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Hyperspectral Image Compression Using
Sampling and Implicit Neural Representations

Shima Rezasoltani and Faisal Z. Qureshi

Abstract—Hyperspectral images record electromagnetic spec-
trum, and each hyperspectral pixel often stores hundreds of
channels. Consequently, a hyperspectral image contains an order
of magnitude more information than a similarly-sized RGB color
image. Concomitant with the decreasing cost of capturing these
images, there is a need to develop efficient techniques for storing,
transmitting, and analyzing hyperspectral images. This paper
develops a method for hyperspectral image compression using
implicit neural representations where a multilayer perceptron
network with sinusoidal activation functions “learns” to map
pixel locations to pixel spectrum for a given hyperspectral image.
This representation thus acts as a compressed encoding of this
image, and the original image is reconstructed by evaluating this
network at each pixel location. We introduce a sampling scheme
to achieve better compression times while keeping decoding er-
rors low. The proposed method is evaluated on four benchmarks
against sixteen other schemes for hyperspectral compression, and
according to the PSNR and SSIM metrics, the method developed
in this paper achieves state-of-the-art compression rates at low-
bit rates. Additionally, we show that the proposed sampling
technique reduces encoding times.

Index Terms—hyperspectral image compression, implicit neu-
ral representations.

I. INTRODUCTION

Unlike a grayscale image that records a single intensity
value or a color image that often records three values at
each pixel, hyperspectral images capture electromagnetic spec-
trum [1], [2]. Therefore each pixel in a hyperspectral image
contains tens or hundreds of values, representing recorded
reflectance at various frequency bands. As a result, hyper-
spectral images offer greater possibilities for object detection,
material identification, and scene analysis than those provided
by grayscale or color images. The costs associated with
capturing high-resolution (both spatial and spectral) hyper-
spectral images continue to decrease, and it is no surprise that
hyperspectral images have found widespread use in areas such
as remote sensing, biotechnology, crop analysis, environmental
monitoring, food production, medical diagnosis, pharmaceuti-
cal industry, mining, and oil & gas exploration, etc. [3]–[16].
Hyperspectral images require many orders of magnitude more
space than what is needed to store a similarly sized grayscale
or color image. Consequently, there is a need to develop
efficient schemes for capturing, storing, transmitting, and
analyzing hyperspectral images. This work studies the problem
of hyperspectral image compression, noting that hyperspectral
image compression plays an important role in the storage and
transmission of these images.
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Recently there has been a surge in interest in learning-based
compression schemes. For example, autoencoders [17] and
rate-distortion autoencoders [18], [19] have been used to learn
compact representations of the input signals. Here, network
weights together with the signal signature—latent represen-
tation in the case of autoencoders—serve as the compressed
representation of the input signal. Other concurrent works are
exploring the use of Implicit Neural Representations (INRs)
for signal compression. INRs are particularly well-suited to
describe data that lives on an underlying grid. These are
able to capture complex patterns and connections between
the data without the need for explicit parameterization of the
grid structure. Specifically, INRs learn a mapping between the
grid coordinates and the related data values (e.g., a mapping
between pixel location to its spectrum) [20]. Mathematically,
consider a hyperspectral image I ∈ Rh×w×c, where h, w, and c
denote the height, width, and the number of channels, respec-
tively. The goal is to learn a function fΘ : (x, y) 7→ I

[
x, y
]
,

where (x, y) denote pixel coordinates and I
[
x, y
]
∈ Rc denotes

the pixel spectrum. Θ, which serves as an encoding for the
image I, denotes the function parameters. The original image
can be reconstructed given Θ by evaluating fΘ at [1, h]×[1, w].

Using INRs to “encode” hyperspectral images offer the
following advantages. (1) Flexibility: implicit neural represen-
tations can accurately represent complex and irregular grids or
surfaces. Contrary to explicit grid-based representations, which
require the explicit definition of the grid structure, implicit
representations can adjust to the data without imposing strict
grid limitations. (2) Generalization ability: implicit neural
representations exhibit strong generalization capabilities to
previously unknown data items. They have the ability to
catch complex patterns in the data, enabling extrapolation
beyond the recorded grid points. This is especially advanta-
geous when working with data that is sparsely or irregularly
collected. (3) Computational efficiency and scalability: implicit
representations can offer computational efficiency, particularly
when dealing with high-dimensional data or large grid sizes.
Instead of explicitly storing or computing values for each
grid point, they can generate values on-demand by evaluating
neural networks. Additionally, implicit representations provide
excellent scalability in high-dimensional spaces. The com-
plexity of explicit grid-based approaches frequently increases
dramatically as the dimensionality of the underlying grid
increases. Implicit representations, on the other hand, are
capable of properly managing data with a large number of
dimensions. (4) Smoothness and continuity assumptions: im-
plicit neural representations have the ability to depict smooth
and uninterrupted changes in the data accurately. Describing
phenomena that demonstrate progressive variations throughout
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Fig. 1. Compression and Decompression Pipeline. (left) An MLP with a periodic activation function is trained to map pixel locations to the pixel’s spectral
signature. (right) Once fitted, MLP is used to reconstruct the hyperspectral image by performing inference at various pixel locations.

the grid is advantageous because neural networks naturally
smooth out the representations they learn. Lastly, (6) learn-
able representations: implicit representations can be learned
directly from data. Neural networks can be trained using
optimization approaches to accurately capture the underlying
patterns in the grid-based data, enabling the identification of
intricate relationships and features. In a nutshell, implicit neu-
ral representations provide a robust framework for encoding
data that lies on a grid, offering flexibility, the ability to be
generalized, computing efficiency, scalability, and the capacity
to capture smooth and continuous variations in the data.

We investigate the use of INRs for hyperspectral im-
age compression and show that it is possible to achieve
high rates of compression while maintaining acceptable Peak
Signal-to-Noise Ratio (PSNR) values. Figure 1 provides an
overview of the proposed compression and decompression
pipeline. We evaluate the proposed approach on four bench-
marks (Figure 2)—(1) Indian Pines, (2) Jasper Ridge, (3)
Pavia University, and (4) Cuprite—and show that at com-
parable bits-per-pixel-per-band (bpppb) values, our method
achieves better PSNR values than those posted by existing
hyperspectral compression methods. Specifically, we evalu-
ate the proposed approach against (1) JPEG [21], [22], (2)
JPEG2000 [23], (3) PCA-DCT [24], (4) PCA-JPEG2000 [25]–
[27] (5) MPEG [28], (6) X264 [25]–[27], (7) X265 [25]–
[27], (8) PCA-X264 [25]–[27], (9) PCA-X265 [25]–[27], (10)
FPCA-JPEG2000 [29], (11) 3D-DCT [30], (12) 3D-DWT-SVR
[31], (13) WSRC [32], (14) HEVC [33], (15) RPM [34],
(16) 3D-SPECK [35], and (17) an auto-encoder based scheme
proposed in [36]. This list includes both the so-called classi-
cal approaches and the more recent learning-based methods.
Additionally, we propose a sampling technique to speed up
the encoding process and show that sampling achieves faster
compression times while achieving PSNR values similar to
those obtained when the image is encoded without sampling.1

1This paper includes five variations of the proposed scheme. We use the
following naming convention to refer these methods: “ours” obviously refers
to the methods developed in this work; “sampling” denotes whether image
coordinates were sampled during the training procedure, and “8-, 16-, or 32-
bit” refer to the number of bits used to store individual weights of the neural
network.

Fig. 2. Datasets used in this study (shown in pseudo-color). (L2R) Indian
Pines, Jasper Ridge, Pavia University, and Cuprite.

w h c nh wh q Θ

#bits 16 16 16 8 8 1 bpp × nΘ
TABLE I

DISK LAYOUT FOR IENCODED . HERE q DENOTES IF PARAMETERS Θ WERE
QUANTIZED AT COMPRESSION TIME. bpp (OR #BITS-PER-PARAMETER) IS

EITHER 32 OR 16.

The rest of the paper is organized as follows. We discuss
the related work in the next section. Section III describes
the proposed method along with evaluation metrics. Datasets,
experimental setup, and compression results are discussed in
the following section. Section VI concludes the paper with a
summary and possible directions for future work.

II. RELATED WORK

Hyperspectral images exhibit both spatial and spectral re-
dundancies that can be exploited to achieve compression.
Lossless compression schemes—e.g., those that use quanti-
zation or rely upon entropy-coding—where it is possible to
recover the original signal precisely often do not yield large
savings in terms of memory required to store or transmit a
hyperspectral image [37], [38]. Lossy compression schemes,
on the other hand, promise large savings while maintain-
ing acceptable reconstruction quality. Inter-band compression
techniques aim to eliminate spectral redundancy [39], while
intra-band compression techniques aim to exploit spatial cor-
relations. Intra-band compression techniques often follow the
ideas developed for color image compression. [40] exploit the
fact that groups of pixels that are around the same location
in two adjacent bands are strongly correlated and proposes
a scheme that perform both inter-band and intra-band com-
pression. Principal Component Analysis (PCA) is a popular
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(d) Cuprite
Fig. 3. Model capacity. PSNR vs. bpppb. The trend of these plots confirms our intuition that PSNR values increase as bpppb numbers are increased. The
plots are not monotonically non-decreasing. This has to do with the stochastic nature of MLP overfitting.
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(d) Cuprite
Fig. 4. Architecture search. Exploring MLP structure that achieves the best PSNR for different datasets (for a fixed bpppb budget). For our purposes, the
MLP structure is defined by the number of hidden layers and the width of these layers. Together the number and width of the hidden layers define network
capacity. Note that bpppb is fixed for each dataset. This means that as the number of layers is increased, the width of these layers must decrease accordingly.
This figure confirms that architecture search plays an important role. E.g., Indian Pines dataset is best compressed (as measured using PSNR) when using 2
layers; where as the best MLP model for Japster Ridge dataset contains 15 layers.

dimensionality reduction technique that has been used for
hyperspectral image compression. PCA offers strong spectral
decorrelation, and it is often employed to reduce the number
of channels in a hyperspectral image. The remaining channels
are subsequently compressed using Joint Picture Expert Group
(JPEG) or JPEG2000 standard [41]–[44].

Tensor decomposition methods have also been applied to
the problem of hyperspectral image compression [45]. Tensor
decomposition achieves dimensionality reduction while main-
taining the spatial structure. Transform coding schemes that
achieve image compression by reducing spatial correlation
have also been used to compress hyperspectral data. Discrete
Cosine Transform (DCT) has been used to perform intra-
band compression; however, it ignores inter-band (or spectral)
redundancy. 3D-DCT that divides a hyperspectral image into
8 × 8 × 8 datacubes is proposed to achieve both inter-
band and intra-band compression [30], [46]. Similar to JPEG,
which uses 8 × 8 blocks, 3D-DCT exhibits blocking effects
in reconstructed hyperspectral images. The blocking effects
can be removed to some extent by using wavelet transform
instead [47], [48].

Video coding-based methods that treat each channel of a
hyperspectral image as a frame in a video have also been used
to perform hyperspectral image compression. Examples of
these methods are MPEG, X264, X265, PCA-X264, and PCA-
X265. These models rely upon inter-band spectral prediction to
compress a hyperspectral image. This is similar to how inter-
frame motion prediction is used for video encoding. High-
Efficiency Video Coding scheme uses (surface) Reflectance
Prediction Modeling to achieve high level of compression [34].

As mentioned earlier, recently, there has been a lot of inter-
est in developing learning-based approaches for signal repre-

sentation and compression. E.g., autoencoder-based techniques
have been proposed to compress hyperspectral images [18],
[19], [36]. Hierarchical variational autoencoders have also
been used for the purposes of hyperspectral image compres-
sion. Here the latent variables are discretized for entropy
encoding purposes [49]–[51] to achieve further savings. Our
work also employs a similar strategy and uses quantization
to reduce the space needed to store the model parameters
θ. WSRC [32] uses a downsampling scheme that preserves
relevant information. Super-resolution is used to maintain
high-frequency signal when reconstructing the original image
from its compressed, low-resolution version. 3D DWT-SVR
[31] scheme represents an image using 3D wavelet coefficients
that are compressed via regression using a support-vector
machine.

Work in the area of implicit neural representations has
shown that it is possible to represent a signal by overfit-
ting an appropriately designed neural network to it. Here
the parameters (weights) of the neural network serve as the
compact representation of the signal, and it is possible to
reconstruct the original signal by sampling the neural network
at various input locations [52]–[58]. [59] shows that implicit
neural representations with periodic activation functions are
able to represent signals, including images, with high-fidelity.
This work serves as an inspiration for our work.

Similar to previous research on latent variable models [60]–
[63], numerous studies [64]–[66] make an effort to close the
amortization gap [67] by combining the usage of amortized
inference networks with iterative gradient-based optimization
procedures. Using inference time per instance optimization,
[66] also identifies and makes an effort to bridge the discretiza-
tion gap caused by quantizing the latent variables. The concept
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(d) Cuprite
Fig. 5. Encoding procedure. Model training on (from left to right) Indian Pines at 0.2 bpppb, Jasper Ridge at 0.15 bpppb, Pavia University at 0.025
bpppb, and Cuprite at 0.02 bpppb. At around 2000 iteration mark, our method is already achieving better PSNR values than those for JPEG, JPEG2000, and
PCA-DCT. Furthermore, the PSNR value for our methods continues to improve with more iterations (up to a point).

Fig. 6. Compression with random sampling. Pixel locations are uniformly sampled during model training. This is a departure from the traditional approach
of using all pixel locations when fitting INRs.

of per-instance model optimization is expanded upon in [68],
which fine-tunes the decoder for each instance and transmits
updates to the quantized decoder’s parameters together with
the latent code to provide better rate-distortion performance.

III. IMAGE COMPRESSION USING INRS

Let us consider a w-by-h grayscale image. We can represent
this image as a function

Igrayscale : U 7→ [0, 1],

where

U = {(1, 1), · · · , (w, 1), · · · , (1, h), · · · , (w, h)}.

This notation captures the intuition that an image is a function
over a 2d grid that defines the pixel locations. The intensity at
each pixel is then Igrayscale(x, y). It is straightforward to extend
this notation to hyperspectral image I as follows

I =

I1 : U 7→ [0, 1]
...

Ic : U 7→ [0, 1]

 . (1)

Here for the sake of simplicity, we assume a w-by-h hyper-
spectral image comprising c channels. Using this notation,
we can find the spectral signature of the pixel at location
(x, y) ∈ U as follows:

{I1(x, y), · · · , Ic(x, y)}.

Given this setup, it is possible to imagine a neural network that
models the functions I1, · · · , Ic. Specifically, work on implicit

neural representations suggests using a multilayer perceptron
(MLP) with periodic activation functions to represent functions
of the form shown in Equation 1. Consider an MLP fΘ
with parameters Θ that maps locations in U to pixel spectral
signatures:

fΘ : U 7→ {I1, · · · , Ic}.

Under this regime, training can be defined as

Θ̆ = arg min
Θ

L(I, fΘ),

where L is a loss function that is differentiable and that
captures the error between the original hyperspectral image
and the decompressed hyperspectral image. We use the mean-
squared error to compute this loss. Given Θ̆, it is possible to
reconstruct the original image I by sampling f

Θ̆
at the relevant

locations. Parameters Θ̆, along with w, h, and c, plus the
structure of the MLP, represent an encoding Iencoded of the
hyperspectral image I that was used to train the MLP fΘ. It
is expected that the memory required to store Iencoded is an
order of magnitude less than the memory needed to store the
hyperspectral image. Table I shows information contained in
Iencoded. The decompression process requires constructing the
sampling locations U, setting up MLP fΘ and initializing its
weights to Θ̆, and evaluating f

Θ̆
at locations in U.

A. Metrics for Measuring Compression Quality

Similar to previous studies, we use Peak Signal-to-Noise
Ratio (PSNR) to compare the proposed method with cur-
rent schemes for hyperspectral image compression. PSNR,
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Dataset Method bppppb compression time (Sec) decompression time (Sec) PSNR ↑

Indian Pines

JPEG+ [21], [22] 0.1 7.353 3.27 27.47
JPEG2000+ [23] 0.1 0.1455 0.3115 33.58
PCA-DCT+ [24] 0.1 1.66 0.04 32.28

ours-32bit 0.1 243.64 0 36.98
ours-16bit 0.05 243.64 0 36.95

ours-sampling-32bit 0.1 282.08 0.0005 40.1
ours-sampling-16bit 0.05 282.08 0.0005 28.40

Jasper Ridge

JPEG+ [21], [22] 0.1 3.71 1.62 21.13
JPEG2000+ [23] 0.1 0.138 0.395 17.49
PCA-DCT+ [24] 0.1 1.029 0.027 26.82

ours-32bit 0.1 312.38 0.0005 32.54
ours-16bit 0.06 312.38 0.0005 32.51

ours-sampling-32bit 0.1 75.91 0.0005 34.77
ours-sampling-16bit 0.06 75.91 0.0005 22.07

Pavia University

JPEG+ [21], [22] 0.1 33.86 14.61 20.25
JPEG2000+ [23] 0.1 0.408 0.628 17.75
PCA-DCT+ [24] 0.1 6.525 0.235 25.43

ours-32bit 0.1 780.16 0.0009 34.46
ours-16bit 0.05 780.16 0.0009 34.17

ours-sampling-32bit 0.1 72.512 0.0004 38.08
ours-sampling-16bit 0.05 72.512 0.0004 27.02

Cuprite

JPEG+ [21], [22] 0.06 101.195 45.02 12.88
JPEG2000+ [23] 0.06 1.193 2.476 15.16
PCA-DCT+ [24] 0.06 11.67 0.754 26.75

ours-32bit 0.06 1565.97 0.001 28.02
ours-16bit 0.03 1565.97 0.001 27.90

ours-sampling-32bit 0.06 664.87 0.001 37.27
ours-sampling-16bit 0.03 664.87 0.001 24.85

TABLE II
The effect of sampling on compression times. PREFIX “OURS” DENOTES THE METHODS PROPOSED HERE. OURS ARE LEARNING-BASED METHODS AND
AS EXPECTED THESE POST SOME OF THE HIGHEST COMPRESSION TIMES. WE ADDRESS THIS ISSUE SOMEWHAT THROUGH “SAMPLING,” WHICH HALVES

THE COMPRESSION TIMES. FOR THESE RESULTS THE SAMPLING RATE IS CHOSEN TO BE 20%. THE GOOD NEWS IS THAT “OURS” METHODS ACHIEVE
DECOMPRESSION TIMES THAT ARE FASTER THAN THOSE FOR JPEG, JPEG2000, AND PCA-DCT SCHEMES. THESE RESULTS CONFIRM THAT (1)

SAMPLING HELPS AND (2) THE PROPOSED METHOD IS WELL-SUITED TO “COMPRESS-ONCE” SORT OF APPLICATIONS.

measured in decibels, is a frequently used metric in image
compression. It measures the difference in “quality” between
the original image and its compressed version. Higher PSNR
values suggest that the compressed image is more similar to
the original image, i.e., the compressed image preserves more
of the information present in the original image and that it has
higher quality. In addition, we also compare the compressed
image using Mean Squared Error (MSE), which computes the
commulative squared error between the original image and
its compressed version. Lower values of MSE mean better
reconstruction quality.

MSE is computed as follows

MSE = ∥I[i] – Ĩ[i]∥, (2)

where Ĩ denotes the reconstructed image. MSE is used to
calculate PSNR

PSNR = 10 log10

(
R2

MSE

)
, (3)

where R is the largest variation in the input image in the
previous equation. For instance, R is 1 if the input image is of
the double-precision floating-point data. R is 255, for instance,
if pixels values are stored as 8-bit unsigned integers.

Another metric that is commonly used for image compres-
sion studies is the structural similarity index (SSIM) [69].
SSIM accounts for the structural information that the human
visual system is naturally attuned to. Therefore, SSIM is
perceptually more meaningful then MSE, which treats pixels
independent of each other. SSIM metric combines luminance,
contrast, and structure, and the channel-wise SSIM is com-
puted as follows:

SSIMchannel-wise =
(2 μI μ̃I + C1) (2 σĨI + C2)

(μ2
I + μ2

Ĩ
+ C1)(σ2

I + σ2
Ĩ

+ C2)
, (4)

where μI and μ̃I are mean intensity values for the original
image and its reconstruction, respectively. Similarly, σ2

I is the
variance of the original image and σĨI is the covariance value
for the original image and its reconstruction. C1 = (k1.L)2

and C2 = (k2.L)2 are there to address division by a weak
denominator. L, here, denotes the dynamic range of a pixel
and K1 = 0.01 and K2 = 0.03. Dynamic range L is typically
expressed as 2(bits per pixel). Mean SSIM value is computed
by averaging channel-wise SSIM values. SSIM values range
between 0 and 1, and larger SSIM values indicate a better
reconstruction.
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Method Dataset Size (KB) PSNR bpppb nh, wh Dataset Size (KB) PSNR bpppb nh, wh
-

In
di

an
Pi

ne
s

9251 ∞ 16 -,-

Ja
sp

er
R

id
ge

4800 ∞ 16 -,-
JPEG+ [21], [22] 115.6 34.085 0.2 -,- 30 21.130 0.1 -,-
JPEG2000+ [23] 115.6 35.84 0.2 -,- 30 17.494 0.1 -,-
PCA-DCT+ [24] 115.6 33.173 0.2 -,- 30 26.821 0.1 -,-
3D-SPECK+ [35] 115.6 - 0.2 -,- 30 - 0.1 -,-

PCA-JPEG2000† [25]–[27] 115.6 39.5 0.2 -,- 30 44.26 0.1 -,-
FPCA-JPEG2000† [29] 115.6 40.5 0.2 -.- 30 - 0.1 -,-

3D-DCT† [30] 115.6 - 0.2 -,- 30 - 0.1 -,-
3D-DWT-SVR† [31] 115.6 - 0.2 -,- 30 - 0.1 -,-

WSRC† [32] 115.6 - 0.2 -,- 30 - 0.1 -,-
ours-32bit 115.6 39.10 0.2 5,60 30 32.54 0.1 5,20
ours-16bit 57.5 38.99 0.1 5,60 15 32.51 0.06 5,20

ours-sampling-32bit 115.6 42.22 0.2 5,60 30 34.77 0.1 5,20
ours-sampling-16bit 57.5 29.68 0.1 5,60 15 22.07 0.06 5,20
ours-sampling-8bit 28.7 32.97 0.05 5,60 7.5 24.32 0.03 5,20

-

Pa
vi

a
U

ni
ve

rs
ity

42724 ∞ 16 -,-

C
up

ri
te

140836 ∞ 16 -,-
JPEG+ [21], [22] 267 20.253 0.1 -,- 880.2 24.274 0.1 -,-
JPEG2000+ [23] 267 17.752 0.1 -,- 880.2 20.889 0.1 -,-
PCA-DCT+ [24] 267 25.436 0.1 -,- 880.2 27.302 0.1 -,-
3D-SPECK+ [35] 267 - 0.1 -,- 880.2 27.1 0.1 -,-

PCA-JPEG2000† [25]–[27] 267 33 0.1 -,- 880.2 40.90 0.1 -,-
FPCA-JPEG2000† [29] 267 - 0.1 -,- 880.2 - 0.1 -,-

3D-DCT† [30] 267 - 0.1 -,- 880.2 33.4 0.1 -,-
3D-DWT-SVR† [31] 267 - 0.1 -,- 880.2 28.20 0.1 -,-

WSRC† [32] 267 - 0.1 -,- 880.2 35 0.1 -,-
ours-32bit 267 34.46 0.1 10,80 880.2 28.954 0.1 25,100
ours-16bit 133.5 34.17 0.05 10,80 440.1 24.334 0.06 25,100

ours-sampling-32bit 267 38.08 0.1 10,80 880.2 36.55 0.1 25,90
ours-sampling-16bit 133.5 27.02 0.05 10,80 440.1 24.91 0.06 25,90
ours-sampling-8bit 66.75 24.02 0.02 10,80 220.05 22.35 0.03 25,90

TABLE III
Results for fixed bpppb. COMPRESSION RATES (I.E., THE DESIRED SIZE OF THE COMPRESSED DATA) IS FIXED ACROSS METHODS. THE QUALITY OF

COMPRESSION IS EXPRESSED IN TERMS OF PSNR. FIVE VARIANTS OF THE PROPOSED METHODS ARE INCLUDED; THESE ARE INDICATED BY THE PREFIX
“OURS.” CLASSICAL AND LEARNING BASED METHODS IS DENOTED USING + AND † TEXT DECORATIONS. THE LAST COLUMN INDICATES THE NETWORK
STRUCTURE: nh AND wh INDICATES THE NUMBER OF HIDDEN LAYERS AND THE WIDTH OF THE HIDDEN LAYERS, RESPECTIVELY. THIS COLUMN APPLIES
TO OUR METHODS ONLY. BEST PSNR VALUES FOR EACH DATASET ARE SHOWN IN BOLD. QUANTIZATION TO 16-BITS OR 8-BITS REDUCES THE bpppb BY

ONE-HALF AND ONE-FOURTH, RESPECTIVELY. RESULTS FOR THE VIDEO-BASED AND AUTOENCODER-BASED SCHEMES ARE MISSING, SINCE THESE
METHODS DO NOT PROVIDE RESULTS FOR THE bpppb VALUES USED HERE. RESULTS FOR VIDEO-BASED METHOD ARE AVAILABLE IN TABLE IV AND THE

RESULTS FOR AUTOENCODER-BASED METHOD ARE PLOTTED IN FIGURE 7.

Bits-per-pixel-per-band (bpppb) is sometimes used to cap-
ture the level of compression. Recall bpppb for an uncom-
pressed hyperspectral image is typically either 8 or 32, de-
pending upon how the pixel values are stored. Recall that
hyperspectral pixels are often stored as 32-bit floats. For our
model bpppb is calculated as follows:

bpppb =
#parameters × (bits per parameter)

(pixels per band) × #bands
. (5)

Figure 3 plots PSNR vs. bpppb for the four datasets that we
are using in this work. These plots confirm our intuition that
higher bpppb leads to better compression quality as measured
by PSNR values. bpppb calculations do not include the storage
required to keep network structure (number of layers and the
layer width) and the image information (height, width, and the
number of channels or bands) needed to decode the image.

B. Compression Pipeline

The proposed compression method consists of two steps.
Step 1 performs an architecture search (see Figure 4). The

goal here is to find an MLP that achieves the highest re-
construction accuracy for a given bpppb budget. Architecture
search is performed by overfitting multiple MLPs having
different numbers of hidden layers and hidden layers’ widths
to the hyperspectral image. Architecture search, however,
means longer compression times. Step 2 involves quantizing
and storing the parameters of the overfitted MLP to disk.
Quantizing network parameters is desireable and results in
further savings; however, this may further reduce the quality
of the reconstructed image. This paper includes results when
network parameters are quantized using 16-bit and 8-bits.

1) Overfitting a SIREN network: The compression pro-
cedure comprises overfitting a SIREN network fΘ to a hy-
perspectral image I [59]. The width w and height h of the
hyperspectral image are used to set up an input location grid
on [–1, +1]× [–1, +1], and the MLP is trained to reconstruct a
pixel’s spectral signature given its location. The parameters
Θ̆ of this overfitted MLP are quantized Θ̌. MLP structure
that contains the number of hidden layers nh, widths of these
layers wh, and the width w, height h, and the number of
channels c of the original hyperspectral image I along with Θ̌
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serve as a compressed encoding Iencoded of the hyperspectral
image I (Table I). Parameters Θ̌ are typically stored as 32-
bit floats. However, further savings are possible by quantizing
these parameters and storing them using fewer bits. We include
compression results for when these parameters are stored as
16-bit and 8-bit values. The overfitted MLP contains

(wh × 2) + (wh × wh)(nh–1) + (wh × c) (6)

parameters.

C. Decompressing Iencoded

The hyperspectral image is reconstructed from its com-
pressed encoding Iencoded as follows: 1) use nh, wh, and c
to reconstruct fΘ, 2) dequantize Θ̌ to Θ̃ and use it to initialize
the parameters of fΘ, 3) use the width w and height h to set
up the input grid between [–1, +1] × [–1, +1], and 4) evaluate
f
Θ̃

at each location in the input grid to reconstruct the image
Ĩ (see Figure 1).

IV. EXPERIMENTAL SETUP & ABLATIVE STUDY

This section discusses the datasets that we have used to
study and evaluate the proposed method. It also discusses the
various design aspects—architecture search, compression and
decompression times, model fitting, and the effects of random
sampling—of the proposed model. We evaluate the proposed
method against other schemes in the next section.

We have used four datasets to evaluate our approach. We
have selected these datasets since others have used these previ-
ously to study hyperspectral image compression. Furthermore,
these datasets have been extensively used in classification and
analysis of hyperspectral imagery. Indian Pines, Cuprite, and
Jasper Ridge datasets have been collected using NASA’s Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.
The AVIRIS sensor gathers geometrically coherent spectro-
radiometric data that can be used to characterize the Earth’s
surface. Pavia University dataset was captured using the RO-
SIS (Reflective Optics System Imaging Spectrometer).

Indian Pines is a 145 × 145 × 220 hyperspectral image. It
was collected using the AVIRIS sensor in 1992, and it spans
a region over NW Indiana. The hyperspectral image contains
a mix of farms and wooded areas. Additionally, the image
contains low-density built-up regions, houses, a number of
secondary roads, a rail line, and two dual-lane motorways.
Jasper Ridge is a 100×100×224 hyperspectral image. It was
also captured using the AVIRIS sensor. Pavia University is a
610×340×103 hyperspectral image. This dataset was captured
by the ROSIS-03 aerial instrument in 2001. The dataset was
acquired over the University of Pavia. Cuprite dataset contains
one 614 × 512 × 224 hyperspectral image.

A. Architecture Search

Given an image and our (MLP) parameter budget, which is
measured in bits per pixel per band, or bpppb for short), the
first goal is to select the MLP structure—i.e., the number of
hidden layers and their widths—that is able to represent this
image with an acceptable PSNR value. Figure 4 shows PSNR

values achieved for different architectures for the four datasets
having a fixed bpppb budget. This suggests that network
structure, in addition to network capacity, affects how well
a network represents the hyperspectral image.

MLP structure is chosen via hyperparameter search, which
involves training feasible designs containing the right number
of hidden layers having the correct width on a given hyper-
spectral image. The result of this process is a single MLP
that is able to reconstruct the hyperspectral image with the
desired PSNR value. The parameters of the final MLP are
then quantized to 16-bit (or 8-bit) precision, which leads to
further savings in terms of the storage needed to represent the
hyperspectral image. Our experiments suggest that reducing
the MLP parameters from 32-bit to 16-bit precision did not
increase distortion and that it had little effect on the signal-
to-noise ratio. However, reducing these parameters to 8-bit
precision had an adverse effect.

B. Encoding Considerations

Our method belongs to the class of “slow-encoding-fast-
decoding” compression methods. The method needs to train,
actually overfit, multiple MLPs at encoding (compression)
time. This is needed to find the MLP structure that best
represents the hyperspectral image given a particular stor-
age budget. Decoding, however, only requires evaluating this
MLP at various pixel locations. Decoding is fast. It can
be made even faster by exploiting the parallelism inherent
to this procedure. The “slow-encoding-fast-decoding” nature
of this method makes it well-suited for applications where
the hyperspectral image is compressed once only, say at
capture time. Obviously, encoding is also compute heavy and
that is something we need to keep in mind as we imagine
hyperspectral sensors capable of compressing hyperspectral
images at capture time using the method proposed here.

We show an example of the overfitting procedure in Fig-
ure 5. These plots show the encoding procedure on the four
datasets: (1) Indian Pines at 0.2 bpppb; (2) Jasper Ridge at 0.15
bpppb; (3) Pavia University at 0.025 bpppb; and (4) Cuprite
at 0.02 bpppb. JPEG, JPEG2000, and PCA-DCT methods do
not require iterations. Consequently, their respective PSNR
values are denoted with the horizontal dashed lines. The
method proposed in this paper is iterative. Note that PSNR
values for ours-16bit continue to increase with the number of
iterations (up to a point). Improvement in PSNR values satu-
rates at around 10K, 15K, 10K, and 5K iterations for Indian
Pines, Jasper Ridge, Pavia University, and Cuprite datasets,
respectively. This hints at the upper bound on encoding, or
compression, time for our method. Note also that at around 2K
iteration mark ours-16bit method starts to obtain better PSNR
values than the other three methods. As stated earlier, our
method involves model fitting, which is inherently stochastic.
Therefore, throughout the iterative process, we store the model
parameters that obtained the highest value for PSNR thus far.
In these plots MAX ours-16bit denote these PSNR scores. This
guarantees that the model does not get worse over time.
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Fig. 7. PSNR values vs. bpppb. The x-axis represents bpppb values, and the y-axis represents PSNR values. The uncompressed hyperspectral images have
a bpppb value of 16. This figure is best viewed in color.

C. Model Fitting

The number of inputs for all our models is 2, and the number
of outputs is equal to the number of channels (or bands) of the
hyperspectral image. The activation functions for hidden layers
is sinusoidal. We initialized the MLP using the guidelines
provided in [57]. Adam optimizer was used during training,
and the learning rate was set to 2e – 4. All experiments were
conducted on an Intel i7 desktop with Nvidia RTX 2080 GPU.

D. Random Sampling

During compression, the INR model is trained by iterating
over w × h pixel locations for each epoch. For hyperspec-
tral images with high-spatial resolution this leads to longer
compression times. Hyperspectral images, similar to color
images, exhibit a spatial coherence. We use this assumption
and explore the effect of pixel location sampling, hereafter
referred to as sampling, during INR model training. The idea
is to sample a fraction of pixel locations at training time.
Figure 6 illustrates the sampling procedure. First, the image
is divided into non-overlapping tiles (in the spatial domain).
This is done in order to ensure that the same fraction of
pixel locations are sampled from each region of the image.
The colored dots indicate the sampled locations within each
tile. The sampling is performed with rejection to prevent the
case where the same pixel location is sampled multiple times
during each epoch. Furthermore, there is no restriction that the

same pixel locations are sampled across epochs. The sampling
procedure is controlled by two parameters: (1) tiles and (2)
the fraction of locations to be sampled within each tile. For
the results presented in Table II, the image is divided into 9-
by-9 tiles and the sampling fraction is set to 20%. This table
shows compression and decompression times for four datasets.
As expected sampling reduces the compression times in half
for all datasets. What is more intriguing, however, is that for
comparable bpppb values, sampling results in higher PSNR
values. We do not yet fully understand why this is so. ours-
sampling-32bit and ours-sampling-16bit denote models that
used sampling during training. As before prefix HP denotes
that model parameters are stored using 16-bit precision.

V. RESULTS

We compare our method with a number of (1) classical,
(2) learning-based, and (3) video-based schemes. Table III
lists compression results in terms of PSNR with a number of
classical and learning-based hyperspectral image compression
approaches. In order to compare the performance of different
methods, the target bpppb is fixed across methods. For the
Indian Pines dataset, the target bpppb is set to 0.2, and for
the other three datasets, it is set to 0.1. These values are
selected since results were available for other methods for
these values. Note that the uncompressed bpppb for all datasets
is 16. Results for other methods are taken from their respective
publications—Cuprite is a popular dataset since most of the
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Dataset Method bpppb PSNR ↑

Indian Pines

X264‡ [25]–[27] 0.1 34.61
X265‡ [25]–[27] 0.1 38.5

PCA-X264‡ [25]–[27] 0.1 39.8
PCA-X265‡ [25]–[27] 0.1 38.1

MPEG‡ [28] 0.1 28.9
HEVC‡ [33] 0.1 30
RPM‡ [34] 0.1 31

ours-sampling-32bit 0.1 40.1

Jasper Ridge

X264‡ [25]–[27] 0.15 37.35
X265‡ [25]–[27] 0.15 36.12

PCA-X264‡ [25]–[27] 0.15 35.35
PCA-X265‡ [25]–[27] 0.15 39.94

MPEG‡ [28] 0.15 28.75
HEVC‡ [33] 0.15 -
RPM‡ [34] 0.15 -

ours-sampling-32bit 0.15 41.15

Pavia University

X264‡ [25]–[27] 0.1 37.17
X265‡ [25]–[27] 0.1 37.90

PCA-X264‡ [25]–[27] 0.1 28.13
PCA-X265‡ [25]–[27] 0.1 17.82

MPEG‡ [28] 0.1 26.01
HEVC‡ [33] 0.1 -
RPM‡ [34] 0.1 -

ours-sampling-32bit 0.1 38.08

Cuprite

X264‡ [25]–[27] 0.03 28.6
X265‡ [25]–[27] 0.03 31.8

PCA-X264‡ [25]–[27] 0.03 35.5
PCA-X265‡ [25]–[27] 0.03 21.7

MPEG‡ [28] 0.03 25.5
HEVC‡ [33] 0.03 25
RPM‡ [34] 0.03 29

ours-sampling-32bit 0.03 34.9
TABLE IV

COMPARING THE PROPOSED METHOD (WITH SAMPLING RATE OF 20%)
AGAINST VIDEO-BASED SCHEMES. OUR METHOD ACHIEVES BETTER

RESULTS THEN ALL OTHER METHODS ON INDIAN PINES, JASPER RIDGE,
AND PAVIA UNIVERSITY DATASETS. ADDITIONALLY, OUR METHOD
ACHIEVES THE SECOND BEST PSNR VALUE AFTER PCA-X264 ON

CUPRITE DATASET. TEXT DECORATION ‡ INDICATES A VIDEO-BASED
METHODS.

other methods have results availaBle for this dataset. The last
column describes the network structure used for INR learning:
nh and wh refer to the number of hidden layers and the width
of these layers, respectively. The proposed method achieves
better PSNR than other methods for Indian Pines and Pavia
University dataset. However, PCA-JPEG2000 method posts
better PSNR than our methods for Jasper Ridge and Cuprite
datasets.

A. Compression Rates

Figure 7 shows PSNR values at various compression rates
for different methods. Specifically, we compare our method,
denoted by the prefix “ours” against JPEG, JPEG2000, PCA-
DCT, PCA-JPEG2000, MPEG, X264, X265, PCA-X264,
PCA-X265, and an autoencoder-based method [36]. This fig-
ure does not include result for ours-*-8bit, since our primary
focus has been on 32- and 16-bit precision. This is in part due
to the fact that storing network parameters in 8-bit precision
adversely effects the compression results. The plots suggest
that th eproposed method achieves higher compression quality
at lower bpppb values (i.e., higher compression rates).

For the Indian Pines dataset, our-sampling-32bit achieves
better PSNR up to around 0.7 bpppb, at which point X265
obtains better PSNR. What is curious is that the PSNR forours-
16bit drops drastically at around 0.4 bpppb. This merits further
investigation. ours-sampling-32bit method got better PSNR
values than all other methods at various bpppb levels. For
Jasper Ridge, ours-sampling-32bit performs better than other
methods except PCA-JPEG2000, which achieves better PSNR
for all bpppb values. For Pavia University, ours-sampling-32bit
method achieves PSNR that is better than every method except
X265, whose results are comparable to the proposed method.
For Cuprite, ours-sampling-32bit is in the top four methods.
It achieves the PSNR at lower bpppb values. These results
confirm that the proposed model is among the top methods
across the four datasets at various bpppb. Additionally, that
the proposed method seems well-suited for lower values of
bpppb.

B. Video-based Methods

Table IV evaluates ours-sampling-8bit against seven video-
based methods that treat various channels of a hyperspec-
tral image as frames of a video and employ video coding
techniques to achieve compression.2 The bpppb is fixed at
0.1 for Indian Pines, 0.15 for Jasper Ridge, 0.1 for Pavia
Univeristy, and 0.03 for Cuprite dataset. Best results are shown
in bold. Our method achieves outperforms all other methods on
Indian Pines, Jasper Ridge, and Pavia University datasets, and
our method achieves the second best PSNR value on Cuprite
dataset. These results also confirm that “sampling,” which not
only reduces encoding times, achieves top PSNR scores.

C. SSIM Comparison

Table V uses SSIM metric to compare our method on
Cuprite and Pavia University datasets against other schemes
for fixed bpppb. The results reported for other methods are
taken from their respective publications. SSIM scores for other
methods for Indian Pines and Jasper Ridge datasets are not
available; therefore, this table does not include Indian Pines
and Jasper Ridge datasets. Nevertheless these results suggest
that the proposed scheme is able to preserve “perceptual
quality” in the compressed signal.

For Cuprite dataset, we compare our method against WSRC
[32], 3D-SPECK [35], 3D-SPHIT [70], 3D-WBTC [71], 3D-
LSK [35], 3D-NLS [72], 3D-LMBTC [73], and 3D-ZM-
SPECK [74]. WSRC is evalauted at bpppb = 0.1 and ours-
sampling-32bit method outperforms WSRC at this bpppb on
Cuprite dataset. 3D-SPECK, 3D-SPHIT, 3D-WBTC, 3D-LSK,
3D-NLS, 3D-LMBTC, and 3D-ZM-SPECK are evaluated at
bpppb = 0.01, and ours-32bit method achieves better SSIM
scores than these methods at this bpppb.

On Pavia University dataset, we compare our method
against 3D-SPHIT and 3D-DCT [30] methods. These methods
are evaluated at bpppb = 0.1, and ours-sampling-32bit method
achieves the highest SSIM score for this bpppb value.

2It is not possible to include the results presented in Table IV in Table III
since the bpppb values used by video-based methods do not match those used
by methods listed in Table III.
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Dataset bpppb Method SSIM ↑

Cuprite

0.1 WSRC [32] 0.75
ours-sampling-32bit 0.9798

0.01

3D-SPECK [35] 0.142
3D-SPIHT [70] 0.136
3D-WBTC [71] 0.141

3D-LSK [35] 0.138
3D-NLS [72] 0.135

3D-LMBTC [73] 0.140
3D-ZM-SPECK [74] 0.141

ours-32bit 0.9565
ours-16bit 0.9514

ours-sampling-32bit 0.9527
ours-sampling-16bit 0.9390

Pavia University 0.1

3D-SPHIT [70] 0.4
3D-DCT [30] 0.85

ours-32bit 0.9564
ours-16bit 0.9527

ours-sampling-32bit 0.9901
ours-sampling-16bit 0.8518

TABLE V
SSIM COMPARISON FOR THE CUPRITE AND PAVIA UNIVERSITY

DATASETS AT FIXED bpppb VALUES. VALUES FOR OTHER METHODS ARE
TAKEN FROM THEIR RESPECTIVE PUBLICATIONS. CONSEQUENTLY, WSRC

IS EVALUATED AT bpppb = 0.1 FOR CUPRITE DATASET, AND ALL OTHER
METHODS ARE EVALUATED FOR bpppb = 0.1. AT THE TIME OF WRITING

THE SSIM SCORES WERE NOT AVAILABLE FOR OTHER METHODS ON
INDIAN PINES AND JASPER RIDGE DATASETS.

VI. CONCLUSION

We employ implicit neural representations to compress
hyperspectral images. Multi-layer perceptron neural networks
with sinusoidal activation layers are overfitted to a hyperspec-
tral image. The network is trained to map pixel locations to
pixels’ spectral signatures. The parameters of the network,
along with its structure, represent a compressed encoding of
the original hyperspectral image. We also use a sampling
method that is controlled by (1) window size and (2) sampling
rate to reduce the compression time. We have evaluated our
approach on four benchmarks, and we draw the following
conclusions: 1) the proposed method (with/without sampling;
32-/16-bit quantization), perform high-quality compression
at high compression rates; 2) it is beneficial to perform
architecture search plus examine the effects of quantization
at compression time since on some datasets ours-*-16bit
outperforms ours-*-32bit; 3) the compression quality obtained
by the proposed method is better or in some cases similar to
that achieved by other schemes; and 4) sampling improves
compression times while maintaining acceptable reconstruc-
tion quality as measured by PSNR. Being a learning-based
method that requires to overfit an MLP to data at compression
time, the proposed method falls into the category of “slow-
encoding-fast-decoding” schemes. In the future we plan to
investigate techniques to speed up the encoding process and
to reduce the computational requirements.
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