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Abstract—Hyperspectral images, which record the electro-
magnetic spectrum for a pixel in the image of a scene, often
store hundreds of channels per pixel and contain an order of
magnitude more information than a similarly-sized RBG color
image. Consequently, concomitant with the decreasing cost of
capturing these images, there is a need to develop efficient
techniques for storing, transmitting, and analyzing hyperspectral
images. This paper develops a method for hyperspectral image
compression using implicit neural representations where a multi-
layer perceptron network fΘ with sinusoidal activation functions
“learns” to map pixel locations to pixel intensities for a given
hyperspectral image I. fΘ thus acts as a compressed encoding of
this image, and the original image is reconstructed by evaluating
fθ at each pixel location. We have evaluated our method on
four benchmarks—Indian Pines, Jasper Ridge, Pavia University,
and Cuprite—and we show that the proposed method achieves
better compression than JPEG, JPEG2000, and PCA-DCT at low
bitrates.

Index Terms—hyperspectral image compression, implicit neu-
ral representations

I. INTRODUCTION

Unlike a grayscale image that records a single intensity
value per pixel, hyperspectral images capture electromagnetic
spectrum per pixel [31], [21]. Therefore, each pixel in a
hyperspectral image contains tens or hundreds of values,
representing recorded reflectance at various frequency bands.
As a result, hyperspectral images offer greater possibilities
for object detection, material identification, and scene analysis
than those provided by a typical color RGB image. The costs
associated with capturing high-resolution (both spatial and
spectral) hyperspectral images continue to decrease, and it is
no surprise that hyperspectral images have found widespread
use in areas such as remote sensing, biotechnology, crop
analysis, environmental monitoring, food production, medical
diagnosis, pharmaceutical industry, mining, and oil & gas
exploration, etc. [20], [24], [2], [19], [33], [9], [3], [30], [47],
[41], [17], [25], [18], [12]. Hyperspectral images requires two
orders of magnitude more space than what is needed to store
a similarly sized color RGB image. Consequently, there is
a need to develop efficient schemes for capturing, storing,
transmitting, and analyzing hyperspectral images. This work
studies the problem of hyperspectral image compression, with
a view that it serves an important role in the storage and
transmission of these images.

Recently, there has been a surge in interest in learning-based
compression schemes. For example, autoencoders [1] and rate-
distortion autoencoders [4], [5] have been used to learn com-
pact representations of the input signals. Here network weights
together with the signal signature—latent representation in the
case of autoencoders—serve as the compressed representation
of the input signal. Other concurrent works are exploring
the use of Implicit Neural Representations (INRs) for signal
compression. INRs are particularly well-suited to describe data
that lives on an underlying grid, and as such, these offer a
new paradigm for signal representation. In INRs, the goal is
to learn a mapping between a location, say an (x, y) pixel
location, and the signal value at that location, e.g., the pixel
intensity I[x, y]. This mapping is subsequently used to recreate
the original signal. It is as simple as evaluating the INR at
various locations. In the case of INRs, network parameters
serve as the learned representation of the input signal.

We investigate the use of INRs for hyperspectral image
compression and show that it is possible to achieve high rates
of compression while maintaining acceptable Peak Signal-to-
Noise Ratio (PSNR) values. Figure 1 provides an overview
of the proposed compression and decompression pipeline. We
evaluate the proposed approach on four benchmarks (Fig-
ure 2)—(1) Indian Pines, (2) Jasper Ridge, (3) Pavia Uni-
versity, and (4) Cuprite—and show that our method achieves
better PSNR values than those posted by three popular hyper-
spectral image compression schemes—(1) JPEG [23], [44], (2)
JPEG2000 [14], and (3) PCA-DCT [38]—at comparable bits-
per-pixel-per-band (bpppb) values. The results confirm that our
method achieves better PSNRs at low compression rates than
those obtained by other methods.

The rest of the paper is organized as follows. We discuss
the related work in the next section. Section III describes
the proposed method along with evaluation metrics. Datasets,
experimental setup, and compression results are discussed in
the following section. Section V concludes the paper with a
summary and possible directions for future work.

II. RELATED WORK

Hyperspectral images exhibit both spatial and spectral re-
dundancies that can be exploited to achieve compression. Loss-
less compression schemes—e.g., those that use quantization or
rely upon entropy-coding—where it is possible to recover the



Fig. 1: Compression and Decompression Pipeline. (left) An MLP with a periodic activation function is trained to map pixel
locations to the pixel’s spectral signature. (right) Once fitted, MLP is used to reconstruct the hyperspectral image by performing
inference at various pixel locations.

Fig. 2: Datasets used in this study shown in pseudo-colors.
(L2R) Indian Pines, Jasper Ridge, Pavia University, and
Cuprite.

original signal precisely often do not yield large savings in
terms of memory required to store or transmit a hyperspectral
image [35], [40]. Lossy compression schemes, on the other
hand, promise large savings while maintaining acceptable re-
construction quality. Inter-band compression techniques aim to
eliminate spectral redundancy [10], while intra-band compres-
sion techniques aim to exploit spatial correlations. Intra-band
compression techniques often follow the ideas developed for
color image compression. [55] exploit the fact that groups of
pixels that are around the same location in two adjacent bands
are strongly correlated and propose schemes that perform both
inter-band and intra-band compression. Principal Component
Analysis (PCA) is a popular dimensionality reduction tech-
nique that has been used for hyperspectral image compression.
PCA offers strong spectral decorrelation and it can be used to
reduce the number of channels in a hyperspectral image. The
remaining channels are subsequently compressed using Joint
Picture Expert Group (JPEG) or JPEG2000 standard [7], [15],
[52], [43].

Along similar lines, tensor decomposition methods have
also been applied to the problem of hyperspectral image com-
pression [54]. Tensor decomposition achieves dimensionality
reduction while maintaining the spatial structure. Transform
coding schemes that achieve image compression by reducing
spatial correlation have also been used to compress hyper-
spectral data. Discrete Cosine Transform (DCT) has been
used to perform intra-band compression; however, it ignores

inter-band (or spectral) redundancy. 3D-DCT that divides a
3-dimensional hyperspectral image into 8 × 8 × 8 datacubes
is proposed to achieve both inter-band and intra-band com-
pression [45]. Similar to JPEG, which uses 8× 8 blocks, 3D-
DCT exhibits blocking effects in reconstructed hyperspectral
images. The blocking effects can be removed to some extent
by using wavelet transform instead [46], [22].

Video coding-based methods that treat each channel of a
hyperspectral image as a frame in a video have also been
used to perform hyperspectral image compression. These
models rely upon inter-band spectral prediction to compress a
hyperspectral image. This is similar to how inter-frame motion
prediction is used for video encoding.

As mentioned earlier, recently, there has been a lot of inter-
est in developing learning-based approaches for signal repre-
sentation and compression. E.g., autoencoder-based techniques
have been proposed to compress hyperspectral images [4],
[5]. Hierarchical variational autoencoders have also been used
for the purposes of hyperspectral image compression. Here
the latent variables are discretized for entropy encoding pur-
poses [6], [32], [37].

Work in the area of implicit neural representations has
shown that it is possible to represent a signal by overfitting
an appropriately designed neural network to it. Here the pa-
rameters (weights) of the neural network serve as the compact
representation of the signal, and it is possible to reconstruct the
original signal by sampling the neural network at various input
locations [39], [42], [11], [49], [36], [48], [50]. [16] shows
that implicit neural representations with periodic activation
functions are able to represent signals, including images, with
high-fidelity. This work serves as an inspiration for our work.

Similar to previous research on latent variable models [27],
[28], [29], [34], numerous studies [8], [26], [53] make an effort
to close the amortization gap [13] by combining the usage
of amortized inference networks with iterative gradient-based
optimization procedures. Using inference time per instance
optimization, [53] also identifies and makes an effort to bridge
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Fig. 3: Model capacity. PSNR vs. bpppb for (L2R) Indian Pines, Jasper Ridge, Pavia University, and Cuprite datasets. The
trend of these plots confirms our intuition that PSNR values increase as bpppb numbers are increased. The plots are not
monotonically non-decreasing. This has to do with the stochastic nature of MLP overfitting.

the discretization gap caused by quantizing the latent variables.
The concept of per-instance model optimization is expanded
upon in [51], which fine-tunes the decoder for each instance
and transmits updates to the quantized decoder’s parameters
together with the latent code to provide better rate-distortion
performance.

III. IMAGE COMPRESSION USING INRS

Let us consider a w-by-h grayscale image. We can represent
this image as a function

Igrayscale : U 7→ [0, 1],

where

U = {(1, 1), · · · , (w, 1), · · · , (1, h), · · · , (w, h)}.

This notation captures the intuition that an image is a function
over a 2d grid that defines the pixel locations. The intensity at
each pixel is then Igrayscale(x, y). It is straightforward to extend
this notation to hyperspectral image I as follows

I =

I1 : U 7→ [0, 1]
...

Ic : U 7→ [0, 1]

 . (1)

Here for the sake of simplicity, we assume a w-by-h hyper-
spectral image comprising c channels. Using this notation,
we can find the spectral signature of the pixel at location
(x, y) ∈ U as follows:

{I1(x, y), · · · , Ic(x, y)}.

Given this setup, it is possible to imagine a neural network that
models the functions I1, · · · , Ic. Specifically, work on implicit
neural representations suggests using a multilayer perceptron
(MLP) with periodic activation functions to represent functions
of the form shown in Equation 1. Consider an MLP fΘ
with parameters Θ that maps locations in U to pixel spectral
signatures:

fΘ : U 7→ {I1, · · · , Ic}.

Under this regime, training can be defined as

Θ̆ = arg min
Θ

L(I, fΘ),

w h c nh wh q Θ

#bits 16 16 16 8 8 1 bpp × nΘ

TABLE I: Disk layout for Iencoded. Here q denotes if parame-
ters Θ were quantized at compression time. bpp (or #bits-per-
parameter) is either 32 or 16.

Where L is a loss function that is differentiable and that
captures the error between the original hyperspectral image
and the decompressed hyperspectral image. We use the mean-
squared error to compute this loss. Given Θ̆, it is possible
to reconstruct the original image I by sampling f

Θ̆
at the

relevant locations. Parameters Θ̆, along with w, h, and c, plus
the structure of the MLP, represent an encoding Iencoded of
the hyperspectral image I that was used to train the MLP fΘ.
It is expected that the memory required to store Iencoded is
an order of magnitude less than the memory needed to store
the hyperspectral image. The decompression process requires
constructing the sampling locations U, setting up MLP fΘ and
initializing its weights to Θ̆, and evaluating f

Θ̆
at locations in

U.

A. Metrics for Measuring Compression Quality

Similar to previous studies, we use Peak Signal-to-Noise
Ratio (PSNR) to compare the proposed method with JPEG,
JPEG2000, and PCA-DCT approaches for hyperspectral image
compression. PSNR, measured in decibels, is a frequently
used metric in image compression. It measures the difference
in “quality” between the original image and its compressed
version. Higher PSNR values suggest that the compressed
image is more similar to the original image, i.e., the com-
pressed image preserves more of the information present in
the original image and that it has higher quality. In addition,
we also compare the compressed image using Mean Squared
Error (MSE), which computes the cumulative error between
the original image and its compressed version. Lower values
of MSE mean better reconstruction quality.

MSE is computed as follows

MSE =
∑

i

|I[i] – Ĩ[i]|2

i
, (2)
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Fig. 4: Architecture search. Exploring MLP structure that achieves the best PSNR for different datasets (for a fixed bpppb
budget). For our purposes, the MLP structure is defined by the number of hidden layers and the width of these layers. Together
the number and width of the hidden layers define network capacity.

where Ĩ denotes the compressed image and i indices over the
pixels. MSE is used to calculate PSNR

PSNR = 10 log10

(
R2

MSE

)
, (3)

where R is the largest variation in the input image in the
previous equation. For instance, R is 1 if the input image is of
the double-precision floating-point data. R is 255, for instance,
if the data is an 8-bit unsigned integer.

In addition, the number of bits-per-pixel-per-band (bpppb)
captures the level of compression achieved by a model. Lower
values of bpppb indicate higher compression rates. The bpppb
value for an uncompressed hyperspectral image is either 8
or 32 bits, depending upon how the pixels are stored. It is
common to store hyperspectral pixels value (for each channel)
as a 32-bit floating point. The parameter bpppb is calculated
as follows:

bpppb =
#parameters × (bits per parameter)

(pixels per band) × #bands
. (4)

Figure 3 plots PSNR vs. bpppb for the four datasets that
we are using in this work. The plots confirm our intuition that
higher bpppb leads to better compression quality as measured
by PSNR values. For our method, bpppb calculations do not
include the storage required to keep network structures.

B. Compression Pipeline

The proposed compression method consists of two steps.
Step 1 performs an architecture search. The goal here is to
find an MLP that achieves the highest reconstruction accuracy
for a given bpppb budget. Architecture search is performed by
overfitting multiple MLPs having different numbers of hidden
layers and hidden layers’ widths to the hyperspectral im-
age. Architecture search, however, means longer compression
times. Step 2 involves quantizing and storing the parameters of
the overfitted MLP to disk. The caveat here is that this further
reduces the quality of the reconstructed image.

1) Overfitting a SIREN network: The compression pro-
cedure comprises overfitting a SIREN network fΘ to a hy-
perspectral image I [16]. The width w and height h of the
hyperspectral image are used to set up an input location grid
on [–1, +1] × [–1, +1], and the MLP is trained to reconstruct
a pixel’s spectral signature given its location. The parameters
Θ̆ of this overfitted MLP are quantized Θ̌. MLP structure that

contains the number of hidden layers nh, widths of these layers
wh, and the width w, height h, and the number of channels
c of the original hyperspectral image I along with Θ̌ serve as
a compressed encoding Iencoded of the hyperspectral image I
(Table I). Parameters Θ̌ are either stored as 32-bit floats or
as 16-bit floats. Training and inference require 32-bit floats,
and quantization/dequantization is performed to move between
32 and 16 bits representations. We have yet to try an 8-bit,
fixed-point representation for parameters.

The overfitted MLP contains

(wh × 2) + (wh × wh)(nh–1) + (c × wh) (5)

parameters.
2) Decompressing Iencoded: The hyperspectral image is re-

constructed from its compressed encoding Iencoded as follows:
1) use nh, wh, and c to reconstruct fΘ, 2) dequantize Q̌
to Θ̃ and use it to initialize the parameters of fΘ, 3) use
the width w and height h to set up the input grid between
[–1, +1] × [–1, +1], and 4) evaluate f

Θ̃
at each location in the

input grid to reconstruct the image Ĩ.

IV. EXPERIMENTS

We have used four datasets to evaluate our approach:
• Indian Pines: This is a 145 × 145 × 220 hyperspectral

image. It was collected using the AVIRIS sensor in
1992, and it spans a region over NW Indiana. The
hyperspectral image contains a mix of farms and wooded
areas. Additionally, the image contains low-density built-
up regions, houses, a number of secondary roads, a rail
line, and two dual-lane motorways.

• Jasper Ridge: This is a 100 × 100 × 224 hyperspectral
image. It was also captured using the AVIRIS sensor.

• Pavia University: It is a 610 × 340 × 103 hyperspectral
image. This dataset was captured by the ROSIS-03 aerial
instrument that was flown by the German Aerospace
Centre as part of the HySens project.

• Cuprite: The Cuprite dataset contains one 614 × 512 ×
224 hyperspectral image.

We have selected these datasets since others have used
these previously to study hyperspectral image compression.
These datasets have been collected using NASA’s Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.
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Fig. 5: Compression results. PSNR values achieved at various bpppb for our method, along with those obtained by JPEG,
JPEG2000, and PCA-DCT schemes. Here “ours” refer to our method where parameters are stored at 32-bit precision, and
“HP ours” refer to results when parameters are stored at 16-bit precision.

The AVIRIS sensor gathers geometrically coherent spectro-
radiometric data that can be used to characterize the Earth’s
surface. The captured data has found use in areas ranging from
oceanography, snow hydrology, geology and volcanology, and
limnology to environmental studies, atmospheric and aerosol
studies, agriculture, and land management and use.

A. Setup

We compare our work with three hyperspectral image
compression methods: 1) JPEG [23], [44]; 2) PCA-DCT [38],
and 3) JPEG2000 [14]. JPEG method for hyperspectral image
compression uses JPEG standard to encode each channel
(band) separately. JPEG2000, instead, uses the JPEG2000
standard for encoding the hyperspectral image. It, too, treats
each channel separately. PCA-DCT uses PCA-based analysis
to reduce the number of channels, followed by a DCT-based
method for encoding these channels. PCA-DCT method posts
low signal-to-noise ratios; however, this can be fixed somewhat
by keeping more of the original channels. We have chosen
these hyperspectral image compression techniques since they
are widely used for reducing the size of hyperspectral data in
hyperspectral analysis pipelines.

B. Architecture Search

Given an image and our (MLP) parameter budget, which is
measured in bits per pixel per band, or bpppb for short), the

first goal is to select the MLP structure—i.e., the number of
hidden layers and their widths—that is able to represent this
image with an acceptable PSNR value. Figure 4 shows PSNR
values achieved for different architectures for the four datasets
having a fixed bpppb budget. This suggests that network
structure, in addition to network capacity, affects how well
a network represents the hyperspectral image.

MLP structure is chosen via hyperparameter search, which
involves training feasible designs containing the right num-
ber of hidden layers having the correct width on a given
hyperspectral image. The result of this process is a single
MLP that is able to reconstruct the hyperspectral image
with the desired PSNR value. The parameters of the final
MLP are then quantized to 16-bit precision, which leads to
further savings in terms of the storage needed to represent the
hyperspectral image. Our experiments suggest that reducing
the MLP parameters from 32-bit to 16-bit precision did not
increase distortion and that it had little effect on the signal-to-
noise ratio.

C. Comparison with other methods

Figure 5 shows PSNR values at various compression rates
for different methods. Specifically, we compare our approach,
labeled as ours and hp ours, with JPEG, JPEG2000, and
PCA-DCT methods. Here, ours method stores MLP weights
as 32-bit floating point values, whereas hp ours stores MLP
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(a) Model training on Indian Pines
dataset at 0.2 bpppb.
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(b) Model training on Jasper Ridge
dataset at 0.15 bpppb.
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(c) Model training on Pavia Uni-
versity dataset at 0.025 bpppb.
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Fig. 6: Encoding procedure. Model training on (counter-clockwise from top-left) Indian Pines, Jasper Ridge, Pavia University,
and Cuprite datasets. At around 2000 iteration mark, our method is already achieving better PSNR values than those for JPEG,
JPEG2000, and PCA-DCT. Furthermore, the PSNR value for our methods continues to improve with more iterations (up to a
point).

weights at half-precision as 16-bit floating point values that
are constructed by quantizing the MLP weights. These plots
illustrate that our methods achieve higher compression quality,
i.e., better PSNR, for a given value of bpppb. This is especially
true for lower bpppb values.

For the Indian Pines dataset, ours method achieves better
PSNR up to around 0.7 bpppb, at which point JPEG2000
obtains better PSNR. What is curious is that the PSNR
forhp ours drops drastically at around 0.4 bppb. This merits
further investigation. For Jasper Ridge, hp ours performs
better than ours. However, both ours and hp ours achieve
higher PSNR values than other methods. For Pavia University
and Cuprite datasets, our method obtains better PSNR values
than other methods.

We draw the following conclusions from these results: 1) the
proposed method, both ours and hp ours, perform high-quality
compression at high compression rates; 2) it is beneficial
to perform architecture search plus examine the effects of
quantization at compression time since on some datasets
hp ours outperforms ours; and 3) the compression quality
obtained by the proposed method compares favorably with the
three commonly used compression methods for hyperspectral
images.

D. Encoding Considerations

Our method belongs to the class of “slow-encoding-fast-
decoding” compression methods. The method needs to train,
actually overfit, multiple MLPs at encoding (compression)
time. This is needed to find the MLP structure that best
represents the hyperspectral image given a particular storage
budget. Decoding, however, only requires evaluating this MLP
at various pixel locations. Decoding is fast. It can be made
even faster by exploiting the parallelism inherent to this
procedure. The “slow-encoding-fast-decoding” nature of this
method makes it particularly suitable for applications where
the hyperspectral image is compressed once only, say at
capture time.

We show an example of the overfitting procedure in Fig-
ure 6. These plots show the encoding procedure on the four

datasets: (1) Indian Pines at 0.2 bpppb; (2) Jasper Ridge
at 0.15 bpppb; (3) Pavia University at 0.025 bpppb; and
(4) Cuprite at 0.02 bpppb. JPEG, JPEG2000, and PCA-
DCT methods do not require iterations. Consequently, their
respective PSNR values are denoted with the horizontal dashed
lines. The method proposed in this paper is iterative. Note
that PSNR values for HP ours continue to increase with the
number of iterations (up to a point). Improvement in PSNR
values saturates at around 10, 000, 15, 000, 10, 000, and 5, 000
iterations for Indian Pines, Jasper Ridge, Pavia University, and
Cuprite datasets, respectively. This hints at the upper bound
on encoding, or compression, time for our method. Note also
that at around 2, 000 iteration mark HP ours method starts
to obtain better PSNR values than the other three methods.
As stated earlier, our method involves model fitting, which
is inherently stochastic. Therefore, throughout the iterative
process, we store the model parameters that obtained the
highest value for PSNR thus far. In these plots, MAX HP ours
denote these PSNR scores. This guarantees that the model does
not get worse over time.

E. Model Fitting
The number of inputs for all our models was 2, and the

number of outputs was equal to the number of channels (or
bands) of the hyperspectral image. The activation functions for
hidden layers were sinusoidal. We initialized the MLP using
the guidelines provided in [48]. Adam optimizer was used
during training, and the learning rate was set to 2e – 4. All
experiments were conducted on an Intel i7 desktop with Nvidia
RTX 2080 GPU.

F. Compression Results
Table II lists compression results obtained by ours,

HP ours, JPEG, JPEG2000, and PCA-DCT methods on the
four datasets. The table also shows the size of the original,
uncompressed hyperspectral images. For these results, we fix
the bpppb for each method, and we measure the performance
of each method using PSNR. Notice that the proposed method
achieves higher PSNR values than those achieved by JPEG,
JPEG2000, and PCA-DCT methods.



Fig. 7: Reconstructed images shown in pseudo-color. (L2R) Indian Pines, Jasper Ridge, Pavia University, and Cuprite. The
image on the left in each pair is the original hyperspectral image, whereas the image on the right is the reconstructed, i.e.,
decompressed, hyperspectral image. The zoomed-in portions show that the structure is preserved in the reconstructed image.
Images are shown in pseudo-color.

Method Dataset Size PSNR bpppb nh, wh Dataset Size PSNR bpppb nh, wh
-

Indian Pines

9251 KB ∞ 16 -,-

Jasper Ridge

4800 KB ∞ 16 -,-
JPEG 115.6 KB 34.085 0.2 -,- 30 KB 21.130 0.1 -,-

JPEG2000 115.6 KB 38.098 0.2 -,- 30 KB 17.494 0.1 -,-
PCA-DCT 115.6 KB 33.173 0.2 -,- 30 KB 26.821 0.1 -,-

ours 115.6 KB 40.61 0.2 15,40 30 KB 35.696 0.1 10,20
hp ours 57.5 KB 40.35 0.1 15,40 15 KB 35.467 0.06 10,20

-

Pavia University

42724 KB ∞ 16 -,-

Cuprite

140836 KB ∞ 16 -,-
JPEG 267 KB 20.253 0.1 -,- 880.2 KB 24.274 0.1 -,-

JPEG2000 267 KB 17.752 0.1 -,- 880.2 KB 20.889 0.1 -,-
PCA-DCT 267 KB 25.436 0.1 -,- 880.2 KB 27.302 0.1 -,-

ours 267 KB 33.749 0.1 20,60 880.2 KB 28.954 0.1 25,100
hp ours 133.5 KB 20.886 0.05 20,60 440.1 KB 24.334 0.06 25,100

TABLE II: Compression results

V. CONCLUSION

In this work, we employ implicit neural representations to
compress hyperspectral images. Multi-layer perceptron neural
networks with sinusoidal activation layers are overfitted to
a hyperspectral image. The network is trained to map pixel
locations to pixels’ spectral signatures. The parameters of the
network, along with its structure, represent a compressed en-
coding of the original hyperspectral image. We have tested our
approach on four datasets, and the proposed method achieves
better PSNR than those achieved by JPEG, JPEG2000, and
PCA-DCT methods, especially at lower bitrates.

In the future, we plan to experiment with fixed-point
representations to achieve smaller sizes for the compressed
encodings. Additionally, we plan to explore techniques for
lowering the compression times.
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