
DEVELOPMENT OF AN OFF-LINE PROGRAMMING (OLP) SYSTEM FOR A SERIAL LINK
ROBOT MANIPULATOR

Faisal Zubair Qureshi, Muhammad Asif, Mahmood Ahmad and Abdul Rauf
Informatics Complex, P. O. Box 2191, H-8, Islamabad

ABSTRACT

For robot manipulators, an OLP system provides a detailed 3D
simulation test-bed for visualization and analysis of various
what-if scenarios. This paper discusses the prototype OLP
system developed at the Informatics Complex for a six degrees
of freedom cylindrical serial manipulator. Paradigms from
classical robotics literature have been used to develop models
of kinematics and to plan manipulator trajectories. 3D
graphics techniques have been used in an object-oriented
programming environment; Microsoft Windows was chosen as
the platform for the OLP system. The simulator provides a
complete and flexible view of the manipulator, with menu
driven task simulation capability, and tools for visual and
mathematical analysis of manipulator’s performance.
Mathematical models for kinematics and trajectory planning
for the manipulator have effectively been integrated with the
developed 3D simulation software.

1. INTRODUCTION

A program for indigenous development of robot manipulators
was started at the Informatics Complex, Islamabad, a couple of
years ago. Most of the projects initiated then [1-5] are now in
the final fabrication stage. The program included development
of serial link manipulators. Serial manipulators have links that
are connected with each other serially through movable joints.
A properly designed serial link manipulator attempts to
replicate the working of a human hand. Typically, the first
three links form the synthetic arm and the last three links
emulate a wrist. These are used in environments where, due to
reasons of radiation hazards, excessive mechanical loads or
demands of high precision, etc., employing a human is not
desirable.

A practical robot manipulator consists of a mechanical
structure assembled according to a detailed design. Its soft-
ware contains models of kinematics and dynamics, algorithms
to plan trajectories and modules to control manipulator
motion. The hardware consists of sensors to interact with the
environment and circuitry to implement the control logic. A
robot manipulator is thus a complex system and its
performance in executing a given task is often difficult to
predict. This phenomenon, therefore, becomes the prime
motivation for developing an OLP software for robot
manipulators. An OLP system provides a software
environment where tasks to be performed by a manipulator
can be simulated in detail. An ideal OLP system will have the
following features: the computer screen will be used to create
a 3D environment exactly representing the actual manipulator
and its surroundings. The mathematical models of kinematics,

dynamics and trajectory planning will be incorporated exactly
as the way they are in the software of the actual manipulator.
It will also contain details of sensor processing and control
algorithms, etc. However, as is typical in developing any
simulator, the practical OLP system will accommodate the
trade-offs between accuracy, processing time and financial
constraints of sophisticated hardware. A 3D environment is
essential because robot simulation with only 2D effects will
always be incomplete. The robot industry has continued to
propose the use of an OLP system to supplement the
performance of a manipulator. A number of vendors have
come up with OLP systems for their particular commercial
robots. Silma Inc.’s SimStation [6] and IBM’s AUTOPASS [7]
are a few examples. The need for indigenous development of
an OLP system was felt because of its high cost in the inter-
national market. The prototype OLP system developed at the
Informatics Complex has been named InfoSim. It provides
simulation environment for InfoMate, a six degrees of freedom
(DOF) cylindrical robot manipulator, currently under
fabrication at the Scientific & Engineering Services,
Islamabad.

Development of InfoSim required detailed information about
the physical structure of InfoMate and the corresponding
mathematical models; it also required clever programming to
come up with a powerful real time 3D interface. The best
available machine was a GATEWAY2000 P-90. The paper
describes salient features of InfoSim and the issues involved in
the process of its development.

2. SALIENT FEATURES OF INFOSIM

As discussed in the introduction, InfoSim was developed for a
serial manipulator named InfoMate. Figure 1 provides a 3D
view of the InfoMate. The manipulator without the wrist has
one revolute and two prismatic joints. The revolute joint
provides rotatory motion about the central vertical shaft,
whereas two prismatic joints provide linear motion along and
across it. The wrist design consists of three revolute joints.
This architecture provides six degrees of freedom (DOF) to the
manipulator.

InfoSim was developed for the MS Windows 95 platform
using Visual C++ 4.0. The choice of the platform and the
software environment, the problems encountered in developing
the OLP software and the techniques used to overcome these
problems are discussed in the next section. The manipulator
model as seen on the simulator screen is an exact 3D
representation of the actual InfoMate, i.e., the software
representation was developed according to the fabrication
drawings of the manipulator. InfoSim provides a robust
synthetic camera; the user thus gets a chance to visualize the

manipulator from any position and orientation in the
simulation environment. The interface also allows the user to
provide arbitrary set of manipulator joint values and updates
the display accordingly. InfoSim provides the option to
visualize the manipulator end-effector and the end-effector
frame. The option to see the global frame of reference
superimposed on the end-effector frame is also available. Thus
the orientation of the end-effector frame with respect to the
global frame can also be visualized.

For InfoMate, models of position, velocity and acceleration
kinematics were developed and rigorously tested. Forward
kinematics paradigms are used to calculate position &
orientation, linear & angular velocities and accelerations of the
end effector from the available joint information. Inverse
kinematics involves extracting joint information from the
available end-effector position/motion information [6].
InfoSim contains software engines incorporating these models.
The end-effector position is represented as the x, y and z co-
ordinates of the global frame of reference. Orientation is
available as a 3x3 orientation matrix and as the three ZYX
fixed angle values.

A typical manipulator task is to move the wrist (end-effector)
from a certain position & orientation to a desired position &
orientation, usually to move/pick an object of interest. InfoSim
provides facilities for manipulator task simulation. The
software environment allows the user to place a cuboid object
of user specified dimensions at any position & orientation. As
discussed above, the forward position kinematics engine
provides information about the current position and orientation
of the manipulator. The interface asks the user to provide
position and orientation of the wrist at the destination. Task
simulation in InfoSim is to move the manipulator from its
current position and grab the object at destination. One option
is to manually enter the destination x, y and z coordinates and

the nine entries of the orientation matrix. Manually
constructing an orientation matrix for a certain orientation is
cumbersome; InfoSim provides the facility to visually specify
the desired orientation (and position) of the wrist at
destination. A toolbar is available to visualize the tip of the
wrist at/around the object and to incrementally change the
orientation about any fixed axis resulting in a corresponding
update of the orientation matrix.

The next step is to specify a trajectory scheme. If the user is
only concerned with destination position & orientation and the
intermediate configurations of the manipulator are not of any
interest, then joint space trajectory schemes are suitable.
Polynomial functions of time are fitted such that the initial and
final joint velocities are zero, thus providing smooth, jerk free
manipulator movement. InfoSim provides the choice between
cubic polynomials and linear segments with parabolic blends
(LSPBs). Option to choose between simultaneous or
sequential joint motion is also available. The inverse position
kinematics engine provides joint value information
corresponding to the destination position & orientation. In case
of a six degrees of freedom cylindrical manipulator, the
solution to the inverse position kinematics problem is not
unique. Two sets of joint values correspond to an end-effector
position and orientation. InfoSim allows the user to choose
between the two solutions. If the end-effector position and
orientation during the intermediate stages of the motion are of
interest, then Cartesian space trajectory planning is used.
Whereas theoretically, the end-effector can be made to follow
any path in the three dimensional space, InfoSim provides only
a linear Cartesian path option. Problems with Cartesian paths
are abundantly discussed in robotics literature [6,8]. For a
given Cartesian path, InfoSim reports presence of work-space
violations, singularities and excessive joint velocities &
accelerations, if any. It offers choice to closely visualize the
manipulator motion in the 3D simulation environment by
providing instantaneous forward & reverse replay and a visual
representation of the end-effector trajectory. Options to
observe graphs of joint motion and end-effector motion are
also available.

Simulations of manipulator colliding with obstacles in the
environment are also available. Collision detection can be
done visually.

3. OLP SYSTEM SOFTWARE ISSUES

3D modeling of physical systems is a demanding job. It
requires computational power, fast hardware and a careful
choice of algorithms. The first OLP system prototype was a
DOS based simulator incorporating kinematics and 3D model
of only three DOF cylindrical manipulator. The system was
slow and beset with flickering and memory problems. Hidden-
face elimination was done using painter’s algorithm. This
algorithm requires lesser memory but needs to sort polygons
according to their depth. This is time consuming for complex
objects as the time elapsed is proportional to the square of
number of polygons [9]. If two polygons are intersecting, then
mere sorting does not help. As a solution, one or more

Figure 1: InfoMate a six degrees of freedom cylindrical
robot manipulator

polygons have to be sub-divided before sorting is performed.
The other choice was z-buffer technique. In this technique,
each pixel on the view plane is assigned color of the surface
with the smallest z-value (depth) at that pixel position. A
depth buffer is used to store z-values for each position as
surfaces are compared [10]. This algorithm seemed to be
better for InfoSim since it is easy to implement and the
processing time does not increase with the complexity of the
scene. The depth buffer, however, usually runs into megabytes
and DOS does not easily allow memory access beyond the
640K limit. Managing a buffer greater than this size is a
challenging task in software development. Because of memory
requirements, z-buffer was difficult to implement in DOS.
This was one of the reasons, in addition to flickering and low
resolution problems, that DOS was rejected. Moreover, DOS
is fast becoming obsolete. Microsoft Windows provides a
better user-interface. The lure of a dazzling array of graphic
interface elements and a host of other Application
Programming Interfaces (APIs) was not enough to choose
Windows as the platform for the simulator since in a 3D
simulation, no body cares much about pretty dialogue boxes.
The name of the game is fast screen updates. Two things have
come together to cure Windows inability to handle high-speed
screen updating of the kind that 3D simulation software
requires. One is the advent of Device Independent Bitmap
(DIB), which allows developers to use their own customized
code to render into off-screen buffers. The second is WinG,
which creates the interface whereby DIBs can be moved to the
screen at blazing speeds. Without these two features it would
not have been possible to develop the software for Windows.
In addition to that, memory management comes for free.
Consequently Windows was chosen as the platform for
InfoSim.

Visual C++ environment was chosen since it combines the
benefits of Object-Oriented Programming (OOP) with
powerful windows programming tools. Special care was taken
to make the code as reusable as possible. Nearly 60% of the
code is general purpose and can be used in other OLP systems.
Document/View architecture of Visual C++ has further
simplified the programming task.

Figure 2 shows different modules/sub-modules used in the

OLP system and gives an idea about how they interact with
each other. At the topmost level, the application can be
divided into three segments namely, user-interface module, 3D
graphics engine and robot modeling module. Subsequent
paragraphs briefly discuss these three modules.

3.1. Robot Modeling Module

This module contains models for kinematics and trajectory
planning. Algebraic expressions for position, velocity and
acceleration kinematics were optimized using MathematicaTM

[11], a state of the art symbolic computing package. This
resulted in a significant improvement in the processing time.
On a 40 MHz. 386 IBM PC-compatible, the processing time
for forward position and velocity kinematics improved from
78.6ms and 159ms to 25ms and 18ms respectively, resulting in
68% and 88% improvement in the execution speed of the
forward position & velocity kinematics engines. The inverse
position kinematics problem was also efficiently solved using
Mathematica. A number of C++ classes were developed to
implement the functionality of this module. InfoMotion is the
base class. As the name implies, this class encapsulates the
functionality which brings about motion in the virtual
manipulator’s body. These motions are defined in terms of
transformations on vertices defining robot’s body and other
related elements. Two types of transformations are used for
this purpose: translation and rotation. Once transformations
are applied, the module updates the current status buffer. The
3D graphics system peeks in to the current status buffer and
draws virtual InfoMate on screen accordingly. Thus, robot
modeling module and 3D graphics engine are isolated from
each other. InfoMath class inherits InfoMotion publicly.
Methods are available in this class to implement the forward
and inverse kinematics modules. This class also contains
instances of classes InfoJointTraj and InfoCarTraj. Class
InfoJointTraj has methods to compute joint space trajectory;
similarly Cartesian space trajectories are calculated by
InfoCarTraj. Both these classes have methods for generating
data for graphs of different parameters. Class FGraph uses
this data to display graphs on screen employing data
normalization and validation techniques.

K I N E M A T I C S M O T I O N

T R A J E C T O R Y
P L A N N I N G G R A P H S

3 D S Y S T E M C A M E R A

User
Interface

C U R R E N T
S T A T U S
B U F F E R

Figure 2: Different Modules used in the OLP System

Robot Modeling Module 3D Graphics Engine

3.2. 3D Graphics Engine

This module is responsible for the 3D representation of the
virtual robot on the computer screen. Whenever contents of
current status buffer are modified, 3D graphics engine is
asked to update the picture on the screen. The technique of
Polygon Graphics was used to model the objects. In this
technique, every object is approximated using polygons. Each
polygon has some vertices and a color, e.g., a cube can be
modeled using 6 polygons where each polygon has 4 vertices.
To display the object on the computer screen each vertex is
transformed using 3D to 2D mapping. To accurately generate a
3D scene on a computer screen, hidden face elimination and
back face culling were incorporated. Class FWorld has all the
functionality required to generate a 3D scene. It contains a list
of objects’ polyhedra and an instance of class FCamera

providing the functionality of a synthetic camera. It also
contains an instance of class FWingWin, which fuses together
the custom rendering code, Visual C++ and WinG technology.
Class FWorld also manages a depth buffer used for z-buffer
technique. This class is inherited publicly by the class
InfoWorld that introduces additional features to the 3D-
system, more specific to manipulator’s environment like a
grid, frames, trajectory and end-effector point. These are not
real life objects, hence they were not incorporated in the class
FWorld which is more general purpose. Any object seen on the
screen is in fact an instance of class FPolyObj. A number of
methods are available in this class to provide a standard way
to define 3D objects. Class FWorld basically maintains a list
of objects of class FPolyObj. Supplement routines have also
been developed to generate the code for defining objects
having user-specified parameters. A major portion of the code
written belongs to the 3D graphics engine. The library
Fas3dSim was also created in which different drawing
primitives like polygon rendering & line rendering are
available; WinG technology was implemented.

3.3. User-Interface Module

Windows applications are famous for their standard graphical
user interface (GUI). Since this is also a Windows application,
it supports nearly all the elements of the GUI provided by
windows like menus, toolbars, dialog boxes and message
boxes, etc. It provides the user with an intuitive, attractive and
easy-to-use interface through which user can simulate different
tasks of the manipulator. InfoSim is an SDI application created
through AppWizard which generates the basic skeleton of the
application; MFC 4.0 library for Visual C++ was used.

4. CONCLUSIONS & FUTURE WORK

A prototype OLP system for detailed 3D simulation of a serial
link robot manipulator has been discussed in this paper. As
mentioned earlier, the developed software incorporates only
the models of manipulator kinematics and trajectory planning.
Work is underway to include models of manipulator dynamics,
controls and sensor processing in the OLP system. Also,
instead of the elementary visual collision detection currently
available, algorithms for automatic collision detection need to

be implemented. However, as is expected, adding further
computational burden will tend to adversely affect the
performance of the simulator. In these circumstances, use of
dedicated graphics hardware will provide the necessary boost.
Once the graphics hardware is available, adding finer points of
3D graphics like shading, shadowing and clipping will become
expedient. The 3D interface can also be used to provide an on-
line visualization capability when the manipulator is desired to
be used in a master-slave configuration for remote operations.

5. REFERENCES

[1] Abdul R. Khan, Ishtiaq R. Khan, and M. Ather Syed,
“Modeling and Simulation of Two Legged Walking
Robot,” Proc. of the 1st IEEE (Pakistan Sec.), National
Multi Topic Conference, Rawalpindi, Nov. 1995.

[2] M.A. Syed, Farhan-Ullah, and M.S. Koul, “Modeling and
Simulation of a Stewart Mechanism,” Journal of the
Institution of Electrical and Electronics Engineers
Pakistan, Vol. XXXIII, July-December 1995.

[3] M. Ather Syed, Aslam Pervaiz, M. Saleem Koul, Farhan
Ullah, Shaista B. Naqvi, and M. Anwar, “Intelligence
Guidance and Obstacle Avoidance of an Autonomous
Mobile Robot,” Proc. of the 1st IEEE (Pakistan Sec.),
National Multi Topic Conference, Rawalpindi, Nov.
1995.

[4] Naseem A. Khan, Amir S. Khan, and M. Ather Syed,
“Neuro- Fuzzy Model for Reactive Behavior Control of an
Autonomous Mobile Robot,” Proc. of the 1st IEEE
(Pakistan Sec.), National Multi Topic Conference,
Rawalpindi, Nov. 1995.

[5] Amir S. Khan, Naseem A. Khan, and M.A. Syed, ”A
Software Tool for Learning the Inverse Kinematics of
Robot Manipulators,” Journal of the Institution of
Electrical and Electronics Engineers Pakistan, Vol.
XXXIII, July-December 1995.

[6] John J. Craig, Introduction to Robotics: Mechanics and
Control, Second Edition, Addison-Wesley Publishing
Company, 1989.

[7] Shimon Y. Nof, Handbook of Industrial Robotics, John
Wiley & Sons, 1985.

[8] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics:
Control, Sensing, Vision, and Intelligence, McGraw
Hill Book Company, 1988.

[9] S. Harrington, Computer Graphics: A programming
Approach, McGraw Hill Book Company, 1987.

[10] William M. Newman, Principles of Computer
Graphics, McGraw Hill Book Company, 1983.

[11] Syed M. Ahmad, Abdul R. Khan, and Mahmood Ahmad,
“Solving Kinematics of Serial Link Robot Manipulators
Using Symbolic Computing,” Paper submitted for
publication in Journal of the IEEEP.

