodes will be demoted, i.e., the demotion process between two nodes will

eventually succeed.

• Observation 2: Demotion process between more than two nodes involves repeated (dis-

tributed and parallel) application of the demotion process between two nodes.

6.3 Video Surveillance
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Assumptions: Nodes n and m are two leader nodes performing task 1.

Case 1: Node n receives a queryrelevance or status message from node m.

• Node n is not involved in demotion negotiations with another node then send demote
message to node m after a random interval.

Case 2: Node n receives a demote message from node m.

• Node n has not sent a demote message to another node then demote node n and send
demoteack message to node m.

• Node n has sent a demote message to node m then send demoteretry message to node m
and send a demote message to node m after a random interval.

• Node n has sent a demote message to another node then send a demotenack message to
node m.

Case 3: Node n receives a demotenack message from node m.

• Terminate demotion negotiations with node m.

Case 4: Node n receives a demoteack message from node m.

• Add m to node n’s group.

Case 5: Node n receives a demoteretry message from node m.

• Send a demote message to node m after a random interval.

Figure 6.8: Demotion negotiations

Let us now consider how a sensor network of dynamic cameras may be used in the context of

video surveillance (Figure 6.9). A human operator spots one or more suspicious pedestrians in

one of the video feeds and, for example, requests the network to “track this pedestrian,” “zoom

in on this pedestrian,” or “track the entire group.” The successful execution and completion of

these tasks requires intelligent allocation and scheduling of the available cameras; in particular,

the network must decide which cameras should track the pedestrian and for how long.

A detailed world model that includes the location of cameras, their fields of view, pedestrian

motion prediction models, occlusion models, and pedestrian movement pathways may allow



CHAPTER 6. PERCEPTIVE SCENE COVERAGE 108

Figure 6.9: A camera network for video surveillance consists of camera nodes that can com-
municate with other nearby nodes. Collaborative tracking requires that cameras organize them-
selves to perform camera handover when the tracked subject moves out of the sensing range of
one camera and into that of another.

(in some sense) optimal allocation and scheduling of cameras; however, it is cumbersome and

in most cases infeasible to acquire such a world model. Our approach does not require such

a knowledge base. We assume only that a pedestrian can be identified by different cameras

with reasonable accuracy and that the camera network topology is known a priori. A direct

consequence of this approach is that the network can easily be modified through removal,

addition, or replacement of camera nodes.

6.3.1 Computing Camera Node Relevance

The accuracy with which individual camera nodes are able to compute their relevance to the

task at hand determines the overall performance of the network. Our scheme for computing

the relevance of a camera to a video surveillance task encodes the intuitive observations that 1)

a camera that is currently free should be chosen for the task, 2) a camera with better tracking

performance with respect to the task at hand should be chosen, 3) the turn and zoom limits of

cameras should be taken into account when assigning a camera to a task; i.e., a camera that has

more leeway in terms of turning and zooming might be able to follow a pedestrian for a longer

time, and 4) it is better to avoid unnecessary reassignments of cameras to different tasks, as
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Status = s ∈ {busy, free}
Quality = c ∈ [0, 1]
Fov = θ ∈ [θmin, θmax] degrees
XTurn = α ∈ [αmin, αmax] degrees
YTurn = β ∈ [βmin, βmax] degrees
Time = t ∈ [0,∞) seconds
Task = a ∈ {ai|i = 1, 2, · · · }

Figure 6.10: The relevance metric returned by a camera node relative to a new task request.
The leader node converts the metric into a scalar value representing the relevance of the node
for the particular surveillance task.

that might degrade the performance of the underlying computer vision routines.

Upon receiving a task request, a camera node returns to the leader node a relevance metric—

a list of attribute-value pairs describing its relevance to the current task along multiple dimen-

sions (Fig. 6.10). The leader node converts this metric into a scalar relevance value r as follows:

r =






exp
(
− (c−1)2

2σc
2 − (θ−θ̂)2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)

when s = free

t
t+γ when s = busy

(6.1)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and β̂ = (βmin + βmax)/2, and where θmin and

θmax are extremal field of view settings, αmin and αmax are extremal rotation angles around the

x-axis (up-down), and βmin and βmax are extremal rotation angles around the y-axis (left-right).

Here, 0.3 ≤ σc ≤ 0.33, σθ = (θmax−θmin)/6, σα = (αmax−αmin)/6, and σβ = (βmax−βmin)/6.

The value of γ is chosen empirically (for our experiments we have selected γ to be 1000).

The computed relevance values are used by the node selection scheme described above

to assign cameras to various tasks. The leader node gives preference to the nodes that are

currently free, so the nodes that are part of another group are selected only when an insufficient

number of free nodes are available for the current task.

6.3.2 Surveillance Tasks
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We have implemented an interface that presents the operator a display of the synthetic video

feeds from multiple virtual surveillance cameras (c.f., Figure 2.2). The operator can select a

pedestrian in any video feed and instruct the camera network to perform one of the following

tasks: 1) follow the pedestrian, 2) capture a high-resolution snapshot, or 3) zoom-in and follow

the pedestrian. The network then automatically assigns cameras to fulfill the task requirements.

The operator can also initiate multiple tasks, in which case either cameras that are not currently

occupied are chosen for the new task or some cameras are reassigned to the new task.

6.4 Results

To date, we have tested our visual sensor network system with up to 16 stationary and pan-

tilt-zoom cameras, and we have populated the virtual Penn station with up to 100 pedestrians.

The sensor network correctly assigned cameras in most cases. Some of the problems that we

encountered are related to pedestrian identification and tracking. As we increase the number

of virtual pedestrians in the train station, the identification and tracking module has increasing

difficulty following the correct pedestrian, so the surveillance task fails (and the cameras just

return to their default settings).

For the example shown in Figure 6.11, we placed 16 active PTZ cameras in the train station,

as shown in Figure 2.3. An operator selects the pedestrian with the red shirt in Camera 7 (Fig-

ure 6.11(e)) and initiates the “follow” task. Camera 7 forms the task group and begins tracking

the pedestrian. Subsequently, camera 7 recruits camera 6, which in turn recruits cameras 2 and

3 to track the pedestrian. Camera 6 becomes the leader of the group when camera 7 loses track

of the pedestrian and leaves the group. Subsequently, camera 6 experiences a tracking failure,

sets camera 3 as the group leader, and leaves the group. Cameras 2 and 3 track the pedestrian

during her stay in the main waiting room, where she also visits a vending machine. When

the pedestrian starts walking towards the concourse, cameras 10 and 11 take over the group

from cameras 2 and 3. Cameras 2 and 3 leave the group and return to their default modes.
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(a) Cam 1; 30s (b) Cam 9; 30s (c) Cam 7; 30s (d) Cam 6; 30s (e) Cam 7; 1.5min

(f) Cam 7; 2min (g) Cam 6; 2.2min (h) Cam 6; 3min (i) Cam 7; 3.5min (j) Cam 6; 4.2min

(k) Cam 2; 3min (l) Cam 2; 4.0min (m) Cam 2; 4.3min (n) Cam 3; 4min (o) Cam 3; 5min

(p) Cam 3; 6min (q) Cam 3; 13min (r) Cam 10; 13.4min (s) Cam 11; 14min (t) Cam 9; 15min

Figure 6.11: A pedestrian is successively tracked by cameras 7, 6, 2, 3, 10, and 9 (see Fig. 2.3)
as she makes her way through the station to the concourse. (a-d) Cameras observing the station.
(e) Operator selects a pedestrian in feed 7. (f) Camera 7 has zoomed in on the pedestrian, (g)
Camera 6, which is recruited by camera 7, acquires the pedestrian. (h) Camera 6 zooms in on
the pedestrian. (i) Camera 7 reverts to its default mode after losing track of the pedestrian—it
is now ready for another task (j) Camera 6 has lost track of the pedestrian. (k) Camera 2. (l)
Camera 2, which is recruited by camera 6, acquires the pedestrian. (m) Camera 2 tracking the
pedestrian. (n) Camera 3 is recruited by the camera 6; camera 3 has acquired the pedestrian.
(o) Camera 3 zooming in on the pedestrian. (p) Pedestrian is at the vending machine. (q)
Pedestrian is walking towards the concourse. (r) Camera 10 is recruited by camera 3; camera
10 is tracking the pedestrian. (s) Camera 11 is recruited by camera 10. (t) Camera 9 is recruited
by camera 10.
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(a) (b) (c) (d) (e)

Figure 6.12: “Follow” sequence. (a) The operator selects a pedestrian in Camera 1 (upper row).
(b) and (c) Camera 1 and Camera 2 (lower row) are tracking the pedestrian. (d) Camera 2 loses
track. (e) Camera 1 is still tracking; Camera 2 has returned to its default settings.

Later camera 11, which is now acting as the group’s leader, recruits camera 9, which tracks the

pedestrian as she enters the concourse.

Figure 6.12 illustrates a “follow” task sequence. An operator selects the pedestrian with

the green shirt in Camera 1 (top row). Camera 1 forms a group with Camera 2 (bottom row)

to follow and zoom in on the pedestrian. At some point, Camera 2 loses the pedestrian (due to

occlusion), and it invokes a search routine, but it fails to reacquire the pedestrian. Camera 1,

however, is still tracking the pedestrian. Camera 2 leaves the group and returns to its default

settings.

Figure 6.13 displays video surveillance panel showing video feeds from four uncalibrated

active PTZ cameras situated at the corners of the waiting room of the virtual train station.

The user selects a pedestrian in Camera 1 by drawing a rectangle around it (Top-left feed in

Figure 6.13(b)). Camera 1 computes the appearance signature (i.e., color histogram) of the

pedestrian and broadcasts it to the neighboring cameras. Cameras 2, 3, and 4 successfully

locate the pedestrian using its appearance signature (Figure 6.13(c)). The four cameras form a

group and zoom in on the pedestrian to capture close-up video (Figure 6.13(d)).

Figure 6.14 displays video surveillance panel showing video feeds from four calibrated
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(a)

Selected Pedestrian

(b)

Pedestrian

Pedestrian
Pedestrian

(c) (d)

Figure 6.13: Video surveillance panels showing video feeds from four uncalibrated active PTZ
cameras located at the corners of the waiting room in the virtual train station (counter-clockwise
from top-left is video feed from cameras 1, 3, 4, and 2).
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(a)

Selected Pedestrian

(b)

Pedestrian
Pedestrian

Pedestrian
not found

(c) (d)

Figure 6.14: Video surveillance panels showing video feeds from four calibrated wide-FOV
cameras located at the corners of the waiting room in the virtual train station (counter-clockwise
frop top-left is video feed from cameras 1, 3, 4, and 2).
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wide-FOV cameras situated at the corners of the waiting room of the virtual train station.

The user selects a pedestrian in Camera 1 by drawing a rectangle around it (Top-left feed in

Figure 6.14(b)). Camera 1 computes the appearance signature (i.e., color histogram) of the

pedestrian and broadcasts it to the neighboring cameras. Cameras 3 and 4 successfully locate

the pedestrian using its appearance signature (Figure 6.14(c)). Cameras 1, 3, and 4 form a

group and track the pedestrian.

6.4.1 Larger Sensor Network Simulations

We now present several simulations of larger sensor networks outside our virtual vision simu-

lator.

We have tested the sensor network communication model under various conditions with up

to 400 sensor nodes. Figure 6.15 shows a sensor network consisting of 400 nodes on a 20 by

20 uniform grid. Each node can communicate with its 4-neighbors. A node can communicate

with any other node in the network via multi-hop messaging. The user tasks the bottom-left

node to follow the target shown as a cyan cone.4 The bottom left node elects itself as the

leader and begins recruiting other sensor nodes (Figure 6.15(a)). Leader nodes are shown as

squares (cubes). The group evolves by recruiting new nodes, dropping member nodes that are

no longer relevant, and selecting new leaders in response to the change in target’s location

(Figure 6.15(b)). When the target splits into two, the group successfully splits into two groups,

each with its own leader, to follow the target (Figure 6.15(c)–(e)). It is important to note

that group splitting occurs naturally in our protocol and does not require any special handling.

Furthermore, the two groups do not need to communicate with each other. As targets converge

upon each other, the two groups discover each other and merge demoting one of the leaders

(Figure 6.15(f)–(h)). The protocol successfully handled both leader and member node failures

and kept evolving to follow the target (Figure 6.15(i)–(l)).

Figure 6.16 shows a sensor network similar to that shown in Figure 6.15. The user tasks

4It appears as the cyan circle in Figure 6.15.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.15: Group splitting and merging. Green nodes represent idle sensor nodes, blue nodes
represent sensor nodes that are currently engaged in the task of following the target denoted by
a cyan cone. The target appears as a cyan circle in the top view of the sensor grid shown here.
Square nodes represent group leaders and black nodes represent failed nodes. Each node can
communicate with its 4-neighbor.
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(a) (b) (c)

(d) (e) (f)

Figure 6.16: Simultaneous node failures.

the bottom-left node to follow the target shown as a cyan cone (Figure 6.16(a)). The network

successfully handled node failures shown as black nodes around the center of the image in

Figure 6.16(b). These node failures were generated randomly along the path of the target.

The group of black nodes in the top right corner of Figure 6.16(c) show coordinated node

failures along the path of the target. Our system was not able to handle this error as seen in

Figure 6.16(d) where no node is following the target. However, at this stage an operator can

retask another node to observe the target Figure 6.16(e)–(f). Simultaneous failures of relevant

nodes typically have catastrophic effects, as these sever the communication backbone of the

sensor network.

Figure 6.17 shows a sensor network of 50 nodes placed randomly in a 25 square m area. The

nodes that are within 5 m of each other can directly communicate with each other. Each node

can communicate with another node in the network through multi-hop routing. Figure 6.17(a)–

(e) shows group merging. When the leader of the group fails (Figure 6.17(f)), multiple member

nodes assume leadership (Figure 6.17(g)). These nodes negotiate with each other to select a

single leader (Figure 6.17(h)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.17: Group merging and leader failure. Blue nodes are idle. Red nodes are following
the targets. Pink cones represent targets. Square nodes represent group leaders and black nodes
indicate node failures.



CHAPTER 6. PERCEPTIVE SCENE COVERAGE 119

6.4.2 Discussion

Given the above results, we make the following observations:

• The proposed protocol successfully forms camera groups to carry out various observa-

tion tasks. Cameras that belong to a single group collaborate with each other for the

purposes of carrying out the observation task. Currently we support a small number of

observation tasks that are of interest to the visual surveillance community. These are 1)

taking snapshots of a pedestrian, 2) closely observing a pedestrian during his/her stay in

the designated region, and 3) following a pedestrian across multiple cameras.

• Camera grouping does not require camera calibration or camera network topology in-

formation, which makes our system suitable for ad hoc deployment. This is not to say

that the proposed protocol cannot take advantage of camera calibration and/or camera

network topology information, if such information were available. For example, a leader

node can use this information for targeted announcements of observation tasks to the

relevant nodes, thereby reducing bandwidth consumption.

• Camera grouping is strictly a local negotiation between the relevant nodes. It is inde-

pendent of the total number of nodes in the network, and it does not require a central

controller.

• Cameras have a limited field of regard, and as long as the observation tasks are localized,

we expect that the cameras that are relevant to an observation task will be close to one

another. This suggests that camera groups are spatially local arrangements. It is impor-

tant to note that groups that are spread over a large area are undesirable as they have

much higher maintenance costs (e.g., in terms of communications).

• Camera groups are dynamic and transient arrangements that evolve in order to perform

an observation task. Like group formation, group evolution is a negotiation between the

relevant nodes.
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• Camera handoff occurs naturally during negotiations.

• The proposed protocol can deal with node and message failures. Failed nodes are dropped

from the group and failed leaders are replaced by new leaders, who themselves select a

single leader through leader demotion (group merging) activity. This suggests that the

network protocol can handle addition and removal of camera nodes during the lifetime

of an observation task.

• Assuming that each (camera) node is a perfect sensor, the proposed protocol still might

fail to carry out an observation task. It can happen when a large fraction of nodes fail or

a significant fraction of messages are lost. Large scale catastrophic node failures sever

the communication paths in the network and can only be dealt with by replacing failed

nodes. We can handle message loss by drawing upon the techniques developed in the

computer networks.

• The proposed protocol might also fail to carry out an observation task even when each

(camera) node is assumed to be a perfect sensor if the group evolution cannot keep up

with a fast changing observation task (e.g., a pedestrian who is walking too fast and

who spends little time in the field of regard of any single camera). Group formation and

group evolution are not instantaneous processes. Response times for group formation

and evolution are intimately tied to the characteristics of the underlying communication

system. Longer message delays will result in sluggish overall performance.

• Smaller group sizes are preferable than larger group sizes, as larger group sizes have

slower responses. For example, group formation requires at least three messages (queryrel-

evance, relevance, and join) to be exchanged between two adjacent nodes, more when

multiple nodes are involved or if the two nodes are at multi-hop distance from each

other. Similarly, group evolution requires multiple messages. The failure of a leader

node begins leader demotion (group merging) activity that requires anywhere from a

single message for the two node case to hundreds of messages when multiple nodes
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are involved (the pathological scenarios shown in Figures 6.6 and 6.7 exchange roughly

1500 messages to form a single leader group comprising 25 nodes). The conflict res-

olution scheme also requires multiple messages for centralization and sending out the

assignments to various nodes.

• The CSP formulation of the conflict resolution strategy can handle multiple interacting

groups as long as the number of relevant sensors for any group remains small (fewer

than 10). This is in line with our previous observations that small group sizes are prefer-

able. The conflict-resolution-driven sensor assignment strategy proposed in this thesis

will be unable to find an optimal sensor assignment when a large number of nodes are

involved. Our scheme can find the optimal assignment without enumerating all feasible

assignments when the quality of an assignment increases monotonically as more tasks

are assigned cameras.

• Camera node aggregation is fully distributed and lacks a central controller, so it is scal-

able. Sensor assignment in the presence of conflicts, however, is centralized over the

involved groups. Our scheme, therefore, lies somewhere between a fully distributed and

a fully centralized system. In the interest of scalability, group sizes should be kept small.



Part II

Intelligent Perception for Space Robotics
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Chapter 7

Introduction and Motivation

Since the earliest days of the field, computer vision researchers have struggled with the chal-

lenge of effectively combining low-level vision with classical artificial intelligence (AI). Some

of the earliest work led to robots that combined image analysis and symbolic AI [Roberts 1965;

Nilsson 1984]. The vision problem is hard, however, and these early attempts met with lim-

ited success; hence, the focus of vision research shifted from developing vertically-integrated

vision systems to the development of faster, more robust low-level vision modules. Such mod-

ules were combined with behavior-based control mechanisms to create autonomous robotic

agents that inhabit and pursue their agendas in the real world [Brooks 1986b; Arkin 1990].

Using their sensors and low-level vision modules, these autonomous agents were able to per-

ceive their surroundings and they are able to react appropriately using their actuators. Unlike

the earliest systems, however, behavioral robots did not aspire to be truly intelligent in com-

plex, unpredictable environments, because they could not acquire knowledge about themselves

and their environments and exploit this knowledge to reason and plan their actions. Interest

began to shift to cognitive robotics [Levesque and Reiter 1998; Giacomo et al. 1998], whose

top-down deliberative processes are able to support reasoning and planning. This has resulted

in more intelligent autonomous robots, such as MINERVA [Burgard et al. 1999].

There is a pressing need to develop autonomous robots for space robotics. For example,
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on-orbit satellite servicing operations are currently carried out manually; i.e., by an astronaut.

However, manned missions are usually very costly and there are human safety concerns.1 Fur-

thermore, it is currently impracticable to carry out manned on-orbit servicing missions for

satellites in geosynchronous equatorial orbit (GEO), as the space shuttle cannot reach them.

Unmanned, tele-operated, ground-controlled missions are infeasible due to communications

delays, intermittence, and limited bandwidth between the ground and the servicer. A viable

alternative is to develop the capability of autonomous on-orbit satellite servicing.

A critical first phase of any on-orbit satellite servicing mission, be it for the purpose of

refueling, reorbiting, repairing, etc., involves rendezvousing and docking with the satellite.

From the perspective of the software responsible for controlling the sensory apparatus and

robotic manipulator, the rendezvousing step is the most interesting and challenging. Once the

satellite is secured, we can assume a static workspace and handle the remaining steps using

more primitive scripted controllers [Gillett et al. 2001]. Most national and international space

agencies realize the important role of autonomous rendezvous and docking (AR&D) operations

in future space missions and now have technology programs to develop this capability [Wertz

and Bell 2003; Gurtuna 2003].

Autonomy entails that the on-board controller be capable of estimating and tracking the

pose (position and orientation) of the target satellite and guiding the robotic manipulator as it

1) approaches the satellite, 2) maneuvers itself to get into docking position, and 3) docks with

the satellite. The controller should also be able to handle anomalous situations, which might

arise during an AR&D operation, without jeopardizing its own safety or that of the satellite.

Another requirement that is desirable for space operations is that of sliding autonomy, where

a human operator can take over the manual operation of the robotic system at any level of the

task hierarchy [Sellner et al. 2006; Brookshire et al. 2004]. Sliding autonomy enhances the

reliability of a complex operation and it expands the range and complexity of the tasks that a

1The Hubble telescope captured the imagination of the public during its highly publicized repair missions,
which were carried out by astronauts. By some estimates, these repairs cost taxpayers as much as $12 billion.
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robotic system can undertake.

7.1 Vision-based AR&D System and CoCo

In this part of the thesis, we will develop a visually-guided AR&D system and validate it in a

realistic laboratory environment that emulates on-orbit lighting conditions and target satellite

drift. To our knowledge, ours is the only AR&D system that uses vision as its primary sensory

modality and can deal with an uncooperative target satellite. Other AR&D systems either deal

with target satellites that communicate with the servicer craft about their heading and pose, or

use other sensing aids, such as radar and geostationary position satellite systems [Polites 1998].

Our system features the cognitive controller, called CoCo, a new hybrid robot control

framework that combines a behavior-based reactive component and a logic-based delibera-

tive component. CoCo is designed from the ground up, keeping in mind the special needs

of a vision-based robot, such as real-time mental state maintenance, and it draws upon prior

work in bio-mimetic virtual characters [Tyrrell 1993; Tu and Terzopoulos 1994; Funge et al.

1999] and hybrid reactive/deliberative autonomous robots [Gat 1992; Connell 1992]. Its moti-

vation comes from the fact that humans, who are sophisticated autonomous agents, are able to

function in complex environments through a combination of reactive behavior and deliberative

reasoning. We demonstrate that CoCo is useful in advanced robotic systems that require or

can benefit from highly autonomous operation in unknown, non-static surroundings, especially

in space robotics where large distances and communication infrastructure limitations render

human teleoperation exceedingly difficult. In a series of realistic laboratory test scenarios,

we subject our CoCo AR&D system to anomalous operational events, forcing its deliberative

component to modify existing plans in order to achieve mission goals. The AR&D controller

demonstrates the capacity to function in important ways in the absence of a human operator.

Our AR&D prototype meets the operational requirements by controlling the visual process

and reasoning about the events that occur in orbit. The system functions as follows: First,
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captured images are processed to estimate the current position and orientation of the satellite

(Figure 1.4). Second, behavior-based perception and memory units use contextual information

to construct a symbolic description of the scene. Third, the cognitive module uses knowledge

about scene dynamics encoded using the situation calculus to construct a scene interpretation.

Finally, the cognitive module formulates a plan to achieve the current goal. The scene descrip-

tion constructed in the third step provides a mechanism to verify the findings of the vision

system. Its ability to plan enables the system to handle unforeseen situations.

The performance of the system results from the cooperation of its components, including

low-level visual routines, short and long-term memory processing, symbolic reasoning, and the

servo controllers of the robotic arm used to capture the satellite. Competent, reliable low-level

visual routines are essential for meaningful higher-level processing. Consequently, the AR&D

system depends upon the reliable operation of the low-level object recognition, tracking, and

pose-estimation routines. The AR&D system is able to handle transient errors in the low-level

visual routines, such as momentary loss of tracking, by using short-term memory facilities.

The high-level routines can also invoke visual search behaviors to re-acquire the target satellite,

and the mission can proceed as planned if the target is successfully re-acquired. However, the

system cannot accomplish the task when the low-level vision algorithms altogether fail to track

the satellite, in which case the high-level routines abort the mission.

Stable servoing routines that account for the manipulator’s dynamics are vital for a suc-

cessful AR&D mission. Hence, the AR&D prototype developed here assumes that the robotic

arm can servo competently under the guidance of the higher level modules. Although we have

not proved the correctness of the reasoning module, it appears in practice to meet the task

requirements—autonomous and safe satellite rendezvous and docking.2

The performance of an intelligent vision system is closely tied to the capabilities of its

components: low-level visual routines, short- and long-term memory processing, and sym-

2Our reasoning modules are GOLOG programs (Section 9.5). Quoting [Levesque et al. 1997], “A GOLOG
program macro-expands to a situation calculus sentence, we can prove the properties of this program (termination,
correctness, etc.) directly within situation calculus.”
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bolic reasoning. Reliable low-level visual routines are essential for meaningful higher-level

processing. Early attempts at designing high-level vision systems failed because of the lack

of competent low-level visual algorithms. Consequently, the cognitive vision system depends

upon the reliable operation of the object recognition, tracking, and pose-estimation routines.

The cognitive vision system is able to handle short-duration errors in the low-level visual rou-

tines, such as momentary loss of tracking, by using short-term memory facilities. However,

it cannot accomplish the task when the low-level vision algorithms altogether fail to track the

satellite, in which case the high-level routines aborts the mission. The reasoning module meets

the task requirements in practice: autonomous and safe satellite rendezvous and docking.



Chapter 8

Related Work

In this chapter, we first briefly review the state of the art in space robotics, then we examine the

interplay between vision and robotic control, and we follow that by a detailed examination of

the relevant literature in robot control architectures, ethological modeling for virtual characters,

and cognitive robotics. We conclude the chapter by differentiating our CoCo architecture from

prior robot control architectures.

8.1 Space Robotics

Robots are an invaluable tool for space exploration, where distances are too large and envi-

ronments too hostile to send humans. Furthermore, robots are also indispensable in manned

missions. Before the famous Apollo Moon Missions, Surveyor landers were sent to the moon

to send back images and soil analysis data (circa 1966–1968). Surveyor landers were remotely

operated from Earth and were equipped with a robotic are to collect soil samples from the

moon surface.

In 1970, the U.S.S.R. sent the first space rover, Lunakhod 1, to explore the surface of the

moon. Lunakhod was remotely operated by Soviet scientists using onboard television cameras.

Upon detecting a possible tip-over, it would automatically stop and wait for a signal from the

ground situation room. This is perhaps the first use of onboard autonomy in space robotics.
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Remotely operated vehicles are not restricted to space landers (Surveyor) and space rovers

(Lunakhod). They also include unmanned deep space probes, such as the Voyager space-

craft. Launched in 1977, Voyager has already travelled 2.8 billion miles! Unmanned deep

space probes are continuously monitored and controlled from earth, yet the large distances

render real-time control infeasible. Consequently, these vehicles have limited capabilities of

autonomous operation.

In addition to remotely operated vehicles, remote manipulator systems have found wide

spread used in space missions. Remote manipulator systems are robotic arms, equipped with

cameras and grappling mechanisms, that are remotely controlled by earthbound humans or as-

tronauts. To date, robotic arms have been employed in a wide variety of situations, ranging

from collecting extraterrestrial soil samples, in-orbit assembly tasks, satellite orbiting and re-

trieving tasks, and as a positioning and anchoring device for astronauts during Extra Vehicular

Activity (EVA) missions. We point the interested reader to [NASA 2005], which presents a

historic account of the important milestones in space exploration.

8.1.1 The Need for Increased Autonomy

Currently, nearly every spacecraft is closely monitored and controlled by highly skilled personnel—

earthbound operators or astronauts in space. The dominant view is that every aspect, however

minor, of a space mission should be controlled by a human operator. Increased autonomy is

seen as a means to reduce dependence on human operators. Here, human operators set high-

level mission goals, and the spacecraft takes care of low-level details to achieve the goals,

handling anomalous situations as they arise. Autonomous spacecraft promise to increase space

mission capabilities by many orders of magnitude. While in almost all cases increased au-

tonomy is advantageous as it reduces dependencies on a human operator; in others, it is a

necessity. For example, on-orbit satellite servicing is a class of space missions that stands to

gain significantly from increased onboard autonomy.

Historically, space agencies have been suspicious of AI technologies, as they threaten to re-
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place human judgement in space operations. However, more recently various research projects

have been initiated to develop AI technology for space operations. We now briefly survey

autonomy-related projects carried out by the space exploration community over the last two

decades.

8.1.2 Autonomy Initiatives in Space Exploration

Telerobotics Testbed Project: In the mid 1980s, NASA started the Telerobotics Testbed

project. The goal was to research and develop proof-of-concept projects for supervised, au-

tomatic satellite servicing [Schenker 1988]. A robotic arm was demonstrated automatically

docking with a mockup satellite in a realistic, zero-gravity setting. An array of five cameras

estimated the position and orientation of the target satellite and servoed the robotic manipu-

lator to dock with the target. The Telerobotic Testbed was a large research effort, consisting

of many disparate modules, and was eventually abandoned in favour of smaller, more focused

manipulator teleoperation projects [Backes et al. 1993]. Very little of the Telerobotic Testbed

project survives today.

Microrovers for Extraterrestrial Exploration: Around the same time, a number of efforts

were underway to design a semi-autonomous mobile rover for extraterrestrial exploration. The

desire was to go beyond remotely teleoperated rovers, such as Lunakhod, the Soviet rover that

had visited Moon some 15 years earlier. The first Mars Rover, Robby [Wilcox et al. 1992],

followed the Sense-Model-Plan-Act (SMPA) paradigm and was soon abandoned in favour of

smaller, cheaper mobile robots, called Microrovers [Hayati et al. 1997]. Microrovers are re-

active robots capable of semi-autonomous operation, and they turned out to be much more

competent than Robby. A microrover, Sojourner, reached Mars on the Pathfinder mission in

1997 [Matijevic and Shirley 1997]. Sojourner is a teleoperated robot capable of way-point

navigation and obstacle avoidance. However, it cannot wander very far from its mothership

(< 5m), the Pathfinder lander, as the waypoints are selected in the 3D stereo images from the
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Pathfinder lander.

Spirit and Opportunity Rovers: The state of the art in space rovers is the Mars exploration

rovers, Spirit and Opportunity, that reached Mars in January 2004 [NASA 2004]. Both rovers

were sent to sites on opposite sides of Mars to search for answers regarding the history of water

on Mars. The initial goal for each rover was to travel 1 kilometer, which has been exceeded

by far. These are autonomous robots that are capable of taking pictures, driving around while

avoiding collisions, and carrying out scientific experiments in response to commands transmit-

ted from the ground, but they lack any cognitive or reasoning abilities. Unlike the Sojourner

rover, Spirit and Opportunity can automatically carry out scientific experiments using their on-

board instruments. Each rover is equipped with three monochrome cameras that allow them to

see their environments and navigate around obstacles.

On-orbit Satellite Servicing: As argued earlier, the space community is interested in au-

tonomous on-orbit satellite servicing capabilities. During the course of our presence in space,

only a tiny fraction of satellites have been serviced in orbit. Currently available teleoperated

and manned approaches are either infeasible or too costly for most satellite servicing opera-

tions. Consequently, on-orbit satellite servicing has been restricted to some of the most ex-

pensive space infrastructure, such as the Hubble Space telescope and the International Space

Station. Less expensive satellites, or those that reside in higher orbits, are generally disre-

garded.

ETS-7 Mission: The ETS-7 mission carried out by the Japanese AeroSpace Exploration

Agency (JAXA) is the first on-orbit satellite rendezvous mission that demonstrated the via-

bility of unmanned, automated satellite capture. A chaser satellite (Hikoboshi) equipped with

a robotic arm and a target satellite (Orihme) were launched together [Kasai et al. 1999].1 GPS

1Hikoboshi and Orihme is Japanese for “hunter boy” and “weaver girl”, two lovers from an old Japanese love
story. Separated by the milky way, they are allowed to meet each other only once per year.
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receivers (GPSR), rendezvous laser radar (RVR), and a proximity sensor (PXS) are used to

estimate the relative position of the two satellites. The on-board Guidance Control Computer

(GCC) can handle sensor and communication failures by invoking a collision avoidance behav-

ior that moves the chaser satellite away from the target. Lack of deliberation and reliance on

other GPS constellations for estimating the position and orientation of the target renders this

scheme brittle. Nevertheless, this is first in-orbit, automated satellite capture demonstration.

We refer the reader to [Kasai et al. 1999] for more details.

Teleoperated On-orbit Servicing: Prior to the ETS-7 mission, the focus was on improving

teleoperated on-orbit servicing missions via accounting for the communication lag between the

ground station and the servicer craft [Fagerer et al. 1994]. Similarly, efforts since ETS-7 have

focused on teleoperated on-orbit servicing. We point the reader to [Landzettel et al. 2006] for

more details.

Orbital Express: NASA initiated the Orbital Express program to research and develop au-

tonomous on-orbit servicing capabilities [Kennedy 2006]. The work presented in the second

part of this thesis was done while working with MDRobotics Ltd. (now MDA Space Missions)

in Brampton, Ontario, and it helped Boeing2 win the Orbital Express program.3

8.2 Vision and Control

Computer vision and autonomous robots are among the earliest applications of artificial intel-

ligence. Vision-guided robots has been a major field of research for the last three decades. To

operate in its blocks’ world, Shakey—the first robot that reasoned about its actions—employed

TV cameras in addition to tactile and sonar sensors. Vision, as a sensing modality, has many

2Boeing: www.boeing.com (Last accessed on 25 January 2007)
3News item: www.mdacorporation.com/news/pr/pr2002051301.html (Last accessed on 25

January 2007)
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desirable properties, including its long range, as well as the fact that it is a passive, non-invasive

modality. Consequently, vision has appeared in many mobile robotic systems.

Mobile robotic systems have employed vision for the purposes of visual navigation [Hor-

swill 1995; Pomerleau 1997], vision-based localization and mapping [Karlsson et al. 2005; Se

et al. 2001], ego-motion estimation [Yagi et al. 2000], and searching and tracking objects. Gen-

erally speaking, mobile robotic systems employ additional sensors to assist with the perception

process, such as sonars and laser range-finders. In some cases visual sensing is employed to

handle situations that cannot be addressed using, say, sonars. For example, RHINO uses vision

to identify noise absorbing obstacles [Buhmann et al. 1995]. Reference [Desouza and Kak

2002] provided a recent survey of vision-based mobile robots.

The work on vision-based mobile robots falls into two broad categories. At one extreme,

the focus has been to understand and solve “the vision problem” from the point of view of

an active observer; whereas, at the other extreme, vision, which is but one of many sensory

modalities, is relegated to a secondary position. PLAYBOT [Dickinson et al. 1993; Tsotsos

et al. 1998] and Autonomous Land Vehicle [Dickinson and Davis 1988; Dickinson and Davis

1990; Davis et al. 1992] are notable exceptions; they combine bottom-up, data-driven visual

processing with top-down, goal-directed behavior.

As early as the 1970s, vision was used to control robotic manipulators in assembly jobs,

inspection tasks, pick-and-place tasks, and material handling jobs, to name a few. Blind robots

that are unable to perceive their environments are brittle and they can only operate in highly

structured, engineered environments. Consequently, researchers propose equipping manipula-

tors with sensory capabilities—typically tactile or visual—that would allow the robots to per-

ceive their environment and act accordingly. As stated earlier, early work on integrating vision

and control followed the SMPA cycle. These initial attempts at integrating vision with control

are called a static “Look and Move.” Weiss demonstrated that visual feedback can provide

closed-loop position control of a robotic manipulator, bypassing the complex scene interpre-

tation stage. This style of control is called visual servoing [Hill and Park 1979; Weiss 1984].
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Reference [Kragic and Christensen 2002] provides a survey of the visual servoing literature.

Visual servo systems can be classified depending upon the number of cameras and their

positions. Single camera systems are cheaper, whereas multi-camera systems can help with the

vision problem. Cameras can be mounted on the end-effector to construct what are called eye-

in-hand systems. Alternately, in out-of-hand configurations, cameras observe the robotic ma-

nipulator from a third person’s perspective. One can also design hybrid systems by combining

eye-in-hand and out-of-hand configurations. Our satellite capture system has an eye-in-hand

stereo camera configuration. Visual servo control structures fall into one of the following three

categories:

Image-based 2D image measurements directly drive the servo mechanism. Typical examples

include tracking and fixating on objects using uncalibrated cameras. Image-based servo

schemes provide long range motor skills for our satellite capture system described in the

next chapter.

Position-based The 3D pose of the target relative to the camera/robot is computed through vi-

sual analysis and the servo task is defined in the 3D pose space. These are typically used

in industrial applications and require calibrated stereo cameras. A Position-based visual

servo provides the medium/short range motor skills for our satellite capture system.

2.5D Combine direct image measurements and position estimates to drive the servo mecha-

nisms. See [Malis et al. 1998] for more details.

Activity planning in visual servo systems is typically concerned with robot/camera trajec-

tory planning during the visual servo task [Mezouar and Chaumette 2000; Thuilot et al. 2002].

For example, to ensure that the target remains within the field of view at all times (especially

for eye-in-hand configurations). Trajectory planning is also required during pick and place

operations. Similarly, trajectory planning is needed to avoid gimbal lock situations and stuck

joints.
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Vision and control have also crossed paths in the context of active vision research; e.g.,

view point planning [Madsen and Christensen 1997], gaze holding [Coombs and Brown 1991;

Coombs and Brown 1993], controlling attention for vision [Clark and Ferrier 1988], and grasp-

ing moving objects [Allen et al. 1993]. Active vision systems typically employ eye-in-hand

configurations.

8.3 Robotic Control Architectures

Robots are quintessential autonomous agents of the artificial kind. Building robotic autonomous

agents has proven to be a formidable challenge. Regardless of the reliability of the available

sensors and effectors, the real world defies complete and accurate modeling, nor can a robot

anticipate the effects of all its possible actions on the world. These are fundamental problems

whose solution requires more than brute force compute power.

To address these problems, researchers have proposed various robot control architectures.

The architectures fall into one of three categories: Deliberative, reactive, or hybrid (i.e., delib-

erative/reactive). Deliberative controllers maintain an internal world model and use it to plan a

course of action. They typically cannot keep pace with the real world, because all but the most

trivial planning takes significant time. By contrast, reactive controllers operate at the speed of

the environment, exploiting the interaction of many real-time processes. Unfortunately, they

cannot accomplish tasks that require any amount of planning. Humans are sophisticated au-

tonomous agents that combine reactivity and deliberation. This observation has led robotics

researchers to propose hybrid, deliberative/reactive control architectures. Hybrid architectures

appear to hold the greatest promise for building autonomous robots and other autonomous

agents with human-like abilities.

8.3.1 Deliberative Agent Architectures
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Early attempts at designing autonomous robotic agents employed a sense-model-plan-act (SMPA)

architecture with limited success [Fikes and Nilsson 1971]. Here, the agent maintains an ex-

plicit model of its goals, abilities, and the world. The sensing module keeps the internal model

consistent with the external reality, the planning or reasoning module uses the internal model

to plan a course of action, and the execution module executes the plan. These agents do not

perform well in the real world, which is hard to model and waits for no one. Their sensing

and planning modules fail to keep up, thereby rendering the agent unsafe. Even though newer

SMPA architectures support interleaved planning and execution, they too have difficulty attain-

ing the desired performance [Ambros-Ingerson and Steel 1988].

Shakey, built by the Stanford Research Institute in the early 1970s, is the most famous delib-

erative robot, and it illustrates the strength and weakness of deliberative architectures [Nilsson

1984]. Shakey occupied a simple blocks world where, on a good day, it could formulate and

execute over a period of hours, plans involving moving from place to place and pushing blocks

to achieve a goal. Shakey’s sensors consisted of a camera and a laser range-finder, and its

reasoning module comprised a STRIPS-based planner [Fikes and Nilsson 1971]. The planner

represents the current world-state as a set of logical statements that specify what is true in the

world. It encodes the effect of the actions by maintaining add-delete lists for every action.

The add list specifies conditions that become true after executing the action, and the delete list

specifies conditions that will cease to be true after the execution of the action. It represents a

goal as a desired world state and employs means-end analysis to plan the sequence of actions

that will achieve the goal by transforming the current world state into the desired world state.

At each instant, Shakey (1) constructs a spatial model of its world through edge processing of

camera images and laser-range measurements, (2) updates the internal world model by adding

or deleting logical statements, (3) computes the plan, and (4) attempts to execute this plan.

Shakey’s success was limited to its blocks world. Its SMPA cycle was slow and it would fail in

more dynamic settings.
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Integrating Planning and Execution

Learning from the shortcomings of the strict sense-model-plan-act paradigm, researchers pro-

posed to interleave sense-model-plan and act cycles. Integrated Planning and Execution Moni-

toring (IPEM), proposed by Ambros-Ingerson and Steel [1988], implements a control strategy

to decide when to plan and when to execute. IPEM is able to detect when the current plan

becomes invalid because of a failed execution of an action or due to some unexpected event in

the world. It then backtracks to the last decision point that is still valid and replans. If multiple

actions are possible, a scheduler is used to arbitrate between them. Even this variation of the

sense-model-plan-act paradigm does not yield the desired performance.

Emphasis on Internal Representations

Building and maintaining a detailed internal world model is difficult and time-consuming, and

often counter-productive. A detailed internal world model will always lag behind the outside

world due to perception delays; this situation worsens with the increasing complexity of the

internal world model. Planning systems assume that the world behaves in a predictable way.

For example, each action has a well-defined effect on the world. It also assumes that the world

will not change significantly during the course of planning, as otherwise the plan will become

invalid. Both assumptions do not hold in the real world.

Knowledge-Granularity

There is another, perhaps more fundamental, reason why pure SMPA agents do not perform

well in the real world. These agents assume that actions and world states are discrete, which

is not true for a world that obeys Newtonian physics. Discrete actions and world states are

theoretical constructs that make planning tractable. In the continuous world, however, activities

blend into each other, and more than one of them can be active simultaneously, which makes it

harder to define precisely the effect of an action/activity.

We require the means to abstract away unnecessary details from the real world and present
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a discrete and predictable world to the deliberative module. Reactive systems provide us with

such a mechanism.

8.3.2 Reactive Agent Architectures

Animals are natural autonomous agents that are able to make decisions that prolong their sur-

vival and achieve their goals by taking into account external factors4 and internal motivations5.

To this day no robot can match all the abilities of even simple animals. Even insects, such

as ants, that do not appear to have deliberative capabilities, perform better than any existing

robot. This observation, combined with a disillusionment with the traditional AI approach,

led researchers to explore alternative approaches for robotic agent design. The reactive or

behavior-based approach appeared in the 1980s. These robots operate in real-time and can

handle the dynamic events of the world better than their deliberative counterparts. They ac-

complish this by tightly coupling sensing to action through simple processes, called behaviors.

Every behavior handles its own perception, modeling, and execution needs, and is only re-

sponsible for a small portion of the overall behavioral repertoire of the robot. The interaction

of these behaviors gives rise to the desired overall behavior, which is often called the emergent

behavior.

Tight Connection between Stimulus and Action

The earliest instance of a behavior-based agent is the schematic sowbug6 that was presented by

the psychologist Tolman in 1939 [Tolman 1939]. Tolman put forward the theory of purposive

behaviorism and claimed that a tight connection exists between stimulus and response. Fur-

thermore, he said that high-level factors, such as motivation, experience, and purpose, affect

4Imagine a zebra trying to get away from a lion. It is safe to assume that the zebra’s actions are influenced by
the proximity of the lion.

5A giraffe makes its way to a pond to quench its thirst. In this scenario, the actions of the giraffe are influenced
by external factors, such as the location of the pond, and its internal motivation, which includes its thirst.

6Tolman’s schematic sowbug exhibits phototactic behavior. For an implementation see [Endo and Arkin 2000].
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this connection. He called this connection behavior.

Complex Behavior Does Not Imply Complex Internal Structure

Complex behavior of an agent does not necessarily indicate a complex internal structure, so it

is possible to realize robots having elaborate behaviors using simple components. For example,

Walter’s [1950; 1951; 1953] mechanical turtles, Elmer and Elsie, displayed complex behavior

despite their simple design, which consists of a light sensor, a touch sensor, two vacuum-tube

analog computers, a steering motor, and simple behaviors such as MoveTowardsLight. The

interaction with the world results in an interesting and hard to predict behavior. They appeared

curious as they explored their environment in a speculative manner; Walter therefore named

them machina speculatrix.

The World is its Own Best Model

In spite of these early forays, the behavior-based approach did not catch on in the robotics re-

search community until Brooks introduced the subsumption architecture, which demonstrated

that the interaction of independent components can produce coherent “intelligence”. Brooks

claimed that “the world is its own best model,” and argued that it can simply be sensed as nec-

essary. He rejected the necessity of a symbolic world model for intelligence. He built many

subsumption-based insect-like robots [Brooks 1986b; Brooks 1986c; Brooks 1986a; Brooks

1990b; Brooks 1990a], which could explore their environment, build maps, navigate, and in-

teract with people—feats no previous robot had accomplished. The subsumption architecture is

a network of message passing augmented finite state machines (AFSMs) that are hierarchically

organized into layers. There is no central world model and all layers take care of their own per-

ception and actuation. Inhibition and suppression between layers produce the desired overall

behaviors. New behaviors can be added to the behavior repertoire by adding more layers.

Emergent Behavior
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Around the same time when Brooks was building reactive robots, other researchers found ev-

idence supporting the basic assumption of the behavior-based approach, i.e., interaction of

simple rules can produce elaborate and coherent overall behavior. Reynold’s virtual boids ex-

hibit elaborate global behavior (flocking) while using simple local rules [Reynolds 1987]. Each

boid follows three rules: maintain a safe distance from all nearby boids, move towards their

centroid, and match their average velocity. The interaction of these rules produces realistic,

life-like flocking, schooling, and herding behaviors7. Braitenberg’s imaginary vehicles [Brait-

enberg 1984], which consist of simple components, appear to have emotions like love, fear,

and logic. Here too, the interplay of simple components among themselves and with the envi-

ronment gives rise to elaborate behavior. In his book, The Society of Mind, Minsky suggests

that the human mind is organized as a collection of specialists, and the competition and co-

operation of these specialists produce the overall behavior [Minsky 1985]. Ethologists, who

have independently reached the same conclusion, propose that the behavior of an animal is

an outcome of competition and interaction among many behaviors [Lorenz 1973]. Ethology,

especially, has proven useful for designing behavior-based agents, as it provides the necessary

blueprint required for identifying and designing behaviors and managing their interaction.

The Role of Deliberation

An argument in favor of behavior-based AI is that most of the time many robots just perform

routine tasks, such as recharging their batteries and moving around safely [Agre and Chapman

1987].8 These tasks require little or no abstract reasoning. Deliberation is only required to

perform novel tasks, and most tasks, once learned, can be accomplished using purely reactive

means. This might be why deliberative agents have failed to match the success of behavior-

based agents.

7Reynold’s model belongs to the class of individual-based models where local interaction of the members of
a population generate the overall behavior for that population.

8This also holds for humans.
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Implications of the Lack of Internal Representation

Purely reactive systems—Brooks’ subsumption architecture, Walter’s machina speculatrix,

Reynold’s boids, and Braitenberg’s imaginary vehicles—eschews an internal mental model,

which suggests that these systems might never scale up to human level intelligence. Tsotsos

[1995] cogently argues about the limitations of a strict behavior-based controller—one that

does not allow any internal mental model. He shows that strict behavior-based controllers can-

not exhibit human-level intelligence. In the strict behavior-based controller, a behavior is a

stimulus-action pair, and at each instant, the controller searches for relevant behaviors to acti-

vate. Tsotsos shows that unbounded stimulus-action search is NP-complete; thereby showing

that strict behavior-based architecture is not enough. Furthermore, he shows that an internal

world model, explicit goal representation, and a hierarchy among behaviors are required to

reduce the complexity of the stimulus-action search. He also shows that unbounded vision

is intractable. This too excludes the possibility of designing a subsumption style agent with

human-level capabilities.

Computation Centric View of a Reactive Robotic Agent

Before we turn our attention to ethologically-inspired behavior-based systems, we take a mo-

ment to describe Robot Schema (RS), proposed by Lyon and Arbib, which takes a computation

centric view of designing a reactive robotic agent [Lyons and Arbib 1989]. It is an attempt

to capture the computational characteristics of a purely reactive robotic agent. RS defines a

formal process composition algebra for composing simple reactive, parametrized processes.

These processes can execute in parallel or in sequence. Recursion is supported and processes

can communicate with each other via port-to-port mapping. They have shown RS successfully

controlling a kitting robot. Process algebra provided by RS allows one to analytically verify the

properties of the reactive module. Still, it is unclear how RS can deliver reactive robotic agents

with capabilities similar to those obtained through the ethologically-inspired approaches. Per-

haps because, RS is mute on several issues addressed by the ethologically-inspired approaches,
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such as process grouping, process arbitration, process composition, attention-based perception,

and short-term memory.

Ethologically-Inspired Behavior Based Systems

In the 1990s, several researchers demonstrated impressive examples of ethologically-based

autonomous agents (see, e.g., [Tu and Terzopoulos 1994], [Blumberg 1997], and [Arkin et al.

2001]). These attempts showed that an internal world model does not necessarily hamper

reactivity. It is, however, important for the internal mental state within the reactive module to

be able to operate in real-time, as otherwise it defeats the main purpose of the reactive module:

real-time response. One way to do that is to keep the internal mental state simple, i.e., it should

only store information relevant to the task at hand. For example, Tu’s fishes use an attention-

based perception system that filters out irrelevant details [Tu and Terzopoulos 1994]. Attention-

based perception systems are biologically plausible, and they have found broad acceptance in

the behavior-based AI community. More recent behavior-based architectures allow for a small

working memory, or short-term memory.

Tu and Terzopoulos’ Artificial Fishes: Tu and Terzopoulos established that it is possible to

build complex ethologically-inspired behavior-based agents by developing virtual, artificial

fishes that “live” in a physics-based virtual sea. These biomimetic agents exhibit a broad

behavioral repertoire, including behaviors such as foraging, predation, schooling, and mating.

They are a departure from the strict subsumption style agents, as they include a simple mental

state, an attention-based perception mechanism, and an elaborate action-selection scheme. The

fishes are driven by motivations, such as fear, and desires, such as hunger and libido, which

are recorded in their mental state. The action-selection mechanism, which is implemented as

a decision tree, takes into account sensory information, motivations, and desires to choose an

appropriate behavior. The strict hierarchy among behaviors, the continuity of mental state, and

the constancy in habits provides persistence among behaviors.
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Sony’s Robot Dog, Aibo: As stated earlier, ethological models provide a basis for the kinds

of behaviors we should realize within a robot. A testament to this statement is Sony Cor-

poration’s life-like robot dog Aibo [Arkin et al. 2001]. Aibo can operate competently in the

real-world. It exhibits interesting behaviors that are commonly associated with a pet dog: it

appears to yearn for its master’s approval, it gets hungry, it exhibits moodiness, and it likes

to play with bright balls (or things that look like bright balls). Aibo’s behavior controller im-

plements a subset of the complete ethogram (categorization of behavioral patterns that span

the range of an animal) of a dog. Its behavior arbitrator takes into account external stimuli

(such as the proximity of food) and internal motivations (the urge to play with a bright ball)

and uses a homeostasis regulation scheme to choose appropriate behaviors [Arkin 1988]. For

behavior coordination (i.e., to resolve behavior-dither and implement behavior-persistence), it

uses Ludlow’s [1976] model of lateral inhibition.

Arkin’s Schema Architecture: In Arkin’s Schema-based architecture, each behavior (called

Motor Schemas) uses relevant perceptual features, which are computed by what are called

Perceptual Schemas, to compute action vectors that are subsequently combined to produce the

net output. Behaviors are asynchronous processes that execute in parallel and their outputs

are combined via weighted vector summation. The schema-based approach has been used

successfully to develop the reactive component for the Aura architecture that placed first in the

first two American Association for Artificial Intelligence (AAAI) mobile robot competitions,

1994 and 1997.

Engineering Concerns for Behavior Based Systems

Designing behavior-based controllers is a tricky engineering endeavour, as we must deal with

emergent properties that defy formal modeling. Some of the issues faced when designing

behavior-based system are:

• Behavior arbitration and behavior coordination
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• Behavior preference unification

• Behavior dither avoidance

• Level of interest modeling to avoid behavior lock out

• Transitions between behaviors

Behavior Arbitration and Behavior Coordination: Managing behavior interaction to pro-

duce the desired overall behavior is quite challenging, as there are possibilities of dead-locks,

race-conditions, and the ubiquitous behavior-dither. Behavior interaction involves both behav-

ior selection and behavior preferences unification.

A behavior arbitration scheme selects appropriate behaviors given the current sensory in-

puts and internal motivations. It can be implemented in a single specialized behavior arbitra-

tion module, or it can be the consequence of the design of individual behaviors. In the first

approach, the behavior arbitrator takes into account the sensory inputs and internal motivations

and activates appropriate behaviors. Here, the design of individual behaviors is simpler; how-

ever, the behavior arbitrator becomes increasingly complex with the addition of new behaviors,

which can adversely affect the real-time performance of the robot. In the second approach, all

behaviors compute their own “relevance” (in a predetermined common currency) to the current

situation. Here, adding a new behavior is easier, as it does not effect other behaviors; however,

the new behavior must be able to compute its relevance in the common currency. Hierar-

chy among behaviors [Tyrrell 1993; Tu and Terzopoulos 1994] and behavior-groups [Minsky

1985; Blumberg 1994] simplify behavior interactions, thus making behavior-arbitration eas-

ier. Another commonly used scheme for behavior arbitration is the “homeostasis regulation

rule.” Here, a number of internal (usually motivational) variables along with their allowable

ranges are specified, and the behavior arbitrator selects behaviors to keep the values of interval

variables within the allowable ranges [Arkin 1988].
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Behavior Preference Unification: In the subsumption architecture only one behavior issues

preferences for the motors (for example, either the GotoLoc or the AvoidCollision behavior can

issue motor commands at any instant), so it does not fully utilize the interaction of multiple

behaviors.

Payton remedied this problem by allowing multiple behaviors to issue preferences for a

common control [Payton 1990]. The net preference is then the sum of the active behaviors’

preferences weighted by their respective relevances. Tyrell modifies Payton’s approach, and

proposed that preferences for a given control should be calculated as a weighted average of

the highest single preference and the sum of all preferences for that control [Tyrrell 1993].

Combining behavior preferences is especially easy in Arkin’s motor-scheme framework [Arkin

1998]. Here, a behavior is a mapping from sensor vectors to motor vectors. Behavior prefer-

ences, which are vectors, are combined through simple vector addition. We need to keep in

mind that in all of the strategies for combining behavior preferences, the most difficult element

is to weigh different preferences correctly. Unfortunately, there are no fixed rules/algorithms

to resolve this issue, and the designers have to rely upon their intuition and experience to come

up with an appropriate set of weights that result in the desired overall behavior.

Behavior Dither Avoidance: Persistence among behaviors is necessary for a coherent and

useful overall behavior; a robot that constantly alternates between two goals appears undecided,

and it might never achieve either goal. Behavior-dither is a consequence of a poor behavior-

arbitration scheme—one that swings back and forth between different behavior choices. The

careful use of internal mental states can avoid this undesirable situation. For example, in the

case of Tu’s artificial fishes [Tu and Terzopoulos 1994], the continuity of mental state and

the constancy in habits provides persistence among behaviors. Another approach is that the

currently active behavior inhibits a non-active behavior by a factor that varies inversely as the

duration of the active behavior. For example, behavior A becomes active at time t0, then at

time t, where t > t0, the inhibition for behavior B will be proportional to 1/f(t − t0). This
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simple scheme ensures that once activated, a behavior will remain active for some minimum

duration.

Level of Interest Modeling to Avoid Behavior Lock Out: A related problem is how to avoid

one behavior from taking over and never relinquishing control. This is a common occurrence in

situations where the robot forever tries to achieve some goal. The solution here is to associate

a boredom factor with the active behavior that increases with its duration. The boredom factor

decreases the relevance of the active behavior over time, so even if some goal is not achieved,

the behavior-arbitrator will activate another behavior. This way, a behavior cannot be active for

more than some maximum duration.

Transitions Between Behaviors: Transitions between behaviors require extra care, as the

controller may exhibit choppy, or worse, incorrect overall behavior. This is especially true for

behaviors that share resources, such as motors, which is a common situation for low-level be-

haviors. One solution is to force the active behavior to return the shared resource in a consistent

state before shutting off [Blumberg 1997], which can be achieved through “action buffering”

[Perlin and Goldberg 1996]. Another, more involved scheme is to implement fuzzy transitions

where the state of the shared resource depends upon both the old and new behaviors. See

[Minsky 1985] and [Blumberg 1997] for further details.

Summary

To summarize, behavior-based agents can survive in a complex and unpredictable environment

for prolonged periods without human intervention, but they cannot reason about the goals

which are implicit in their designs. Behavioral agents cannot “think” ahead and perform tasks

that require deliberation, such as path planning. Also, they are not easily amenable to formal

analysis, which is a big concern in safety-critical applications. It appears unlikely that a purely

behavior-based agent can ever demonstrate human-level capabilities.
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8.3.3 Combining Reactive and Deliberative Agent Architectures

Purely deliberative and purely reactive architectures are limited in their own ways, and archi-

tectures that support reactivity and deliberation promise greater utility, reliability, and perfor-

mance. Two approaches have emerged over the last 20 years to support reactivity and delibera-

tion in robotic agents. The first approach takes a unified view of reactivity and deliberation and

provides for both using the same computational structures, whereas the second approach relies

on specialized reactive and deliberative modules. These controllers are sometimes referred to

as hybrid controllers. The unified approaches are scientifically elegant, yet in practice they

have not been as successful as their hybrid counterparts.

Unified Approaches to Robotic Agent Design

Soar: Soar [Laird and Rosenbloom 1990] is a cognitive architecture that combines deliber-

ation and reactivity. It has been used successfully to control virtual characters in simulated

worlds9; however, it has only met with limited success in the domain of real robots. Soar

makes no distinction between deliberative and reactive activities. It stores all knowledge as

productions, and its problem-solving cycle consists of activating the relevant productions till it

reaches quiescence. Soar embeds deliberative activity within the productions (some production

may lead to planning), so reaching quiescence can take an arbitrarily long time, which rules out

reactive performance. Soar performs deliberation whenever it fails to reach quiescence and it

saves the result of deliberation as a production, thus avoiding deliberation in similar situations

in the future. This built-in learning mechanism is called chunking, and it increases the ability

of the agent over time. This, however, has an undesirable side-effect: Now Soar has to consider

more productions, so its performance decreases.

9SOAR has successfully controlled Quakebot—the main character in the popular first-person shooter game
Quake by Id Software. SOAR is also used to design a realistic aerial war simulation.



CHAPTER 8. RELATED WORK 148

Spreading Activation Networks: Spreading Activation Networks is another agent architec-

ture that supports distributed goal-directed behavior [Maes 1990]. Maes demonstrated her sys-

tem performing STRIPS-like deliberation. The lack of internal representation would give rise

to loops during the action selection process. However, she dismisses this concern and argues

that a changing world would overcome such an impasse. Maes’ approach combines behaviors

to support deliberative activity.

Hierarchical Abstract Behavior Network Architecture: Mataric constructed Toto, a sub-

sumption style office wandering robot capable of automatic map construction through land-

mark detection and map-based navigation, and showed that it is indeed possible to maintain

internal representations in a purely behavior-based system [Mataric 1992]. Distributed delib-

eration emerges through spreading activation in the behavior network. More recently Mataric

and Nicolescu have proposed Abstract Behavior Networks that supports reactivity and deliber-

ation [Nicolescu and Mataric 2002; Monica Nicolescu 2001]. These can be seen as augmented

spreading activation networks where each primitive behavior is paired with another concur-

rent process called Abstract Behavior. Abstract behaviors, which can activate or inhibit their

corresponding primitive behaviors, are connected to each other via activation/inhibition/task-

completion links. STRIPS-like deliberation is realized within the network of abstract behav-

iors.

The S* Proposal: Tsotsos addresses the shortcomings of the subsumption architecture in

the S* framework [Tsotsos 1997; Rotenstein 2003]. S* allows an agent to have an internal

mental model, and it generalizes the notion of a behavior by adding modeling and planning

components to each behavior. The behaviors can read from sensors (i.e., the real world) or

from the internal world model. Similarly, the behaviors can write to actuators or to the internal

world model. S* provides general guidelines about how to design a controller, but its main

contribution is to point out the importance of perceptual attention, internal models, and explicit

goal representations when designing an intelligent agent.
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Limitations of the Unified Approaches: Rotenstien argues that these approaches suffer

from the Scaling Problem. Maintaining internal representations via behavior states suggests

that the number of behaviors is unbounded, which most likely renders these schemes impracti-

cal. Additionally, these schemes support only minimal deliberation capabilities. Deliberation

occurs when a situation is encountered in the world, and no decision-making is done about

future actions.

Hybrid Controllers

Hybrid controllers treat deliberation and reactivity as two separate activities that require dif-

ferent computational mechanisms. In practice, these controllers have shown the most promise.

This is perhaps because they can take full advantage of specialized deliberative (e.g., a sym-

bolic planner) and reactive (e.g., a behavior-based controller) computational structures. The

common theme among hybrid architectures is that the reactive component deals with the con-

tinuous, detailed, and uncertain aspects of the world, and that it mediates between the world

and the deliberative component. The deliberative component experiences the outside world as

a well-behaved, discrete phenomenon—actions are discrete and have well-defined effects, and

world states, which are represented by a set of symbols (fluents), are akin to snapshots in time.

It maintains a detailed mental model of the agent and its environment and it uses this model

to form strategies that will achieve the long-term goals of the agent. We point the reader to

[Kortenkamp et al. 1998] that present a survey of hybrid architectures used for mobile robots.

Constructing Abstract Actions: We begin by discussing the relationship between discrete

actions and continuous activities. A deliberative module (planner) constructs plans, which

are usually construed as lists of actions. The quality of a planner (i.e., its efficiency and the

reliability of its plans) depends upon the actions that are available to it. These actions are called

primitive actions, and they should have well-defined effects and unambiguous success and

failure conditions. In practice, planners fare better when dealing with more abstract primitive
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actions. Abstract primitive actions hide much of the complexity of the world, so planning takes

less time.10 Moreover, they can also make a plan more robust to the changes in the world by

handling “routine” error situations (at run-time) that would otherwise invalidate the plan.11

As stated earlier, primitive actions do not exist in the real-world; however, we can define

them in terms of activities, which are real-world equivalents of actions. The associated diffi-

culty, which is considerable to begin with, is greater for more abstract primitive actions. The

upside is that the reactive approach is well-suited for constructing these actions correctly and

robustly.

¿From the reactive module’s point of view, primitive actions are just high-level behaviors.

In simplest terms, the actions of the deliberative module are tied to appropriate behaviors in

the reactive module. This connection forms the basis of the interface between the two modules

with vastly different properties and structures. For any hybrid architecture, this interface is

a crucial design decision that affects both its ability and its performance. Too much reliance

on the deliberative module renders it incapable of handling time-critical situations, whereas

a bloated reactive module makes it fragile, as reactive modules tend to get stuck in “local

minima.”

Reactive Action Package: Firby’s Reactive Action Package (RAP) framework provides an

elegant scheme for constructing abstract primitive actions on top of a behavior-based reactive

module [Firby 1989; Firby 1992; Firby 1994]. It consists of two components: (1) a library

of RAPs and (2) an execution module. Each primitive action is encoded as a RAP, which is a

control structure that can encode multiple situation-dependent execution, error-handling, and

termination-evaluation strategies for that action by specifying the interaction of various activ-

ities. The execution of a RAP (and hence the associated primitive action) is handled by the

RAP executor, which chooses the most appropriate method for execution at run-time. This

10When dealing with low-level actions, the search-space for possible plans is larger.
11In general, low-level primitive actions fail, and as a result, invalidate the plan more often than their more

abstract counterparts.
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situation-dependent execution paradigm makes a primitive action more robust to the changes

in the environment than is otherwise possible. Moreover, it removes the burden from the delib-

erative module of handling every contingency in the environment, so the deliberative module

can construct sketchy plans—plans that constitute high-level actions—and let the actions fig-

ure out the details at run-time. The ability of describing a RAP in terms of other existing RAPs

is especially powerful, and it makes this framework ideally suited for describing hierarchical

task networks.

Firby [1992] mentions how the RAP framework can provide the necessary interface be-

tween the deliberative and reactive modules, but he does not describe any specific planner. He

views RAPs as pre-coded hierarchical plans that can be expanded into subgoals, other RAPs,

and activities at runtime. Within this view, the executor activates the RAP that will achieve the

current goal of the robot, and the RAP remains active until its success (the goals for this RAP

have been achieved) or failure (the goals for this RAP can never be achieved) conditions are

met. No on-the-fly planning is performed, which severely limits a RAP-based robot’s ability to

handle novel situations. Gat [1992] addresses this limitation and shows how RAPs can connect

a classical AI planner with a control theory based reactive module.

Atlantis: A Three-Tiered Architecture: Gat [1992] proposes a three-tiered control archi-

tecture called ATLANTIS12 that consists of three heterogeneous, asynchronous modules: con-

troller, sequencer, and deliberator. The controller uses classical control theory techniques to

implement motor controls, such as MoveForward, and low-level behaviors, such as Follow-

Path. The sequencer is a RAP module that interfaces the other two modules. Finally, the

deliberator consists of a classical AI planner, and is responsible for planning to perform high-

level tasks of the robot. A noteworthy feature of ATLANTIS is the relationship between

the deliberator and the sequencer. It follows Agre and Chapman’s [1987] theory of plans-

as-communications, and the deliberator module merely advises the sequencer. This proves

12ATLANTIS stands for “A Three-Layer Architecture for Navigating Through Intricate Situations.”
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to be a powerful mechanism for combining reactivity and deliberation, as it allows delibera-

tion without affecting reactivity—a feature previously missing from hybrid architectures. An

ATLANTIS-based robot can boast reactive performance similar to that of a subsumption-based

robot and deliberative capabilities similar to those of Shakey.

Servo, Subsumption, Symbolic Architecture: Connell’s [1992] SSS, which stands for “servo,

subsumption, symbolic,” architecture combines a servo-control layer, a subsumption layer, and

a symbolic layer. The lower-most layer implements servo-loops for various actuators. The

middle layer is a subsumption style controller, which consists of behaviors that handle “events

of interests” by choosing appropriate setpoints for the servo-loops, such as the desired speed

for the wheel-speed servo-loop. The symbolic layer maintains a coarse geometric map of the

world, which is used to plan a route between the source and destination. To traverse this route,

the symbolic system enables/disables appropriate behaviors present in the subsumption layer

before and after each segment of the route. The subsumption layer has considerable freedom

for following the current segment; however, it requires immediate response from the symbolic

system for the events that it cannot handle (for example, the end of the current segment, or if

it is stuck). This imposes an undesirable constraint on the symbolic layer, which now must

perform in real-time. The symbolic layer accomplishes this by using special-purpose data

structures called contingency tables, which contain pre-compiled responses to various events

that the symbolic layer must handle. Here, the decoupling between the symbolic layer and the

subsumption layer is insufficient; a better approach is to use the deliberative layer only as an

adviser.

Autonomous Robot Architecture: Autonomous Robot Architecture (AuRA) is a hybrid ar-

chitecture for autonomous robots capable of both deliberative planning and reactive control

[Arkin 1998; Arkin 1992; Arkin 1990]. AuRA principles have been applied in a variety of do-

mains like navigation, robot competitions, multi-robot teams, and vacuuming. A multi-agent

implementation of AuRA won the 1994 robotic competition. Aura consists of four modules:
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a mission planner, a spatial reasoner, a plan sequencer, and a schema-based reactive module.

The mission planner sets high-level goals for the robot, and the spatial reasoner constructs

plans that will achieve those goals. The plan sequencer executes these plans over the reactive

module by invoking appropriate behaviors. Aura does not have true deliberative capabilities;

i.e., it does not have a planning module. Aura’s plans, which are represented as Finite State

Acceptors (FSA), are hand-coded. Each state represents a specific combination of behaviors

that accomplish one step of the task (i.e., one path leg). The reactive module is a schema-based

control system.

Procedural Reasoning System: Georgeff and Lansky [1987] propose the Procedural Rea-

soning System (PRS) for combining reactivity and deliberation. A notable feature of the PRS

approach is that, unlike hybrid architectures described so far, reactive processes control delib-

erative activity. It subscribes to the view of planning as a least commitment strategy and tightly

couples perception to planning. The robot is considered a “rational” agent endowed with psy-

chological attitudes of belief, desire, and intention. Beliefs represent the informational state of

the agent, desires (or goals) encode the motivational state of the agent, and intentions repre-

sent an agent’s commitments (i.e., what the agent has “chosen to do”). The system alters its

plans on-the-fly in response to a change in its beliefs, which suggests that the system is both

reactive and deliberative; however, the response of the system depends upon the speed of the

deliberative mechanism.

PLAYBOT: PLAYBOT is a visually-guided robot that helps physically disabled children in

play [Tsotsos et al. 1998]. PLAYBOT uses its robotic arm to interact with the environment,

e.g., picking and dropping objects. Its vision system [Dickinson et al. 1993], which combines

reactive behavior and planning, is capable of performing complex visual tasks, such as object

search, recognition, and localization. The vision system consists of two layers that run inde-

pendently of each other. The lower layer, which consists of reactive behaviors, is always active

and performs object recognition. It continuously extracts information about the world from the
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images and uses this information to construct and update the internal world model. The top

layer consists of a planner that maintains the high-level goals of the vision system. It uses the

world model to reason about the task at hand and directs the recognition layer. For example, it

can direct the recognition layer to look in a particular direction, to look for a particular object,

or to look for objects in a particular location, etc. In addition, it can help the recognition layer

in the task of recognizing objects; e.g., by suggesting a better viewpoint so as to disambiguate

an object. Apart from showing how perception systems capable of complex visual tasks can be

realized by combining reactivity and deliberation, this work proposes a straightforward scheme

of injecting high-level advice into the reactive modules; the planner controls the recognition

layer through its state variables. It also furthers the idea that hybrid architectures should im-

plement an adviser-client relationship between the deliberative and reactive module.

ARK: Autonomous Robot for a Known Environment: The ARK project has designed a

series of autonomous mobile robots capable of safely navigating within industrial environ-

ments. These robots employ a sensor called Laser Eye that combines vision and laser ranging

for navigation and self-localization [Jasiobedzki 1993]. Indoor navigation and localization is

accomplished by laser ranging, while navigation in open areas is carried out by visually de-

tecting landmarks. The control architecture consists of two modules. The high-level module

is responsible for planning robot actions, path planning, selecting landmarks for sighting, and

user interactions. The low-level is a subsumption style reactive module that implements mo-

tion commands, such as go-straight and turn-left. To ensure that the robot moves around safely,

the reactive module implements a collision avoidance behavior that detects obstacles and nav-

igate around them. ARK project illustrates how vision can be used to navigate a robot in an

unstructured environment, thereby showing that vision is indeed a viable sensory modality for

physical robots.

RHINO and MINERVA: Cognitive Robots with Subsumption Style Reactive Modules:

RHINO and MINERVA, two recent examples of robots that combine deliberation and reac-
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tivity, have garnered kudos. Both have gained popularity as museum tour-guides. RHINO

conducted tours at Deutsches Museum Bonn (Germany) in mid-1997 [Burgard et al. 1999].

It successfully interacted with visitors, planned tours, and navigated at high-speeds through

dense crowds. Its control architecture consists of two modules: (1) a high-level module that

uses symbolic logic to perform planning, and (2) a low-level module that takes care of the

reactive needs of the robot (i.e., sensing, motor-skills, and low-level behaviors). The reactive

module uses probabilistic techniques to perform localization (determining the current position

of the robot in the world) and mapping (the current location of the obstacles).13 GOLEX, or

GOLOG executor [Hhnel et al. 1998; Levesque et al. 1997], connects the two modules. Similar

to RAP, GOLEX can expand each primitive action of a linear plan returned by GOLOG into a

pre-specified sequence of commands to be executed by the reactive module. GOLEX can also

expand GOLOG actions into pre-specified conditional plans, and it has limited capability of

handling such plans. It also monitors the execution of these plans, and can request the top-level

module to replan upon failure.

MINERVA, which conducted tours at Smithosonian’s National Museum of American His-

tory in Washington (USA), is more capable than RHINO [Thrun et al. 2000]. Unlike RHINO,

it can learn maps from scratch, and within these maps, it uses a coastal planner algorithm for

path-planning. Such paths take into account the amount of information the robot is expected

to receive at different locations in the environment, which helps in localization. In addition to

occupancy maps, it uses ceiling-mosaic maps to perform localization. MINERVA uses facial

expression, gaze direction, and voice features to interact with people. This interaction depends

upon, and conveys, its current “emotional state,” or mood, which ranges from happy to angry.

A four state stochastic finite state automaton controls its mood by taking into account several

external factors, such as proximity of people and whether people are in the way. In MINERVA,

the high-level controller is developed using RPL, and is able to compose tours on-the-fly (for

13RHINO’s uses modified Markov Localization method to find the current pose of the robot, and uses occupancy
grid algorithm to find the locations of nearby obstacles.
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example, it can choose not to visit all the exhibits if time is running out, say, because it spent

more time than he expected on one exhibit). GOLEX reactively executes the plans returned

from the high-level controller.

Intelligent, Autonomous Virtual Characters

Duffy the Merman: Funge et al. [1999] combine deliberation and reactivity to construct

quasi-intelligent autonomous virtual characters. These characters inhabit complex virtual worlds,

such as the undersea world of Tu’s fishes and the prehistoric world that is inhabited by a Tyran-

nosaurus and Velociprators. They perform high-level tasks using their deliberative/cognitive

abilities. For example, in one of the scenarios, the merman Duffy evades a shark using his

superior intelligence even though the shark is bigger and faster than him.

Here, the deliberative module manages the knowledge that a character possesses, such as

the position of the nearest rock, and it uses this knowledge to plan. It uses interval valued

epistemic fluents to represent the uncertainty about this knowledge, and when this uncertainty

increases beyond a certain threshold, it can plan to (1) decrease the uncertainty through sensing

and (2) accomplish the task using the newly acquired knowledge. The controller can automat-

ically initiate re-planning when the current knowledge becomes out-dated. Unlike the hybrid

architectures discussed so far, here the deliberative module constructs partial plans (it only

plans a limited number of moves in the future). Funge proposes the Cognitive Modeling Lan-

guage (CML) and uses it to implement the deliberative module. CML can be seen as GOLOG

on steroids; it provides GOLOG-like syntax, structures, and facilities. One difference is that

it compiles the high-level controller into the C language. The reactive module implements

high-level behaviors using the scheme proposed by Tu and Terzopoulos [1994]. For example,

the reactive module of Duffy implements the behaviors following and evading. The reactive

module is competent on its own and prevents the character from doing anything stupid in the

absence of advice from the deliberative module; an adviser-student relationship exists between

the deliberative and reactive modules.
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Funge’s implementation is geared towards graphics and animation applications and cannot

be used to control a physical robot: 1) it does not use real-time control structures, and 2) the

interface between the deliberative and reactive modules is ill-defined—it appears as if deliber-

ative activity is embedded within the reactive control-loop14. It has nevertheless shown how a

deliberative/cognitive module on top of an ethologically-inspired behavior-based substrate can

yield powerful high-level controllers for autonomous characters (and robots). It also serves

another purpose; it shows that simulated environments can prove useful for designing, imple-

menting, and testing controllers for physical robots, as a designer can focus on the design of

the controller itself rather than being distracted and preoccupied by hardware issues.15

8.3.4 Summary

Hybrid control architectures seem to be the most suitable for designing autonomous robots. It

also appears that controllers that consist of heterogeneous modules fare better than homoge-

neous hybrid controllers. Furthermore, the adviser-student relationship between the delibera-

tive and reactive modules yields the best results.

The success of Sony’s Aibo robot has clearly shown that it is possible to construct a life-like

robot using purely reactive (or behavior-based) control strategies. Reactive robot controllers

model biological processes, such as low-level motor facilities, perception, attention, memory,

and emotion, whose combination comprises a reactive module. The biological sub-field of

ethology provides the necessary guidance for designing reactive robot controllers. Although

behavior-based robots can operate in the real world for long periods without human interven-

tion, they are hard to formalize. Researchers have yet to devise a mathematical theory of reac-

tive systems. Reactive systems exhibit emergent functionality that is hard to model formally,

making it difficult to come up with a theory within which one can prove properties about them.

In the absence of such a theory, one can only study and test these systems empirically.

14These are limitations of the implementation, and not of the theory itself.
15We are not saying that hardware issues are irrelevant, only that high-fidelity simulation environments are

useful for designing and testing physical devices.
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One cannot prove that a reactive controller is “safe”; i.e., there are no guarantees that it will

perform its mission satisfactorily. Moreover, reactive systems are inherently limited because

they are incapable of deliberative planning. Unlike reactive controllers, deliberative controllers

are amenable to formal analysis, so we can prove a priori that a deliberative module is cor-

rect. However, experience has shown that deliberative controllers perform poorly in real-time

situations.

Despite initial speculations in the domain of behavior-based robotics that purely reactive

controllers are sufficient, it is now becoming clear that they are not, and that control architec-

tures that combine reactive and deliberative strategies fare better. For example, behavior-based

systems are inherently myopic; therefore, they tend to get stuck in local minima. A solution is

to endow the robot with deliberative abilities such that it can reason about its goals and guide

its reactive module, which provides the necessary interface between the deliberative module

and the world, towards achieving them.

Existing deliberative modules are designed either as finite state machines, which represent

pre-coded plans, or as a single monolithic planner. The plans that are computed offline are in

general less robust to unanticipated situations; however, they can boost the performance of an

agent, as now the agent need not waste any time computing the plan. Perhaps a better approach

is to combine these two strategies within a single framework. Here, the agent will have access

to a suite of pre-coded plans to handle the frequent situations encountered by the agent. The

agent will also have a planning module that can jump in whenever none of the pre-coded plans

can handle the current situation satisfactorily.

The interface between the two modules is a critical component that determines the over-

all performance of the controller. It must allow the deliberative module to advise the reactive

module without affecting the real-time properties of the agent. Reactivity and deliberation

have different characteristics and hence require different computational structures, so it is not

surprising that heterogeneous hybrid architectures fare better than those that use the same com-

putational mechanism for reactivity and deliberation.
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Thus, our hypothesis is as follows: A heterogeneous hybrid architecture that implements

an adviser-client relationship between the deliberative and reactive modules is well suited for

designing intelligent controllers for autonomous robotic agents.

8.4 Comparison of the CoCo Architecture

Like ATLANTIS, CoCo consists of both deliberative and reactive modules, featuring a reactive

module that performs competently on its own and a deliberative module that guides the reactive

module. CoCo was originally inspired by experience implementing self-animating graphical

characters for use in the entertainment industry. In particular, our approach was motivated

by the “virtual merman” of Funge et al. [1999], which augments a purely behavioral control

substrate [Terzopoulos et al. 1994] with a logic-based deliberative layer employing the situation

calculus and interval arithmetic in order to reason about discrete and continuous quantities and

plan in highly dynamic environments.

CoCo differs in the following ways: First, its deliberative module can support multiple spe-

cialized planners such that deliberative, goal-achieving behavior results from the cooperation

between more than one planner. The ability to support multiple planners makes CoCo truly

taskable. Second, CoCo features a powerful and non-intrusive scheme for combining delib-

eration and reactivity, which heeds advice from the deliberative module only when it is safe

to do so. Here, the deliberative module advises the reactive module through a set of motiva-

tional variables. Third, the reactive module presents the deliberative module with a tractable,

appropriately-abstracted interpretation of the real world. The reactive module constructs and

maintains the abstracted world state in real-time using contextual and temporal information.



Chapter 9

Autonomous Satellite Rendezvous and

Docking

In this chapter, we present our research in the domain of space robotics. In particular, we

design a visually guided robotic system capable of autonomously performing the challenging

task of capturing a non-cooperative, free-flying satellite for the purposes of on-orbit satellite

servicing. Our innovative system features object recognition and tracking combined with high-

level symbolic reasoning within a hybrid deliberative/reactive computational framework, called

the Cognitive Controller (CoCo).

The chapter is organized as follows: In the next section we present the CoCo framework.

Section 9.3 describes the satellite recognition and tracking module. Section 9.2 explains the

visual servo behaviors for the task of satellite capturing. We explain the reactive module in

Section 9.4. Section 9.5 and Section 9.6 describe the deliberative and the plan execution and

monitoring modules, respectively. Section 9.7 describes the physical setup and presents results.

9.1 The CoCo Control Framework

160
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Figure 9.1: The CoCo three-tiered architecture.

CoCo is a three-tiered control framework that consists of deliberative, reactive, and plan exe-

cution and monitoring modules (Figure 9.1). The deliberative module encodes a knowledge-

based domain model and implements a high-level symbolic reasoning system. The reac-

tive module implements a low-level behavior-based controller with supporting perception and

memory subsystems. The reactive module is responsible for the immediate safety of the agent.

As such, it functions competently on its own and runs at the highest priority. At the intermedi-

ate level, the plan execution and monitoring module establishes an adviser-client relationship

between the deliberative and reactive modules.

In typical hybrid control frameworks, the reactive module serves as a mechanism to safely

execute commands produced through high-level reasoning [Connell 1992; Jenkin et al. 1994]

(a notable exception is [Arkin et al. 1987]). A reactive module is capable of much more as

is shown by Tu and Terzopoulos [Tu and Terzopoulos 1994], Blumberg [Blumberg 1994],

and Arkin [Arkin et al. 2001], among others. Agre and Chapman [Agre and Chapman 1987]

observe that most of our daily activities do not require any planning whatsoever; rather, deliber-

ation occurs when a novel, previously unseen situation is encountered. This further highlights

the importance of a reactive module in any autonomous robot. CoCo features an ethologi-

cally inspired behavior based reactive system fashioned after those developed for autonomous

characters in virtual environments [Tu and Terzopoulos 1994; Shao and Terzopoulos 2005a].

In CoCo, the deliberative module advises the reactive module on a particular course of
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action through motivational variables. In contrast to other control architectures where the de-

liberative module replaces the action selection mechanism built into the reactive module [Gat

1992], our approach provides a straightforward mechanism for providing high-level advice to

reactive behavior without interfering with the action selection mechanism built into the reactive

module.

Figure 9.2 illustrates the AR&D system realized within the CoCo framework. The satel-

lite recognition and tracking routines compute the position and orientation of the satellite and

supply the perceptual input to the reactive module, where the servo behaviors that control the

kinematic and dynamic actions of the robotic manipulator provide the relevant motor skills.

9.2 Motor Skills: Visual Servo Behaviors

Satellite rendezvous and docking operations, like all space missions, place stringent require-

ments on the safety of both the astronauts and the equipment. Therefore, these missions adhere

to strict operational guidelines and fully scripted and rehearsed activities. The Mobile Servicing

Systems Guide for International Space Station Robotic Systems [SSP 1997] defines approach

trajectories and envelopes as well as mission stages for robotic manipulators during contact

operations. During a manned satellite capture operation, an astronaut controls the robotic arm

and moves the end-effector through a sequence of way points, which are defined relative to

the target satellite. These way points are defined so as to reduce the time that the end-effector

spends in close proximity to the target satellite.

AR&D operations will most likely follow the operational guidelines developed for manned

operations, especially the concepts of way points, incremental alignment, and stay-out zones.

Jasiobedzki and Liu [Liu and Jasiobedzki 2002] divide a satellite capture operation into six

phases (Figure 9.3): 1) visual search, 2) monitor, 3) approach, 4) stationkeep, 5) align, and

6) capture, which comply with the robotic manipulator approach guidelines prescribed in [SSP

1997]. During the visual search phase, the cameras are pointed in the direction of the target
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Figure 9.2: CoCo system architecture. The satellite rendezvous and docking system comprises
an ethologically-inspired behavior module guided by a deliberative module with high-level
reasoning abilities. We list the mission capabilities corresponding to different levels of control
on the left. The degree of autonomy increases as we add more levels of control. At the lowest
level, for example, an operator uses the live video feed from the stereo camera pair to tele-
operate the robotic manipulator (a.k.a. the chaser robot or the servicer) in order to dock with
the target satellite. At the next level of control, visual servo routines that depend upon the
target satellite pose estimation module enable the robotic manipulator to automatically capture
the target satellite. Here, the lack of error handling capability renders the operation brittle at
best. Furthermore, the system requires a detailed mission script. The addition of the reactive
module results in a more robust autonomous operation, as the reflexive behaviors allow the
system to respond to the various contingencies that might arise in its workspace. However, the
system still cannot formulate plans through deliberation to achieve its goals. Consequently, the
system requires a mission script. The top-most level of control boasts the highest degree of
autonomy. Here, the symbolic deliberation module enables the system to generate the mission
script on the fly through reasoning.
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Figure 9.3: Six phases during a satellite rendezvous and docking operation.
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satellite, and images from the cameras are processed to compute an initial estimate of the

position and orientation of the satellite. The monitor phase fixates the cameras on the detected

satellite while maintaining distance between the satellite and the end-effector. The approach

phase reduces the distance between the end-effector and the target satellite while keeping the

cameras focused on the target. During stationkeeping, the distance between the end-effector

and the target is preserved and the cameras are kept locked onto the target. The align phase

controls all six degrees of freedom, aligning the end-effector with the docking interface of

the target satellite. Finally, in the capture phase, the end-effector moves in to dock with the

satellite.

Jasiobedzki and Liu [Liu and Jasiobedzki 2002] also developed visual servo behaviors cor-

responding to the six phases identified above. Pose-based servo algorithms that minimize the

error between the desired pose and the current pose of the end-effector implement the visual

servo behaviors. Poses are defined with respect to the end-effector or the target satellite. During

tele-operated missions, the desired poses are set by the operator, whereas during autonomous

operation the desired poses are selected by the active servo behavior, such as monitor, approach,

etc. Likewise, the higher-level controller can also set the desired poses, especially when the vi-

sion system is failing, to move the end-effector along a particular trajectory. The vision system,

which estimates the transformation between the current pose and the desired pose, yields the

error signal for the pose-based servo routines. The visual servo behaviors provide the motor

skills that are essential for successful satellite rendezvous and docking missions.

9.3 Visual Sensors: Satellite Recognition and Tracking

The satellite recognition and tracking module (Figure 9.4) processes images from a calibrated

passive video camera-pair mounted on the end-effector of the robotic manipulator and esti-

mates the relative position and orientation of the target satellite [Jasiobedzki et al. 2002]. It

supports medium and short range satellite proximity operations; i.e., approximately from 6m
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Figure 9.4: The satellite recognition and tracking system.

to 0.2m. The minimum distance corresponds to the separation between the camera and the

satellite in contact position.

The vision algorithms implemented rely mostly on the presence of natural image features

and satellite models. During the medium range operation, the vision system cameras view

either the complete satellite or a significant portion of it (left image in Figure 9.5), and the

system relies on natural features observed in stereo images to estimate the motion and pose of

the satellite. The medium range operation consists of the following three configurations:

• Model-free motion estimation: In the first phase, the vision system combines stereo and

structure-from-motion to indirectly estimate the satellite motion in the camera reference

frame by solving for the camera motion, which is the opposite of the satellite motion

[Roth and Whitehead 2000].

• Motion-based pose acquisition: The second phase performs binary template matching

to estimate the pose of the satellite without using prior information [Greenspan and Ja-
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Figure 9.5: Images from a sequence recorded during a docking experiment (left image at 5m;
right at 0.2m)

siobedzki 2002]. It matches a model of the observed satellite with the 3D data produced

by the previous phase and computes a 6 degree-of-freedom (DOF) rigid transformation

that represents the relative pose of the satellite. The six DOFs are solved in two steps.

The first step, which is motivated by the observation that most satellites have an elon-

gated structure, determines the major axis of the satellite. The second step solves for the

remaining 4 DOFs—the rotation around the major axis and the 3 translations—through

exhaustive 3D template matching over the 4 DOFs.

• Model-based pose tracking: The last phase tracks the satellite with high precision and

update rate by iteratively matching the 3D data with the model using a version of the

iterative closest point algorithm [Jasiobedzki et al. 2001]. This scheme does not match

high-level features in the scene with the model at every iteration. This reduces its sen-

sitivity to partial shadows, occlusion, and local loss of data caused by reflections and

image saturation. Under normal operating conditions, model-based tracking returns an

estimate of the satellite’s pose at 2Hz with an accuracy on the order of a few centimeters

and a few degrees.

The short range operation consists of one configuration, namely visual target-based pose

acquisition and tracking. At close range, the target satellite is only partially visible and it can-

not be viewed simultaneously from both cameras (the center and right images in Figure 9.5);

hence, the vision system processes monocular images. The constraints on the approach trajec-
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tory ensure that the docking interface on the target satellite is visible from close range. Markers

on the docking interface are used to determine the pose and attitude of the satellite efficiently

and reliably at close range [Jasiobedzki et al. 2002]. Here, visual features are detected by pro-

cessing an image window centered around their predicted locations. These features are then

matched against a model to estimate the pose of the satellite. The pose estimation algorithm re-

quires at least 4 points to compute the pose. When more than four points are visible, sampling

techniques choose the group of points that gives the best pose information. For the short range

vision module, the accuracy is on the order of a fraction of a degree and 1mm right before

docking.

The vision system returns a 4 × 4 matrix that specifies the relative pose of the satellite,

a value between 0 and 1 quantifying the confidence in that estimate, and various flags that

describe the state of the vision system.

The vision system can be configured on the fly depending upon the requirements of a spe-

cific mission. It provides commands to activate/initialize/deactivate a particular configuration.

At present, this module can run in four different configurations, which may run in parallel.

Each configuration is suitable for a particular phase of the satellite servicing operation and

employs a particular set of algorithms. Active configurations share the sensing and comput-

ing resources, which reduces the mass and power requirements of the vision system, but can

adversely affect its overall performance.

9.4 The Reactive Module

CoCo’s reactive module is a behavior-based controller that is responsible for the immediate

safety of the agent. As such, it functions competently on its own and runs at the highest priority.

At each instant, the reactive module examines sensory information supplied by the perception

system, as well as the motivational variables whose values are set by the deliberative module,

and it selects an appropriate action. Its selection thus reflects both the current state of the world
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Figure 9.6: Functional decomposition of the reactive module, which is realized as a set of
asynchronous processes.

Class Input Output Functional Unit
1 External External Behavior Center (Reflex actions)
2 External Internal Perception Center (Sensing)
3 Internal External Behavior Center (Motor commands)
4 Internal Internal Memory Center (Mental state maintenance)

Behavior Center (High level behaviors)
Perception Center (Sensor Fusion)

Table 9.1: Four classes of asynchronous processes (behaviors) constitute the reactive module.

and the advice from the deliberative module. The second responsibility of the reactive module

is to abstract a continuum of low-level details about the world and present a tractable discrete

representation of reality within which the deliberative module can effectively formulate plans.

CoCo’s reactive module comprises three functional units: perception, memory, and behavior

(Figure 9.6). This functional decomposition is intuitive and facilitates the design process. The

reactive module is implemented as a collection of asynchronous processes (Table 9.1), which

accounts for its real-time operation.

9.4.1 Perception Center

¿From an implementational point of view, one can imagine two extremes: one in which a sin-

gle process is responsible for computing every feature of interest, and the other in which every
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Figure 9.8: The perception center is in charge of the vision system that implements satellite
identification, recognition, and tracking routines. The deamon processes associated with the
visual processing awakens when new vision readings become available and copy the new read-
ings into the working memory. The vision readings are validated and smoothed using an αβ
tracker. A fuzzy logic based sensor fusion scheme combines the readings when multiple vision
configurations are active. A passage-of-time behavior associated with the satellite pose infor-
mation implements a forgetting mechanism, which prevents the reactive system from using
outdated information.
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feature is assigned its own sensing process. In the first scenario, the overall speed of sensing

is determined by the feature that takes the longest time to compute, whereas a higher process

management overhead is associated with the second scenario to ensure that the sensed values

are coherent. For a particular application, it is up to the designer to decide how best to im-

plement the perception system. We chose the second approach where various routines process

different perceptual inputs asynchronously in order to compute higher order features, which are

then immediately available for subsequent processing. Each data item is assigned a timestamp

and a confidence value between 0 and 1, and it is managed by the memory center, which is

responsible for preventing other processes from using outdated or incorrect information.1

The perception center manages the vision system, which was described in Section 9.3. It

decides which vision modules to activate and how to combine the information from these mod-

ules depending on their characteristics, such as processing times, operational ranges, and noise.

In addition, the perception center incorporates an attention mechanism that gathers informa-

tion relevant to the current task, such as the status of the satellite chaser robot, the docking

interface status, and the satellite’s attitude control status. The perception center processes the

raw perceptual readings that appear at its inputs, constructs appropriate perceptual features,

and stores them in the working memory (memory center) for later use by the behavior center

during action selection and behavior execution. A perceptual reading is either from an actual

physical sensor (e.g., the docking interface sensor) or the result of a multistage operation (e.g.,

the target satellite’s position and orientation). Each perceptual reading is processed indepen-

dently. Consequently, different perceptual features become available to the reactive module as

soon as they are computed.

The perception center includes daemon processes for every perceptual input (Figs. 9.7 and

9.8). The daemon processes, which awaken whenever new information arrives at their input

ports, assign a confidence value to the readings, timestamp them, and push them up the percep-

tion pipeline for subsequent processing. The confidence value for a reading is in the range [0, 1],

1Working memory is sometimes referred to as the short term memory or STM.
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where 0 reflects a total lack of confidence and 1 reflects absolute certainty. It is computed either

by the associated daemon or by the process responsible for producing the perceptual reading

in the first place. For instance, the vision routines determine the confidence for the estimated

position and orientation of the satellite and the daemon responsible for the docking interface

sensor assigns a value of 1 to each new reading it receives from the sensor.

Communicating with the Vision Module

Figure 9.8 shows the interface to the vision sub-system. Long range vision operates anywhere

between 20m to 5m, and the maximum separation between the mock-up satellite and robotic

arm is roughly 6m. To estimate the position and orientation of the satellite, the perception

center uses contextual information, such as the current task, the predicted distance from the

target satellite, the operational ranges of the various configurations, and the confidence values

returned by the active configurations. The perception center is responsible for the transitions

between the different vision configurations, and it also performs a sanity check on the operation

of the vision sub-system. A decision about whether or not to accept a new pose reading from

an active vision module is made by thresholding the confidence value of the reading. The

minimum acceptable confidence value for a medium range estimate is 0.3 and it is 0.6 for a

short range estimate. These threshold values reflect the expected performance characteristics

of the vision system and are selected to impose more stringent performance requirements on

the vision system when the robotic arm is in close proximity to the target satellite.

An αβ tracker validates and smoothes the pose readings from the vision configurations

(Appendix A). The validation is done by comparing the new pose against the predicted pose

using an adaptive gating mechanism. When new readings from the vision system consistently

fail the validation step, either the vision system is failing or the satellite is behaving erratically

and corrective steps are needed. The αβ tracker thus corroborates the estimates of the visual

routines. In addition, it provides a straightforward mechanism for compensating for visual

processing delays by predicting the current position and orientation of the target satellite.
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Visual Processing Handover

In the final stages of a successful satellite capture operation, the distance between the robotic

arm and the target satellite can vary anywhere from around 6m to 0m. The perception center is

responsible for transitioning the visual tracking task from the medium to the short range module

as the robotic arm approaches the target satellite and vice versa as it pulls back. The perception

center uses the estimated distance of the target satellite and the confidence values returned by

the active vision configurations to decide which vision module to activate/deactivate.

The strategy for controlling the transition between medium and short range vision modules

is based on the following intuitions:

• Since the vision modules are designed to perform reliably only in their operational

ranges, a vision module whose estimate falls outside of its operational range should not

be trusted.

• When the estimates returned by the active vision module nears its operational limits,

activate the more reliable vision module. The operational range of a vision module

and the estimated distance of the target satellite determines the suitability of the vision

module. For example, when the medium range vision module is active and the target

distance estimate is less than 2m, the short range vision module is activated. The short

range vision module uses the current pose of the satellite as estimated by the medium

range module to initialize satellite tracking.

• A vision module that is currently tracking the target satellite should not be deactivated

unless another vision module has successfully initiated target tracking.

• Avoid unnecessary hand-overs.

We describe the hand-over strategy between different vision modules in Appendix B. Fig-

ure 9.9 shows the operational status of the vision module during a typical satellite capture

mission. Initially, the medium range vision module is tracking the target; however, as the
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robotic arm approaches the satellite and the distance to the satellite decreases below 2m, the

short range module is activated. Once the short range vision module successfully locks onto

the satellite and commences visual tracking, the medium range vision module is deactivated to

conserve energy.

Target Pose Estimation using Multiple Visual Processing Streams

To improve the quality of target pose estimates and to ensure smooth transition between dif-

ferent vision modules, we have implemented a fuzzy logic based sensor fusion scheme that

combines pose estimates from active vision modules (Appendix C). The sensor fusion scheme

takes into account target pose estimates along with their associated confidences and the opera-

tional ranges of the vision modules to compute a weighted sum of the pose estimates from the

active modules. Currently, it works only with the short and medium range vision modules.2

The position p of the satellite is given by

p = wps + (1− w)pm, (9.1)

where 0 ≤ w ≤ 1 is the weight assigned to the short-range module’s estimate and which

is determined by the fuzzy logic based controller, and ps and pm are the position estimates

for the short and medium range modules, respectively. Similarly, we combine the orientation

estimates from the short and medium range vision modules by expressing the orientation as

quaternions and interpolating between them using w:

q = (qsq
−1
m )wqm, (9.2)

where qs and qm are the rotation estimates from the short and medium range vision modules,

respectively (Appendix D). When w is 0 the computed pose of the target is the medium range

estimate, whereas when w is 1, it is the estimate returned by the short range module. The

details of the sensor fusion module are provided in Appendix C.

2The long range vision module is used only initially to locate and identify the target. Once the target is
identified, the medium range module takes over. At present, the long and medium range vision modules do not
operate concurrently.
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Figure 9.9: (a) Medium range vision hands over target tracking to the short range vision module
as the chaser moves closer to the target. (b) The prediction error of the αβ tracker. The fuzzy
logic based sensor fusion scheme fuses the information from active vision modules to form a
single coherent target pose estimate.

9.4.2 Behavior Center

The behavior center manages the reactive module’s behavioral repertoire. This by no means

trivial task involves arbitration among behaviors. The reactive module supports multiple con-

current processes, and arbitrates between them so that the emergent behavior is the desired

one. We have, however, benefited from dividing the reactive module into three components

(perception, behavior, and memory), minimizing behavior-interaction across the components,

thus simplifying the management of behaviors.

At each instant, the action selection mechanism chooses an appropriate high level behavior

by taking into account the current state of the world and the motivations. The chosen action

then activates lower level supporting behaviors, as necessary. The current state of the world

takes precedence over the motivations; i.e., the reactive module will follow the advice from the

deliberative module only when the conditions are favourable. When no motivation is available

from the deliberative module, the action selection mechanism simply chooses a behavior that

is the most relevant, usually one that ensures the safety of the agent.
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Motivational Variables

The behavior controller maintains a set of internal mental state variables, which encode the mo-

tivations of the robotic arm: 1) search, 2) monitor, 3) approach, 4) align, 5) contact, 6) depart,

7) park, 8) switch, 9) latch, 10) sensor, and 11) attitude control. The mental state variables

take on values between 0 and 1, and at each instant the action selection mechanism selects the

behavior associated with the motivational variable having the highest value. Priority among

the different motivations resolves behavior selection conflicts when multiple motivations have

the same magnitudes. Once the goal associated with a motivational variable is fulfilled, the

motivational variable begins to decrease asymptotically to zero.3 A similar approach to ac-

tion selection is used by Tu and Terzopoulos [1994] in their artificial fish and by Shao and

Terzopoulos [2005a] for their autonomous pedestrians.

We model a level-of-interest to prevent one behavior from excluding other behaviors while

it infinitely pursues an unattainable goal [Blumberg 1994]. A maximum cutoff time is specified

for each motivational variable and if, for whatever reason, the associated goal is not fulfilled

within the prescribed cutoff time, the value of the motivational variable starts to decay to 0

(Figure 9.10). We also employ a Minsky/Ludlow [Minsky 1985] model of mutual inhibition

to avoid behavior dither; a situation where the action selection keeps alternating between two

goals without ever satisfying either of them. Mutual inhibition is implemented by specifying

a minimum duration for which a behavior must remain active and by initially increasing the

value of the associated motivation variable (Figure 9.11).

The values of the motivational variables are calculated as follows:

mt =






max
(
0, mt−1 − da∆t

(
1− dbm2

t−1

))
when t > tc or the associated behavior

achieves its goal

min
(
1, mt−1 + ga∆t

(
em2

t−1 − gb

))
when the associated behavior is first initiated,

3This is consistent with the “drive reduction theory” proposed by Hull [Hull 1943], whose central theme is that
drive (motivation) is essential in order for a response to occur; furthermore, a response is chosen so as to reduce
(or satisfy) the most pressing drive.
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Figure 9.10: Priority among motivations and level-of-interest modeling. The deliberative mod-
ule sets the value of motivational variables monitor (a) and approach (b) to 1. The action se-
lection mechanism selects the monitor behavior, which has a higher priority than the approach
behavior. The monitor behavior fails to achieve its objectives within the prescribed time, the
motivational variable monitor begins to decay to 0. When the value of the monitor variable is
less than that of the approach variable, the approach behavior is activated. In this particular
scenario, the approach behavior did not meet its objectives within the prescribed time and the
approach variable decreases to zero. In either case, the decay in the motivational variables is
due to the level-of-interest modeling.

where 0 ≤ ga,gb,da,db ≤ 1 are the coefficients that control the rate of change in the motivational

variables, which are set empirically to 0.5, 0.99, 0.05, and 0.99, respectively.4 The time step is

∆t. The values of a motivational variable at time t and t −∆t are mt and mt−1, respectively.

The associated cutoff time is tc. The cutoff time for a particular motivation depends upon two

factors: the motivation in question and whether or not other motivational variables are greater

than 0:

tc =






t1 when other motivational variables > 0,

t2 otherwise,

where 0 < t1 < t2 < ∞.

The higher-level deliberative module suggests an action to the reactive module by setting

4In a more general setting the values of the coefficients can be chosen on a per-motivation basis.
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Figure 9.11: Mutual inhibition. The monitor behavior has a higher priority than the approach
behavior; however, when the approach behavior is active, it inhibits the monitor behavior for
some prescribed time and prevents the monitor behavior from becoming active. After the
inhibition period, the monitor behavior becomes active, deactivating the approach behavior.
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Figure 9.12: (a) Perceptual support: monitor behavior is deactivated when perceptual support
for the monitor behavior vanishes. (b) The approach behavior initially increases the approach
variable to encourage persistence, and the approach variable decreases as the approach behav-
ior is doing its job.



CHAPTER 9. AUTONOMOUS SATELLITE RENDEZVOUS AND DOCKING 179

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

Satellite’s pose confidence varies over time 

Supporting evidence increases
the confidence

Confidence decreases in
the absence of new evidence 

Processing Delay 

C
on

fid
en

ce
 (0

-1
)

Figure 9.13: The confidence in the satellite’s pose decreases in the absence of supporting
evidence from the vision system.

the relevant motivational variable(s) to 1 or 0. Any parameters associated with the suggested

action are passed directly to the behavior linked to the motivational variable. It is up to the

reactive module to decide whether or when to execute the suggested action by activating the

associated behavior. Furthermore, the reactive module is not responsible for communicating

its decision or status to the deliberative module. The plan execution and monitoring module

determines whether or not the suggested action was ever executed or that it failed or succeeded

through the abstracted world state.

A consequence of the design proposed here is that the behavior-based reactive module is

oblivious to the existence of the deliberative and the plan execution and monitoring modules.

The sole agenda of the reactive module is to minimize the internal motivational variables by ac-

tivating appropriate behaviors. The system operates at a diminished capacity when higher level

modules are disabled. Built into the reactive module is a provision for overriding the action

selection mechanism during a teleoperated mission; i.e., when the system is being controlled

by an astronaut.

9.4.3 Memory Center
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Figure 9.14: The abstracted world state represents the world symbolically. For example, the
satellite is either Captured, Close, Near, Medium, or Far. In the memory center, the conversion
from numerical quantities to symbols takes into account the current state of the agent.

The memory center manages the short-term memory of the agent. It holds the relevant sensory

information, motivations, state of the behavior controller, and the abstracted world state. At

each instant, it copies whatever new sensory information is available at the perception center,

and it provides a convenient way of handling perception delays. At any moment, the memory

center has a time-delayed version of the sensory information, and it projects this information

to the current instant. Thus, the behavior center need not wait for new sensory information; it

can simply use the information stored in the memory center, which is responsible for ensuring

that this information is valid.

The memory center uses two behavior routines (per feature), self-motion and passage-of-

time, to ensure the currency and coherence of the information. The robot sees its environment

egocentrically. External objects change their position with respect to the agent as it moves.

The self-motion behavior routine constantly updates the internal world representation to reflect

the current position, heading, and speed of the robot.

Each perceptual feature is represented as a tuple 〈Value, Timestamp, Confidence〉 in the

working memory. Value represents the present value of the feature, Timestamp stores the time

at which the feature was generated, and Confidence ∈ [0, 1] is the current confidence value of

the feature. In the absence of new readings from the perception center, the confidence in the

world state should decrease with time (Figure 9.13). How the confidence in a particular feature

decreases depends on the feature (e.g., the confidence in the position of a dynamic object
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decreases more rapidly than that of a static object) and the penalty associated with acting on

the wrong information.5

The ability to forget outdated sensory information is critical to the overall operation of

the reactive module, providing a straightforward mechanism to prevent it or the deliberative

module from operating upon inaccurate, or worse, incorrect information, and can be used to

detect sensor failures. The confidence value for a perceptual feature tends to zero in the absence

of fresh information from the relevant sensor. The lack of new information from a sensor can

be construed as a malfunctioning sensor, particularly for sensors such as the docking interface

status sensor that periodically send new information to the perception center.

Abstracted World State (AWS)

The reactive module requires detailed sensory information, whereas the deliberative module

employs abstract information about the world. The memory center filters out unnecessary

details from the sensory information and generates the abstracted world state which expresses

the world symbolically (Figure 9.14). The abstracted world state is a discrete, multivalued

representation of an underlying continuous reality.

Discretization involves dividing a continuous variable into ranges of values and assigning

the same discrete value to all values of the continuous variable that fall within a certain range.

Discretization, however, is not without its problems. When the value of the continuous variable

hovers about a discretization boundary, the discretized value can switch back and forth between

adjacent discrete values, which can pose a challenge for a process that relies on the stability of

a discrete variable.

Consider, for example, mapping a continuous variable x whose values lie between 0 and 1

5Decreasing confidence values over time is motivated by the decay theory for short term (working) memory
proposed by Peterson and Peterson in 1959 [Peterson and Peterson 1959]. In their experiments, 50 participants
were shown trigrams and then counting down from 50, the participants were asked to recall them. A long count
back caused poor recall, suggesting decay in short term memory. Proactive interference could also explain the
poor recall due to counting of numbers before recall.



CHAPTER 9. AUTONOMOUS SATELLITE RENDEZVOUS AND DOCKING 182

x

y

10 0.5

(a)

t

x
1

0

y= y=

(b)

Figure 9.15: Emulating hysteresis during discretization. (a) y is a discretization of x that takes
values between 0 and 1. If y is α and the value of x > 0.5 + ∆, y becomes β. Otherwise, if y
is β and the value of x < 0.5 −∆, then y becomes α. (b) x ∈ [0, 1] is mapped to y ∈ [α, β].
The state y = α indicates that x = 0 and y = β indicates that x = 1. The variable y resists
changing its value from α to β and vice-versa, which allows y to exhibit more stable behavior
by ignoring spurious changes in x.

to a discrete variable y that can take one of the two possible values α and β,

y =






α if 0 ≤ x < 0.5

β if 0.5 ≤ x ≤ 1
.

Here, when the value of x hovers around 0.5, the value of y keeps alternating between α and β.

We address this problem by imitating hysteresis during the discretization operation. We

illustrate our strategy in Figure 9.15(a), where variable y resists a change from α to β and

vice-versa; thereby, avoiding alternating between the two values when the value of x fluctuates

about 0.5. A related approach is taken when converting binary (or discrete multi-valued) sen-

sory information to binary (or multi-valued) fluents. Consider, for example, mapping a binary

variable x ∈ [0, 1] to y ∈ [α, β],

y =






α if x = 0

β if x = 1
.

The value of y does not faithfully follow the value of x. Rather, the value of y is only switched

from α to β when the value of x is consistently 1. Similarly, the value of y is switched from β
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Fluents/arity Values Description
fStatus/1 on|off Status of the servicer
fSatPosConf/1 yes|no Confidence in the estimated pose of the satel-

lite
fSatPos/1 near|medium|far|contact Distance from the satellite
fSatSpeed/1 yes|no Whether the satellite’s relative speed is within

the acceptable limits
fLatch/1 unarmed|armed Status of the latch (docking interface)
fSatCenter/1 yes|no Whether the satellite is in the center of the

field of view
fSatAlign/1 yes|no Whether the servicer is aligned with the dock-

ing interface of the satellite
fSensor/2 short|medium, on|off Current configuration of the vision system
fError/1 sensor|shadow|any|no Error status
fSatContact/1 false|true Whether the satellite is already docked
fSatAttCtrl/1 on|off Whether or not the satellite’s attitude control

is active
fSun/1 front|behind Location of the Sun relative to the servicer
fRange/1 near|far Distance from the satellite

Table 9.2: The abstracted world state for the satellite servicing task. The choice of fluents
describing the abstracted world state depends upon the target application.

to α when the value of x stays at 0.

Using the above scheme, we convert continuous sensory information, such as the estimated

distance from the satellite and the estimated speed of the satellite, as well as binary values,

such as the status of the latch, to appropriate fluents that comprise the abstracted world state.

The list of fluents is provided in Table 9.2.

9.5 The Deliberative Module

The deliberative module endows our agent with the ability to plan its actions, so that it can

accomplish high-level tasks that are too difficult to carry out without “thinking ahead.” To this

end, the deliberative module maintains a set of planners, each with its own knowledge base

and planning strategy. Generally, the world behaves much more predictably at higher levels

of abstraction. Hence, each planner understands the world at an abstract level, which makes
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reasoning tractable, as opposed to ill-conceived attempts to formulate plans in the presence of

myriad low-level details. The lowest level of abstraction for a particular planner is determined

by the reactive module explicitly through the abstracted world state and implicitly through the

behaviors that it implements. The latter constitute the basis (grounded actions) of the plans

generated by the deliberative module. For any application, it is essential to choose the right

level of abstraction (Table 9.2).

Symbolic logic provides the right level of abstraction for developing high level planners

that elegantly express abstract ideas. We advocate using a high-level agent language, such

as GOLOG [Levesque et al. 1997], to develop planners for the deliberative module. Conse-

quently, the deliberative module comprises high-level, non-deterministic GOLOG programs

whose execution produce the plans for accomplishing the task at hand. GOLOG is a logic

programming language for dynamic domains with built-in primitives (fluents) to maintain an

explicit representation of the modeled world, on the basis of user supplied domain knowledge.

The domain knowledge consists of what actions an agent can perform (primitive action predi-

cates), when these actions are valid (precondition predicates), and how these actions affect the

world (successor state predicates). GOLOG provides high level constructs, such as if-then-else

and non-deterministic choice, to specify complex procedures that model an agent and its en-

vironment. A GOLOG program can reason about the state of the world and consider various

possible courses of action before committing to a particular choice, in effect performing delib-

eration. The GOLOG language has been shown to be well suited to applications in high-level

control of robotic systems, industrial processes, software agents, etc. An advantage of GOLOG

over traditional programming languages like C is that programs can be written at a much higher

level of abstraction. GOLOG is based on a formal theory of action specified in an extended

version of the situation calculus [Reiter 2001], so GOLOG programs can be verified using the-

orem proving techniques. We treat GOLOG programs as planners; hence, in the remainder of

this thesis we will use the term planner and GOLOG program interchangeably.

The symbolic reasoning module comprises two specialist planners. Planner A is responsi-
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Actions/#args Arguments’ Values Description
aTurnon/1 on|off Turns on the servicer
aLatch/1 arm|disarm Enables/disables the latching mechanism
aErrorHandle/1 Informs the operator of an error condition
aSensor/2 medium|near, on|off Configures the vision system
aSearch/1 medium|near Initiates a medium/short visual search se-

quence
aMonitor/0 Initiates the monitor phase
aAlign/0 Initiates the align phase
aContact/0 Moves in to make contact
aGo/3 park|medium|near,

park|medium|near,
vis|mem

Moves to a particular location using either the
current information from the vision system (if
vision system is working satisfactorily) or re-
lying upon the mental state

aSatAttCtrl/1 off|on Asks the ground station to turn off the satel-
lite attitude control

aCorrectSatSpeed/0 Informs the operator that the satellite is be-
having erratically

Table 9.3: The primitive actions available to the planner that creates plans to accomplish the
goal of safely capturing the target satellite.

ble for generating plans to achieve the goal of capturing the target satellite. Planner B attempts

to explain the changes in abstracted world state. It effectively produces high level explanations

of what might have happened in the scene (workspace). The primitive actions available to the

two planners are listed in Table 9.3 and 9.4, respectively. The planners experience the world

through the fluents (AWS) listed in Table 9.2.

On receiving a request from the plan execution and monitoring module, the deliberative

module selects an appropriate planner, updates the planner’s world model using the abstracted

Actions/#args Arguments’ Values Description
aBadCamera/0 Camera failure
aSelfShadow/0 Self-shadowing phenomenon
aGlare/0 Solar glare phenomenon
Sun/1 front|behind The relative position of the Sun
aRange/1 near|medium Distance from the satellite

Table 9.4: The primitive actions available to the planner that constructs abstract, high-level
interpretations of the scene by explaining how the AWS is evolving.
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world state, and activates the planner. The planner computes a plan, which is a sequence

of zero (when the planner cannot come up with a plan) or more actions, to the deliberative

module, which then forwards it to the plan execution and monitoring module. Each action of

an executable plan contains execution instructions, such as which motivational variables to use,

and specifies its preconditions and postconditions.

9.5.1 Scene Interpretation

The cognitive vision system monitors the progress of the current task by examining the AWS,

which is maintained in real-time by the perception and memory module. Upon encountering an

undesirable situation, the reasoning module tries to explain it by constructing an interpretation.

If the reasoning module successfully finds a suitable interpretation, it suggests appropriate

corrective steps; otherwise, it suggests the default procedure for handling anomalous situations.

The default error handling procedure for our application, like all space missions, is to safely

abort the mission; i.e., to bring the robotic manipulator to its rest position while avoiding

collisions with the target satellite. The procedure for finding explanations is as follows:

Construct plans that account for the current error conditions by using the knowledge encoded
within the error model.
Sort these plans in ascending order according to their length. (We disregard the default plan,
which usually has a length of 1.)
for all Plans do

Simulate plan execution; this consists of querying the perception and memory unit or
asking the operator.
if The execution is successful then

The current plan is the most likely explanation.
Break

end if
end for
if No explanation is found then

The default plan is the most likely explanation.
end if
Generate a solution based on the current explanation; this requires another round of reason-
ing.
if The solution corrects the problem then

Continue doing the current task.
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else
Abort the current task and request user assistance.

end if

A fundamental limitation of the proposed scene interpretation strategy is that it requires

a detailed error model—i.e., a knowledge base of what might go wrong and how—and for a

general scene it might be infeasible to acquire this knowledge. Space missions, however, can

benefit from the approach, since they are usually studied in detail for months and sometimes,

years by a team of engineers and scientists who run through all the foreseeable scenarios.

Indeed, on-orbit missions are carefully planned and highly scripted activities. Furthermore,

they generally take place in uncluttered environments, so the number of possible events can be

managed. Therefore, our framework appears to be useful for vision-based robotic systems for

AR&D. The proposed scene interpretation scheme can be extended to other domains as long

as the knowledge base that encodes the error conditions is complete. Such knowledge bases

are available for space missions and they might be available in some other situations as well;

e.g., in industrial settings.

9.5.2 Cooperation Between Active Planners

The planners cooperate to achieve the goal—safely capturing the satellite. The two planners

interact through a plan execution and monitoring unit to avoid undesirable interactions. Upon

receiving a new “satellite capture task” from the ground station, the plan execution and moni-

toring module activates Planner A, which generates a plan that transforms the current state of

the world to the goal state—a state where the satellite is secured. Planner B, on the other hand,

is only activated when the plan execution and monitoring module detects a problem, such as a

sensor failure. Planner B generates all plans that will transform the last known “good” world

state to the current “bad” world state. Next, it determines the most likely cause for the current

fault by considering each plan in turn. After identifying the cause, Planner B suggests correc-

tions. Possible corrections consist of “abort mission,” “retry immediately,” and “retry after a
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Starting world state:
fStatus(off) ∧ fLatch(unarmed) ∧ fSensor(all,off) ∧ fSatPos(medium) ∧ fSatPosConf(no)
∧ fSatCenter(no) ∧ fAlign(no) ∧ fSatAttCtrl(on) ∧ fSatContact(no) ∧ fSatSpeed(yes) ∧
fError(no)

Execution result:
aTurnon(on) → aSensor(medium,on) → aSearch(medium) → aMonitor →
aGo(medium,near,vis) → aSensor(short,on) → aSensor(medium,off) → aAlign →
aLatch(arm) → aSatAttCtrl(off) → aContact

Table 9.5: A linear plan generated by the GOLOG program to capture the target.

Starting world state:
fRange(unknown) ∧ fSun(unknown) ∧ fSatPosConf(yes)

Proposed explanation 1: aBadCamera

Proposed explanation 2: aSun(front) → aGlare

Proposed explanation 3: aRange(near) → aSun(behind) → aSelfShadow

Table 9.6: Planner B uses the error model to determine possible explanations of an error con-
dition. The plan execution and monitoring module executes these plans in sequence to pick the
most likely cause of the error. A solution is suggested once the cause of the error is identified.

random interval of time” (the task is aborted if the total time exceeds the maximum allowed

time). Finally, after the successful handling of the situation, Planner A resumes.

9.6 Plan Execution and Monitoring Module

The Plan Execution and Monitoring (PEM) module interfaces the deliberative and reactive

modules. It initiates the planning activity in the deliberative module when the user has re-

quested the agent to perform some task, when the current plan execution has failed, when the

reactive module is stuck, or when it encounters a non-grounded action that requires further

elaboration. The execution is controlled through preconditions and postconditions specified

by the plan’s actions. Together, these conditions encode plan execution control knowledge.

At each instant, active actions that have either met or failed their postconditions are deacti-

vated, then un-executed actions whose preconditions are satisfied are activated (Figure 9.16).
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Figure 9.16: The plan execution and monitoring module sequentially executes each action. It
checks the current action’s preconditions until they succeed or fail. If they succeed, it enters the
current action’s execution/postcondition-check loop, wherein it activates the current action’s
execution code until the postconditions either succeed or fail. Upon success, it proceeds to the
next action.

Together the preconditions and postconditions constitute the plan execution control knowledge.

The PEM module can handle linear, conditional, and hierarchical plans, thereby facilitating

the sliding autonomy capability of the overall controller (Figure 9.17). Plans constructed by the

deliberative module have a linear structure. Every action of the plan is directly executable on

the reactive module, and each action must succeed for the plan to achieve its objectives. Scripts

uploaded by human operators usually have a conditional/hierarchical structure. For conditional

plans, it is not sufficient to execute each action in turn, rather the outcome of an action deter-

mines which of the remaining actions to execute next. On the other hand, in hierarchical plans

some actions acts as macros that represent other plans that have to be computed at runtime.

The plan execution and monitoring module handles linear, conditional, and hierarchical plans

through the following plan linearization process (Figure 9.17):

if Current action is “grounded” (i.e., directly executable on the reactive module) then
Send to the reactive module.

else if Current action is “conditional” (e.g., a sensing action, etc.) then
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Evaluate condition and pick the next action based on the outcome.
else if Current action is “non-grounded” (i.e., it requires further elaboration) then

Perform elaboration and replace the hierarchical action with the outcome (plan stitching).
else

Unknown action type. Plan execution failure.
end if

The PEM module can execute multiple actions concurrently; however, it assumes that the

plan execution control knowledge for these plans will prevent race conditions, deadlocks, and

any undesirable side affects of concurrent execution.

9.6.1 Plan Execution Control Knowledge

The PEM relies upon execution control knowledge to properly execute a plan. Execution

control knowledge is defined over the abstracted world state, and it consists of conditions that

must hold before, during, or after an action (or a plan). Some of these conditions span the

entire plan while others are action-dependent. Together these conditions answer the following

questions that are vital for the correct execution of a plan:

• Plan validity (a plan might become irrelevant due to some occurrence in the world).

• Action execution start time.

– Now.

– Later.

– Never; the plan has failed.

• Action execution stop time.

– Now; the action has either successfully completed or failed.

– Later; the action is progressing satisfactorily.

For our application, the plan execution control knowledge is readily available in the form of

precondition action axioms and successor state axioms.
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go(l1,l2) pick(0) go(l2,l3) drop(()) 

Reactive Module 

Suggesting a grounded action to the reactive module 

(a) PEM suggests a grounded action to the reactive
module

go(l1,l2) 

pick(0) go(l2,l3) drop(()) 

search(0) go(cur,l3) drop(()) pick(0) 

If O is at l2 

go(l1,l2) search(0) go(cur,l3) drop(()) pick(0) 

Run-time linearization of conditional plan 

(b) PEM evaluates the condition, and the outcome determines which actions
are chosen

go(l1,l2) go(l2,l3) drop(()) 

openhand closehand reach(0) 

pick(0) 

go(l1,l2) go(l2,l3) drop(()) 

Run-time completion of incomplete plans 

(c) At run-time, the PEM expands the non-grounded action as a linear plan

Figure 9.17: PEM module executing linear, conditional, and hierarchical plans.
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Vision System Errors Hardware Errors
Camera Failure Grapple Fixture Error
Self Shadowing Joints Error (critical)
Solar Glare Satellite’s Attitude Control Error
Failed transition between vision modules

Table 9.7: CoCo handled these error conditions that were randomly generated during various
test runs.

9.7 Results

We have developed and tested the CoCo AR&D system in a simulated virtual environment, as

well as in a physical lab environment at MDA Space Missions, Ltd., which faithfully repro-

duces on-orbit movements and illumination conditions—strong light source, very little ambient

light, and harsh shadows. The physical setup consisted of the MD Robotics, Ltd., proprietary

“Reuseable Space Vehicle Payload Handling Simulator,” comprising two Fanuc robotic manip-

ulators and the associated control software. One robot with the camera stereo pair mounted on

its end effector acts as the servicer. The other robot carries a grapple-fixture-equipped satellite

mock-up and synthesizes realistic satellite motion.

The capture procedure is initiated by a single high-level command from the ground sta-

tion. Upon receiving the command, the system initializes the long-range vision module to

commence a visual search procedure. Once the satellite is found, and its identity confirmed,

the system guides the robotic arm to move closer to the satellite. The performance of the long-

range vision module deteriorates as the separation between the robotic arm and the satellite

decreases due to the fact that the cameras are mounted on top of the end-effector. In response,

the cognitive vision system turns on the medium range vision module and turns off the long-

range vision module to conserve power once the medium range system is fully initialized and

reliably tracking the satellite. Next, the robotic is arm tries to match the satellite’s linear and

angular velocities, a procedure known as station keeping. Then, short-range vision processing

is initiated, and a message is sent to the ground station to turn off the satellite’s attitude control

system. The robotic arm should not capture a satellite whose attitude control system is func-
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tioning, as that might destroy the satellite, the robotic arm, or both. When the attitude control

system is inactive, the satellite begins to drift; however, the robotic arm follows it by relying

upon the short-range vision system. Upon receiving a confirmation from the ground station

that the satellite’s attitude control system is off, the robotic arm moves in to make contact.

We performed 800 test runs in the simulated environment and over 25 test runs on the

physical robots. For each run, we randomly created error conditions (see Table 9.7), such as

a vision system failure and/or hardware failures. The cognitive controller gracefully handled

all of them and met its requirements; i.e., safely capturing the satellite using vision-based

sensing (Figure 9.5 shows example sensed images) while handling anomalous situations. The

controller never jeopardized its own safety nor that of the target satellite. In most cases, it was

able to guide the vision system to re-acquire the satellite by identifying the cause and initiating

a suitable search pattern. In situations where it could not resolve the error, it safely parked the

manipulator and informed the ground station of its failure.

Figure 1.5 shows a satellite capture sequence in the lab, where the servicer was able to

capture the satellite without incident.

During the capture sequence shown in Figure 9.18, we simulated a vision system failure.

The servicer gracefully handled the error by relying upon its cognitive abilities and successfully

captured the satellite. When there is an error condition, such as a vision system failure, the

reactive system responds immediately and tries to increase its separation from the satellite. In

the absence any new perceptual information, the system relies upon its time-aware and context-

sensitive mental state. Meanwhile, the deliberation module is using its knowledge base to

explain the error and suggest a recovery.

Figure 9.19 shows a simulated satellite rendezvous sequence. Upon receiving a dock com-

mand from the ground station, the servicer initiates a visual search behavior, which points

the cameras towards the incoming satellite (Figure 9.19(a–b)). Once the satellite’s identity is

confirmed, the servicer begins to approach it (Figure 9.19(c)). Initially, the servicer only has in-

formation about the position of the satellite; however, as it approaches the satellite, it activates
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(Frame 1) Recieved a capture command. (Frame 2) Target acquired.

(Frame 3) Approaching target. (Frame 4) Vision system failure.

(Frame 5) Safety manuever: departure. (Frame 6) Target re-aquired.

(Frame 7) Approaching target. (Frame 8) Aligning with the docking interface.

(Frame 9) Station keeping. (Frame 10) Moving in to make contact.

(Frame 11) Accounting for satellite drift. (Frame 12) Successful contact.

Figure 9.18: Despite a simulated vision system failure, the servicer robot captures the satellite
using vision by applying its cognitive abilities. The right part of each frame shows the view
from the simulation environment that runs the controller code. The simulation environment
communicates with the physical robots over the network. The wireframe model represents the
position of the satellite as estimated by the robotic arm. The 3D model of the satellite represents
the actual position of the satellite according to the sensors on the Fanuc robot arm. The gray
cylinder represents the position of the chaser robot end-effector according to the telemetery
information. Note that the estimated position is maintained in the absence new perceptual
information (Frames 3 and 4). A vision failure was induced by shutting off the ambient light.
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the medium range vision module. Medium range visual processing estimates the orientation of

the satellite. The servicer aligns itself with the grapple fixture of the satellite, following an arc

around the satellite to avoid the delicate solar panels (Figure 9.19(d-f)). The servicer initiates

stationkeeping, where it matches the position and orientation of the satellite (Figure 9.19(g)).

At this stage, the servicer’s view is limited to the grapple fixture mounted on the satellite, as

the cameras are mounted on the docking mechanism of the servicer. Therefore, the servicer

activates the short range vision module. Finally, it moves towards the satellite to make contact

and capture it (Figure 9.19(h)).

9.7.1 CoCo Outperformed CSA’s Controller

The Canadian Space Agency (CSA) also developed an autonomous satellite rendezvous and

docking system as part of MDRobotics’s efforts to support Boeing’s bid for the Orbital Ex-

press contract. The CSA controller took a more conventional and accepted approach towards

designing intelligent controllers for space missions. It relied on CORTEX, a hierarchical fi-

nite state machine based autonomy engine. CORTEX does not support deliberation and is

unable to construct error explanations. Our CoCo-based controller and CORTEX rely upon

the same motor primitives and sensors provided by MDRobotics Ltd.’s proprietary “Reuseable

Space Vehicle Payload Handling Simulator,” comprising two Fanuc robotic manipulators and

associated control software. One robot with a camera stereo pair mounted on its end effector

acts as the servicer. The other robot carries a grapple-fixture-equipped satellite mock-up and it

synthesizes realistic satellite motion.

Both controllers were demonstrated during the Space, Vision, and Advaned Robotics Work-

shop held at MDRobotics on June 11, 2002. Our CoCo-based controller outperformed CSA’s

controller by capturing the mockup satellite while handling a variety of anomalous situations,

such as hardware failures and vision-system failures. CSA’s controller could not manage to

handle anomalous events and it failed to capture the mockup satellite.
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(a) Searching for the target (b) Target identified; Long range vi-
sion

(c) Moving towards the target (d) Aligning with the docking inter-
face while avoiding the solar panels

(e) Aligning with the docking interface (f) Aligning with the docking interface

(g) Making contact (h) Target captured

Figure 9.19: Satellite rendezvous simulation.
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Chapter 10

Summary and Research Directions

10.1 Space Robotics and CoCo

Like the earliest machine vision systems [Roberts 1965; Nilsson 1984], future applications

of vision will require more than just image analysis. They will also need a high-level AI

component to guide the vision system in a deliberate, task-appropriate manner, to diagnose

sensing problems, and to take corrective actions. The AI system must rely on a low-level

reactive component responsible for sensorimotor control.

With this in mind, we developed and demonstrated in the latter part of the thesis a first-of-

its-kind vision-based robotic system whose objective is to tackle a challenging space-robotics

problem: autonomous satellite rendezvous and docking. To our knowledge, our work is the

first attempt at designing an AR&D system that relies solely upon computer vision for its

sensing needs. Existing AR&D systems typically rely on RADAR, GPS, or proximity-detector

sensors. Ours is also the first use of deliberation in the context of satellite rendezvous and

docking scenarios.

Through our work, MDRobotics supported Boeing’s successful bid for DARPA’s 12 mil-

lion dollar Orbital Express project. To this end, we proposed an artificial life inspired control

architecture, called the Cognitive Controller, or CoCo. CoCo is our attempt to deal with the

198
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challenges that we faced while working on this real-world space robotics problem. CoCo com-

bines low-level visual analysis and high-level reasoning within a hybrid deliberative/reactive

control framework. Bridging the gap between, at times, two distinct streams of autonomous

agents research—robotics and virtual characters—CoCo appears suitable for visually-guided

agents capable of intelligent, autonomous operation in dynamic settings. CoCo’s reactive mod-

ule interacts with an agent’s environment through sensors and actuators, and it presents the

higher level modules (plan executor and the deliberative module) with an abstracted view of an

agent’s environment. The deliberative module uses the abstracted world state and the knowl-

edge base to reason about an agent’s actions. And the plan executor mediates between the two

modules. The plan executor interacts with the reactive module by setting motivations. We have

found this to be a powerful and non-intrusive scheme of injecting higher-level advice into the

reactive processing, as it does not interfere with the behavior arbitration mechanisms available

in the reactive module.

CoCo differs from its predecessors in the following important ways: 1) its reactive module

is ethology-based as opposed to subsumption-based, 2) its plan execution and control module

interacts with the reactive module through the affective states (i.e., the motivations), and 3) its

deliberative module, which sees the world at a higher level of abstraction comprises multiple

specialist deliberative routines, as opposed to the ubiquitous single, monolithic deliberation

mechanism.

In our space robotics research, there are multiple opportunities for future work. Currently,

we assume unlimited power and unbounded computational resources. These are naive assump-

tions. In fact, power and computational resources are at a premium in space robotics. Indeed,

this was one of the motivations for developing a vision-based satellite servicing system. Vi-

sion is a passive sensory modality with very little power requirements when compared to that

of an active sensor, such as a radar. Therefore, a space-worthy controller must be able to

operate under limited resources. Future work on our space robotic system should include an-

alyzing its resource requirements. Additionally, a possible direction of future work is to build
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energy resource awareness within CoCo. Energy/computational resource aware control archi-

tectures will be most useful in space robotics. These architectures would adapt their cogitation-

action cycle to optimize power consumption and computational resources utilization. Explor-

ing ideas from the resource bounded reasoning community should prove advantageous in this

regard [Zilberstein 1996].

CoCo relies on a handcrafted, detailed error-model for constructing scene interpretations.

It is feasible to construct such a knowledge base for space missions; however, it might be

infeasible to acquire this knowledge for a general scene. It is crucial to investigate and remove

this limitation before CoCo’s promise can be fully exploited in terrestrial robotics.

Although CoCo can deal with hierarchical, conditional, and linear plans, to date its de-

liberate module can only generate linear plans. It would be worthwhile to investigate more

sophisticated planning strategies to augment the deliberative module. These might include

conditional planning, anytime planning, and iterative plan repair.

Developing a computer-aided software engineering (CASE) tool to design and study CoCo-

based robotic agents would be a valuable future contribution. An initial promise of subsump-

tion architecture was behavior reuse, but this has rarely been the case in practice. A well-

designed CASE tool can help maintain behavior libraries that will significantly speed up the

initial design process. Additionally, in the absence of a theory of CoCo that would allow us

to prove the correctness of a CoCo controller, CASE tools can help us empirically validate a

particular CoCo controller.

In a head-to-head competition within a lab environment, our CoCo-based AR&D controller

outperformed the conventional, non-deliberative controller developed by the Canadian Space

Agency. Although this is an encouraging result, the ultimate test of our AR&D controller

would be to deploy it in space. Therefore, an exciting direction for future work would be to

make our system spaceworthy. This will likely take many years, and it will be a large-scale,

collaborative effort with engineers, scientists, and technicians that specialize in space hardware

and software.
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10.2 Virtual Vision and Visual Sensor Networks

In the first part of the thesis, we argued that future surveillance systems will comprise networks

of static and active cameras capable of providing perceptive coverage of extensive environ-

ments with minimal reliance on a human operator. Such systems will require not only robust,

low-level vision routines, but also novel sensor network methodologies. Our work represents

another step toward their realization.

However, the cost associated with deploying a camera network and experimenting with it

on a large scale in a big public space is prohibitive. There are also legal and privacy concerns

that must be addressed before experimental camera networks can be deployed in a public space.

Consequently, setting up and experimenting with larger scale networks of cameras is beyond

the reach of most vision researchers.

In the first half of this thesis, we developed the Virtual Vision paradigm—a unique syn-

thesis of virtual world modeling, computer graphics, computer vision, and sensor network

technologies—for camera networks research. Virtual vision democratizes camera network re-

search: any researcher can study and develop camera senor network protocols. All that is

required is a high-end commodity PC. We showed virtual vision to be particularly useful for

studying camera networks, especially in the study of high-level camera control problems. It

is fair to say that virtual vision has enabled us to make substantial progress on such problems

in a relatively short period of time. Our approach provides a viable alternative to installing a

physical surveillance system, at least during the R&D and evaluation phase.

The success of the virtual vision paradigm for camera network research hinges upon one

crucial factor: faithful emulation of physical vision systems. In order to capture the perfor-

mance characteristics of a physical vision system—failures due to occlusions, lighting varia-

tions, targets with similar appearance, etc.—we implemented an appearance based pedestrian

tracker that operates upon the synthetic footage captured by the virtual cameras situated in

the virtual train station. To this end, we adapted well-known computer vision algorithms. A

unique feature of our pedestrian tracker is that it works for both active PTZ and passive wide-
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FOV cameras. We have shown that imaging artifacts that are of interest to camera network

researchers can be simulated through more advanced rendering techniques. Specifically, we

simulate compression artifacts and interlacing. We have developed image-driven PTZ con-

trollers for active cameras. These controllers eschew camera calibration. Additionally, we

have developed machine learning based techniques that allow an uncalibrated active PTZ cam-

era to learn the mapping between the 3D locations and its internal pan/tilt settings by fixating

a single pedestrian during an initial learning phase.

We examined the problem of perceptive scene coverage for surveillance and proposed a

sensor network framework particularly suitable for designing camera networks for surveil-

lance applications. The overall behavior of our prototype camera sensor network is governed

by local decision making at each node and communication between the nodes. Our approach is

new insofar as it does not require camera calibration, a detailed world model, or a central con-

troller. We have intentionally avoided multi-camera tracking schemes that assume prior camera

network calibration which, we believe, is an unrealistic goal for a large-scale camera network

consisting of heterogeneous cameras. Similarly, our approach does not expect a detailed world

model which, in general, is hard to acquire. Since it lacks any central controller, we expect the

proposed approach to be robust and scalable.

Little attention has been paid to the problem of controlling or scheduling active cameras

when there are more people to be monitored in the scene than there are available cameras.

We introduced a scheduling strategy for intelligently managing multiple, uncalibrated, active

PTZ cameras, supported by several static, calibrated cameras, in order to satisfy the chal-

lenging task of automatically recording close-up, biometric videos of pedestrians present in a

scene. Other novel features of our work is that we assume a non-clairvoyant model, we as-

sume that recording durations of the pedestrian is not known a priori, we do not assume perfect

tracking, our scheduling scheme supports preemption, and we allow multiple observations of

the same pedestrian. We have found the PMOMC (preemption, multiple observation, multi-

class) scheduling scheme to be the most suitable one for this purpose. At present, predicting
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pedestrian behaviors is at best an inexact science, so we have intentionally avoided scheduling

policies that depend on such predictions.

Smart cameras are self-contained vision systems, complete with image sensors, power cir-

cuitry, communication interface, and on-board processing capabilities. They promise to rev-

olutionize next generation camera networks. Two problems are currently being investigated

in the context of smart camera networks: automatic camera handoff and automatic camera

aggregation.

We developed a simulated network of smart active PTZ cameras capable of task-dependent

camera grouping and assignment. We proposed an auction-based network protocol capable of

dealing with camera handoff and camera aggregation. Prior work on camera handoff typically

deals with passive cameras only, it requires either network topology information and/or as-

sumes camera calibration. By contrast, our work can deal with both active and passive cameras

and it does not assume camera and/or network calibration. The camera aggregation protocol

proposed by Mallet [2006] organizes cameras into locality based groups, whereas our protocol

supports leader nodes (one for each group) that manage group memberships and group-group

interactions (camera assignments). We account for node failures and imperfect communica-

tions, and we propose a sensor assignment scheme in the presence of conflicts. Furthermore,

our protocol does not require dedicated group destruction nodes.

Our virtual vision research offers numerous opportunities for future work. The future of

advanced simulation-based approaches appears to be promising in computer vision for the

purposes of low-cost design and experimentation.

Currently, our virtual world consists of a large train station, but imagine an entire city, con-

sisting of indoor and outdoor scenes, subway stations, automobiles, shops and market places,

houses, and public spaces, all richly inhabited by autonomous virtual humans. Such large-

scale virtual worlds will provide unprecedented opportunities for studying large-scale camera

sensor networks in ways not currently possible in our train station simulator. Future work on

virtual vision research will therefore benefit from long-term efforts to increase the complexity
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of virtual worlds.

Additionally, there is a need to simulate more realistic environmental conditions to capture

higher fidelity synthetic video. For example, we can simulate object shadows, specularities,

and transparency, as well as lens flare, image vignetting, depth-of-field effects, and varying

illumination conditions. Among other things, this would include the use of more realistic finite

aperture camera models. More sophisticated low-level computer vision routines will probably

be required to handle virtual environments where more realistic environment conditions are

simulated. Specifically, a more robust pedestrian tracking algorithm would be needed. Our

pedestrian recognition and tracking module relies on color signatures, thus it is sensitive to

illumination variations. Our color pedestrian recognition and tracking algorithm should be

combined with other robust cues, such as gait signatures, SIFT features, and spatial and tem-

poral constraints to minimize the effects of varying light conditions. Camera network color

calibration can also be exploited to improve the performance of pedestrian tracking and recog-

nition algorithm.

Currently, we assume that pedestrians can be uniquely identified in multiple cameras. This

is a strong assumption. A possible direction for future work would be to relax this assumption.

Furthermore, we ignore the problem of distinguishing objects with similar appearance. This

problem is not unique to computer vision since humans will have a hard time distinguishing

between identical twins wearing the same clothes. Fortunately, PTZ cameras can help avoid

these situations by zooming in on the pedestrian of interest.

Scalability is an issue when dealing with a large number of cameras spread over a large area.

We hope to tackle scalability by investigating distributed scheduling strategies. Currently, we

have proposed a non-clairvoyant scheduling strategy, as it does not require predictions about

the exit times of the pedestrians. However, clairvoyant algorithms are known to perform poorly

when these predictions are poor. A possible direction of future work is to develop pedestrian

traffic models that allow the scheduler to make better predictions. This would require algo-

rithms that can construct high-level interpretations capable of answering Who, What, Where,
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and When questions.

Another challenge is to combine camera scheduling with camera organization. The sensor

assignment problem can be seen as single-task agents, multi-agent tasks, time-extended as-

signment (ST-MR-TA) problems that are have been studied in the literature on multi-agent task

allocation. Organization (or coalition formation) and scheduling occur naturally in ST-MR-TA

problems. Currently, finding optimal solutions to these problems is infeasible, as it requires

considering all possible schedules for all coalitions. One approach to address these problems is

to employ a leader-based approach that dynamically forms coalitions and build task allocations

for them [Dias and Stentz 2002].

Another direction of future work is to investigate the Cognitive Modeling approach to cam-

era node organization and assignments. Here, each node is endowed with reasoning/planning

abilities and can apply them to make deliberative choices. For example, cameras can learn

their sensing capabilities and limitations over time, and exploit that knowledge when deciding

whether or not to take on an observation task. Sensor networks can learn and exploit topolog-

ical information to pre-task camera nodes through deliberation. Currently, our sensor network

model does not support pre-tasking, and this should be remedied in future work.

Of course, the acid test for algorithms and systems developed in our virtual vision simulator

is to see if they perform as expected in the real world. Therefore, an important direction for

future research would be to connect the virtual vision work to physical multi-camera systems.

This will probably require collaboration with researchers who engineer surveillance system

hardware and those who deploy them in real-world installations.
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Appendix A

αβ Tracker for Satellite Pose Validation

An αβ tracker is a fixed gain formulation of a Kalman filter. It is widely used in track-while-

scan and single target tracking applications, since it is easy to implement and performs well

in practice [Bar-Shalom and Li 1998; Barton 2004]. It has been shown that the output noise

variance at steady state is minimized when the gain coefficients are related as β = α2/(2 −

α). The main disadvantage of the fixed gain αβ tracker is that it estimates the position of an

accelerating target with a constant lag. The magnitude of this lag can easily be estimated and

the filter can use adaptive gains to improve the RMS tracking error. We decided in favor of an

αβ tracker instead of a Kalman filter for pose tracking in the perception center, since the pose

values supplied by the visual routines are already fairly stable. We use an αβ to validate the

target position estimates from satellite tracking routines. Currently, we rely on the underlying

vision system to predict/validate the orientation of the target satellite.

A.1 Formulation

Validation:

Accept pt, if ‖pt
p − pt‖ <

τ

2
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Smoothing:

pt
s = pt

p + α
(
pt − pt

p

)

vt
s = vt

p +
β

∆t

(
pt − pt

p

)
.

Prediction:

pt+∆t
p = pt

s + vt
s∆t

vt+∆t
p = vt

s.

Where:
pt: position reading received at time t

pt
p: the predicted position estimate at time t

pt
s: the smoothed position estimate at time t

vt
p: the predicted velocity estimate at time t

vt
s: the the smoothed velocity estimate at time t

pt+∆t
p : the predicted position estimate at time t + ∆t

vt+∆t
p : the predicted velocity estimate at time t + ∆t

α, β: gains

τ : context sensitive gating threshold.



Appendix B

Vision Module Handover

The following procedure controls the handover between the medium and short range modules.

Here, we assume that the target is initially being tracked by the medium range module. Range

A is defined between 2m to 6m, range B is defined as between 2m to 1.5m, and range C is

defined as between 1.5m to 0m. The medium range module works reliably when the target’s

distance is in ranges A and B, whereas the short range module works reliably when the target’s

distance is in ranges B and C (Figure B.1).

B.1 Handover Procedure
1: if distance is in A then
2: ensure medium range module is active
3: if short range module is active then
4: deactivate it
5: end if
6: end if
7: if distance is in C then
8: ensure short range module is active
9: if medium range module is active then

10: deactivate it
11: end if
12: end if
13: if distance is in B then
14: if moving towards the target then
15: if short range module is not active then

209



APPENDIX B. VISION MODULE HANDOVER 210

BC A

1.5m 2m 6m

Figure B.1: Satellite tracking handover: Operational ranges of short and medium range vision
modules. Short range is active anywhere from 0.2m to 2m (ranges B & C), whereas medium
range is active from 1.5m to 6m (ranges A & B).

16: initialize short range module
17: else if short range is active AND tracking the target competently then
18: deactivate medium range module
19: end if
20: else
21: if medium range module is not active then
22: intialize medium range module
23: else if medium range is active AND tracking the target competently then
24: deactivate short range module
25: end if
26: end if
27: end if



Appendix C

Fuzzy Logic Based Sensor Fusion

We employ a fuzzy logic based sensor fusion technique to compute the pose of the target satel-

lite by combining target pose estimates from short and medium range vision modules. The

proposed scheme takes into account the estimated distance from the target and the confidence

values returned by the short and medium range modules to determine a weight (∈ [0, 1]) asso-

ciated with the short range target pose estimation.

Our fuzzy inference system has 3 inputs, 1 output, and 8 rules (Figure C.1). The member-

ship functions corresponding to the three inputs and the output are shown in Figure C.2. We

employ max-min inferencing and centroid defuzzification schemes to generate a crisp output.

We point the interested reader to [Klir and Yuan 1995] for an introduction to fuzzy logic. We

list the fuzzy rules for our system below.

Fuzzy Rules

Rule 1: if distance is not medium then use is all-short

Rule 2: if distance is not short then use is all-medium

Rule 3: if distance is short and short-confidence is excellent then use is all-short

Rule 4: if distance is short and short-confidence is not excellent and medium-confidence is excellent

then use is short
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Fuzzy Inference System

3 Inputs

8 Rules

1 Output

Distance

Medium-Confidence

Short-Confidence Use

Figure C.1: Sensor Fusion: Fuzzy Inference System with 3 inputs, 1 output, and 8 rules.
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Figure C.2: Sensor Fusion: Fuzzy sets corresponding to three input and one output quantities.
(Top-Left) Fuzzy concept of medium and short distance from the satellite. Medium range vision
module can reliably track the target when the distance from the target is “medium.” Similarly,
the optimum operational distance for the short range vision module is “short.” (Top-Middle)
Fuzzy performance of the short range vision module and (Top-Right) fuzzy performance of the
medium range vision module. Output variable “use” determines the weight associated with the
target pose estimation from the short range module.
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Rule 5: if distance is medium and medium-confidence is excellent then use is all-medium

Rule 6: if distance is medium and medium-confidence is not excellent and short-confidence is excellent

then use is medium

Rule 7: if distance is short and short-confidence is not excellent and medium-confidence is not excellent

then use is mostly-short

Rule 8: if distance is medium and short-confidence is not excellent and medium-confidence is not

excellent then use is mostly-medium



Appendix D

Quaternion Representation for Rotations

Every rotation can be expressed as a right handed rotation of −2π < θ < 2π radians about an

arbitrary axis a. We associate with this rotation a unit quaternion

q =




cos( θ

2)

asin( θ
2)



 . (D.1)

Representing rotations as quaternions eliminates the well-known problem of singularities as-

sociated with the Euler angle representation. The rotation matrix associated with a unit quater-

nion [w, x, y, z]T (= [w,vT ]T , where v = [x, y, z]T ) is




1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2




. (D.2)

Equations (D.1) and (D.2) can be used to convert from the matrix representation of a rotation

to its quaternion representation, and back. We define the power operator to represent scaling in

rotation 


cos( θ

2)

a sin( θ
2)





α

=




cos(αθ

2 )

a sin(αθ
2 )



 , (D.3)

where α ∈ [0, 1]. Here, qα describes a series of rotations starting from the null rotation (for

α = 0) and ending at the complete rotation q (for α = 1). Quaterions q and −q represent
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the same rotations and are called antipodal points: −q is really q rotated through θ − 2π.

Quaternions allow us to compose rotations through quaternion multiplication, which is defined

as

q1q2 =




w1

v1








w2

v2



 =




(w1w2 − v1.v2)

(w1v2 + w2v1 + v1 × v2)



 . (D.4)

Then the inverse of a quaterion is





w

x

y

z





−1

=





w

−x

−y

−z





. (D.5)

A 3D vector p can be rotated through a rotation represented by a quaterion q by quaterion

multiplication 


0

p′



 = q




0

p



q−1, (D.6)

where p′ is the rotated vector. Quaternions are the representation of choice when interpolating

between two rotations. Given the starting and ending quaternions q1 and q2, we can interpolate

from the former to the latter by

q(α) = (q2q
−1
1 )αq1, (D.7)

where q(α) is the interpolated rotation, q1q
−1
2 is the transition rotation from q1 to q2, and

α ∈ [0, 1] is the interpolation parameter. q(0) = q1 and q(1) = q2. To ensure that q falls on

the short route from q1 to q2, we must use the antipodal quaterion of the transition quaterion

when the w of the transition quaterion is negative. This method is called spherical interpolation

or slerp and it is the preferred method for rotation interpolation. For more information about

quaternions see [Shoemake 1985; Hearn and Baker 1996; Weisstein ].
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