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Abstract—We propose a new method for remote sensing image
matching. The proposed method uses encoder subnetwork of
an autoencoder pre-trained on GTCrossView data to construct
image features. A discriminator network trained on University
of California Merced Land Use/Land Cover dataset (LandUse)
and High-resolution Satellite Scene dataset (SatScene) computes
a match score between a pair of computed image features.
We also propose a new network unit, called residual-dyad, and
empirically demonstrate that networks that use residual-dyad
units outperform those that do not. We compare our approach
with both traditional and more recent learning-based schemes
on LandUse and SatScene datasets, and the proposed method
achieves state-of-the-art result in terms of mean average precision
and ANMRR metrics. Specifically, our method achieves an overall
improvement in performance of 11.26% and 22.41%, respectively,
for LandUse and SatScene benchmark datasets.

Index Terms—Remote Sensing Image Search, Convolutional
Neural Network (CNN), Residual Encoder Decoder, Deep Learn-
ing, Content Based Remote Sensing Image Retrieval (CBRSIR).

I. INTRODUCTION

REMOTE Sensing Imaging (RSI) technologies promise
to revolutionize how we study Earth’s surface, atmo-

sphere and ionosphere. Imagery collected via special hardware
mounted on satellites and aircrafts is now routinely used to
examine weather patterns, plant habitats, urban infrastructure,
road networks, archaeological sites, forest fires, flood planes
and mineral resources [1]–[6]. Advances in airborne imaging
and sensor technologies especially source-type approaches,
have made it possible to capture large volumes of imagery
covering extended areas [7]. Our ability to collect large quan-
tities of RS imagery for a variety of domains have engendered
a need for “intelligent” tools. Ideally, these tools should be able
to perform useful analysis with little or no human intervention.

Remote sensing data consists of either panchromatic im-
ages photographed using high definition cameras [8], [9] or
hyper-spectral imagery acquired through specialized imaging
devices [10]. A first step towards designing automated systems
that support a variety of sophisticated task-driven analysis [4],
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[11] is to develop basic image analysis techniques, such as
image matching, classification, or retrieval. Developing such
low-level image analysis techniques have been the primary fo-
cus of much of the work done by computer vision researchers
in this domain [12]–[14]. The focus of this work is in this vain
as well.

Broadly speaking, existing image matching techniques de-
veloped for remote sensing image retrieval (RSIR) can be
divided into two classes: 1) classical hand crafted approaches
that do not require any training data [15]–[18], and 2) more
recent learning-based approaches that often need access to
labelled data [19]–[22]. In this paper, we propose a deep
learning approach for remote sensing image matching (RSIM)
for the purpose of image retrieval. Specifically, our method
uses a convolutional autoencoder to construct deep features of
a given image. These features are subsequently used for image
matching. Generator network in combination with discrimina-
tor network have been employed to classify remote sensing
images before; however, previous approaches [23][24] require
large labelled datasets since these perform feature extraction
and discrimination simultaneously within a supervised learn-
ing setting.

In this work we exploit the fact that 1) autoencoders can
be trained to minimize the reconstruction loss in an unsu-
pervised manner and 2) the trained encoder sub-network can
be used to extract deep features (of a given image) that can
be useful for tasks other than reconstruction. The proposed
discriminator uses these deep features to decide whether or not
an image pair contains matching images. The discriminator
is trained in a supervised fashion using labelled data. The
labelled data consists of image pairs along with a true or
false value indicating if the image pair consists of matching
images. Discriminator has far fewer parameters than those in
the overall autoencoder+discriminator network. This suggests
that unlike end-to-end learning, it is possible to train the
discriminator from scratch using a smaller set of labelled data.

Many deep learning architectures benefit from transfer
learning and often use features computed by networks pre-
trained on ImageNet dataset [19], [25], such as features from
AlexNet [26] or GoogleNet [27]. RS images exhibit differ-
ent visual characteristics than those seen in images present
in ImageNet. We found that networks trained on ImageNet
images often did not yield the desired performance on RS
images. We propose to address this issue by pre-training
the autoencoder on images from GTCrossView [28] dataset.
We evaluate the proposed image matching framework on
two standard benchmarks: LandUse [29] and SatScene [12].
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Following the principle of transfer learning, we fine-tune the
pre-trained autoencoder using LandUse and SatScene datasets.
We also train the discriminator on LandUse and SatScene
dataset. Later in the paper we show the effect of fine-tuning the
encoder sub-network when training the discriminator. Figure 1
provides an overview of our approach and how it differs from
existing schemes.

Learning in Convolutional Neural Network (CNN) based
architectures is often improved by using residual blocks,
which address the problems related to vanishing and exploding
gradients [30]. These blocks, however, suffer from diminish-
ing feature reuse [31]. We propose a new residual block,
called residual-dyad, that attempts to solve the problem of
diminishing feature reuse. Experiments suggest that networks
using residual-dyad outperform those that either use traditional
residual blocks or do not use residual blocks at all.

We study the performance of our system using image
retrieval (Figure 1(c)). For a given query image, image re-
trieval attempts to find the top k most similar images in a
given collection [32], [33]. The relevance of the retrieved
images is a proxy to the quality of the underlying image
matching scheme. We use the University of California Merced
LandUse/LandCover Dataset (LandUse) and High-Resolution
Satellite Scene Dataset (SatScene) to compare the approach
proposed in this paper with existing schemes. In the interest of
completeness, we compare our method against both classical
and more recent machine learning based approaches. The re-
sults suggest that our method outperforms existing techniques.
We also include an ablative study that illustrates the role
of the proposed residual connections in the autoencoder and
discriminator stages of the image matching network proposed
in this paper.

A. Contributions

We propose a new architecture comprising autoencoder
and discriminator for remote sensing image matching for the
purposes of image retrieval. We evaluate this architecture on
two standard benchmarks datasets. The proposed architecture
outperforms existing techniques by a large margin (11.26%
and 22.41%, respectively, for LandUse and SatScene datasets).
Inspired by the success of the residual connections, we propose
a residual-dyad unit, which minimizes the effects of both
vanishing gradient and diminishing feature reuse. We use
residual-dyad units in both autoencoder and discriminator
sub-networks. Our ablative study supports the assertion that
networks that incorporate residual-dyad outperform those that
do not.

The remainder of this paper is organized as follows. Sec-
tion II provides a short introduction of the relevant work
on feature extraction and matching. We discuss the technical
preliminaries and formulate the problem in Section III. Section
IV describes the proposed method for unsupervised feature
extraction and deep metric learning. Experimental setup and
results are presented in Section V. We conclude the paper with
a brief discussion and direction for future research.
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Fig. 1. Deep learning approaches for RS image matching. (a) Embeddings of
deep supervised networks are extracted as image features and matched through
Euclidean distance measure (L2−Norm) [19]. (b) Siamese network computes
the probability of matching image pair by simultaneously training the feature
extraction and discrimination networks [28]. (c) A two-stage framework where
the autoencoder is trained to learn unsupervised features while a discriminator
is trained to discriminate between similar and dissimilar feature pair. Unlike,
the previous approaches the autoencoder and discriminator networks are
trained independently, requiring less labelled data.

II. BACKGROUND

Features refer to image properties that can be derived from
information present in an image [15]–[18]. Image features play
a central role in image matching, and we begin our discussion
with methods for computing image features.

A. Hand Crafted Features

Classical image matching techniques relied upon hand
crafted features. These include low-level features that capture
colors, edges and blobs information seen in the image [16].
Other techniques, such as those that compute spatial his-
tograms or morphological features attempt to capture spatial
structure present in the image [18]. Local features that capture
surrounding structure at interest points have found wide-spread
use for image matching [34]. Bag-of-words type features,
which are frequently used in text document analysis, have
also been adapted for the purposes of computing useful
properties given in the image [18], [21]. These features are
often combined with traditional machine learning approaches,
such as K nearest neighbour, support vector machines, Bayes
classifier, etc., for the purposes of image matching [35]. Hand-
crafted features may not incorporate statistical information
present in the dataset and often fail to achieve the desired
performance on many computer vision tasks.
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B. Feature Learning

More recent techniques use CNNs to “learn” image fea-
tures [11], [19], [20], [22], [36], [37]. Broadly speaking, these
approaches can be divided into two categories: 1) supervised
and 2) unsupervised.

Supervised schemes require labeled data for training, and
such datasets are often expensive and tedious to acquire [38].
In many cases, including remote sensing these pre-trained
networks are fine-tuned and are used for feature extraction.
Recent work by Famao et al. [11] proposed a weighted dis-
tance scheme to include class information while extracting fea-
tures from a pre-trained AlexNet. Similarly, Napoletano [19]
proposed to use ResNet [30] fine-tuned with satellite imagery
to identify visual descriptors of the images. In cases where
there is a scarcity of annotated data, researchers introduced
unsupervised techniques for feature learning [39].

Unsupervised methods are able to learn image repre-
sentations without access to labelled datasets, e.g. au-
toencoders [40]. Autoencoders attempt to construct low-
dimensional encoding of an image with the aim to recover
the original image from this encoding. These low-dimensional
encodings, it turns out, can serve as image features for many
computer vision tasks, such as image matching and classifica-
tion. Chao et a1. [39], for example, also proposed autoencoder
based unsupervised methods for deep feature extraction for
hyper-spectral image matching. Deep convolutional autoen-
coders suffer from vanishing gradients, which complicates
training [41], [42]. Lichao et al. [42] use skip connections [43],
which introduce shorter paths with fewer non-linearities to the
deeper layers of the network, to achieve faster convergence,
avoid vanishing gradients, and capture fine-detailed image
structures [42], [43].

C. Feature Matching

Given image features, the next step is to use these features
to decide whether or not images match. Distance measures,
such as Euclidean, Manhattan, Dominance, and Chi-square
distance, or similarity measures, such as Cosine or Jaccard
similarity, are widely used in the literature to compare image
features [44]. These metrics rely mostly on the numerical
values of the features, completely ignoring the hidden patterns
of the features inherited from the images. Metric learning is
an ideal alternate, capable of learning distance function for a
specific task i.e. image retrieval.

1) Distance Metric Learning: Distance Metric Learning
is often used for the task of measuring similarity. The goal
is to learns a distance function over objects, which can
help decide if two objects are similar [45]. Global super-
vised [46] approaches for distance metric learning attempt to
satisfy all global constraints such as contextual information;
whereas, local approaches [47] learn a metric that satisfies
local constraints between image pairs. Chechik et al. [48]
proposed an Online Algorithm for Scalable Image Similarity
(OASIS), which learns a linear similarity measure. OASIS
is not suitable for applications that benefit from non-linear
similarity measures.

2) Deep Metric Learning: Deep learning provides an ef-
fective mechanism for learning highly non-linear similarity
measures [49]. Within this context, contrastive and triplet
losses have been employed for training a deep network that
computes similarity measures [50]–[54]. The Siamese net-
work proposed in [28], [55], for example, uses contrastive
loss between image pairs; whereas, the triplet network [56]
computes a loss for an image triplet (two similar and one
dissimilar image). Such architectures have been used in cross-
view matching applications. Vo et al. [28] uses deep metric
learning to match street images to satellite images of the same
region. Similarly, Wang et al. [57] uses an auto-encoder to
match images captured by two different cameras. A convo-
lutional discriminative network has also been used for face
matching [58] and interest point matching [52].

Deep Metric Learning (DML) is sometimes also used for
optimizing the sorting operation involved in ranking [59]. This
is generally accomplished by converting the non-differentiable
sorting step in to a differentiable operation by introducing
customized loss surrogates [60]. The idea is to avoid zero
or undefined derivatives of sorting and apply gradient-based
optimization [61]. The whole phenomenon is called learning
to rank paradigm.

D. Matching for RSI Retrieval

Many of the recent remote sensing image retrieval tech-
niques rely on CNN based supervised features and linear
distance measures for matching [11], [19], [22], [25]. Zhao et
al. [20] used a combination of CNN and balanced linear
discriminant analysis for feature extraction from remote sens-
ing imagery. They then used Euclidean distance to compute
the similarity between image features. Similarly, Gui-Song et
al. [25] extracted features through fine-tuned GoogleNet
trained with multi-patch pooling operation. Multiple metrics
such as Euclidean, Cosine, Manhattan, and Chi-square distance
were then used for matching. Instead of using a pre-trained
classification network, a Fully Convolutional Network (FCN)
was used in [22] to generate segmentation maps of the
satellite images. The region convolution features from this
pre-trained FCN was then used for region based retrieval
using L2 distance. Center loss-based multi-task learning has
been proposed by Xiong et al. to match features acquired
through a CNN network that uses attention mechanism [62].
All these approaches perform simultaneous feature learning
and discrimination in an end-to-end supervised manner.

Unsupervised graph-theoretic approach has been employed
by Chaudhuri et al. with graph-based similarity measure
between the image features for RSIR [63]. Tang et al. [64],
on the other hand, used a hybrid approach that computes bag-
of-words on clustered autoencoder features. These features
are then compared using linear similarity metrics including
Euclidean, Cosine, Chi-Square and Bhattacharyya distance.

We also propose to learn features in an unsupervised fash-
ion; however, similar to Han et al. [52] we decoupled feature
learning and matching process. Instead of using hand-crafted
features, we minimize reconstruction error and use activations
from the last layer of the trained encoder network as our
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Fig. 2. Unsupervised Autoencoder Features: Image input from left (to encoder sub-network) and outputs to the right of (decoder) network. z is taken as the
feature vector of the given image (best viewed in colour).

feature vector. We replace linear distance measures with a
discriminator network to match image features.

III. PROBLEM FORMULATION

The problem of RSIM can be split into two steps i) feature
extraction, and ii) feature matching. Let X = {x1, x2, · · · , xN }

is a set of images, where x ∈ RD . In case of supervised learn-
ing, the problem is to estimate a function fe that transforms
the image into a M-dimensional latent space (where M < D),

z = fe(x,Θe, βe). (1)

Here z ∈ RM is the extracted feature vector, and Θ and
β are the weights and biases of the estimation function fe,
respectively. The class labels t̃ from the feature vector z are
extracted using a softmax activation σ(.) defined as:

t̃ = σ(z). (2)

This function fe is learned by minimizing the error between
actual label t and predicted class label t̃ using:

Jc = −
∑

t log t̃ . (3)

However, due to scarcity of labelled data our first problem is to
extract features without using any annotations. We formulated
this problem as unsupervised feature learning and adapted an
autoencoder to resolve it. For this purpose, the feature vector
z computed from the latent space in (1) must be decoded back
to the image space by estimating a decoding function fd ,

x̃ = fd(z,Θd, βd). (4)

The feature learning is then performed by minimizing the
reconstruction error Jr between input image x and the decoded
image x̃ which is defined as:

Jr = ‖x − x̃‖2. (5)

For our second problem—feature matching—Euclidean dis-
tance between image features is often used [19],

Ji j = ‖zi − zj ‖2. (6)

However, we observed that unlike supervised learning, these
feature vectors z obtained via unsupervised learning are not
discriminative in the linear Euclidean space (see Table II). One
of the reasons for this is lack of any discrimination constraint
in learning process of unsupervised features. We attempt
to learn a non-linear metric space that projects the pairs
of features {zi, zj} into another latent space to discriminate
between similar and dissimilar pairs. To this end the problem
is addressed by estimating another transformation function fm
defined as:

vi j = fm(zi, zj,Θm, βm). (7)

The match/mismatch label from the feature vector vi j of the
discriminator is then extracted using softmax activation σ(.)
applied to the resultant feature vector vi j ,

yi j = σ(vi j). (8)

This function fm is learned by minimizing the binary cross
entropy loss between actual yi j and predicted label ỹi j using:

Jm = −yi j log ỹi j, (9)

where y is ground truth. It is 1 if the two images are similar
and 0 otherwise. ỹ is the estimated probability that the two
images in a pair are the same.

IV. PROPOSED METHOD

We propose a modular approach for RSIM consisting of
an autoencoder and a discriminator module. Unlike [23], the
modular approach allows us to train the autoencoder indepen-
dently in an unsupervised manner while the discriminator is
trained on small set of labelled examples. The discriminator
function fm is determined by a DML network instead of
standard linear distance metrics. To estimate the encoding and
decoding functions fe and fd of an autoencoder, respectively,
and the matching function fm, we introduce a residual-dyad
block in deep residual network architecture. Our deep residual
architecture is explained next.
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Fig. 3. Residual blocks and the proposed residual-dyad block. (a) In standard residual block [30] the activation is performed after addition, while in (b) full pre-
activation block [65] the activation is performed before addition. (c) Proposed ResDyad block combines a full pre-activation block with a convolutional shortcut
block. This dyad block has been used in both the proposed autoencoder and DML networks. (d) Validation loss analyzed during training ResAE (without
residual-dyad) and ResDyadAE networks (with residual-dyad) on GTCrossView. (e) Analyzing validation loss during fine-tuning the trained autoencoder
networks on LandUse dataset.

A. Residual Autoencoder

Autoncoders have been previously used for unsupervised
feature extraction in many applications which include remote
sensing [42], [64]. However, these applications of autoen-
coders do not perform well due to increased complexity of
RS imagery (complex spatial arrangement, variety of surface
objects, limited resolution, and increased noise). We propose
following three modifications to address these issues 1) we
introduce a new type of residual block called residual-dyad
2) instead of 1D features in latent space, we introduce 2D la-
tent features 3) and we also replace pooling with convolutional
blocks.

Our residual autoencoder contains two symmetric sub-
networks: an encoder fe and a decoder fd , each of which
contains residual-dyad blocks. Instead of generating 1D fea-
tures [39], our encoder generates n 2D features of 8×8 spatial
resolution. The key advantage of these 2D features is to retain
the structural information of the image that is usually lost in
single dimensional feature vector [42].

In existing literature [64], maxpooling layers have been used
to reduce the spatial resolution of image during encoding.
This results in losing crucial information which could not
be recovered efficiently through ordinary unpooling operation
during decoding [42]. Therefore, our proposed autoencoder
does not employ any pooling layer (in the deeper part of
the network) instead we exploit convolutional layers to reduce
spatial resolution. A filter of size 3 × 3 in combination with
stride 2 × 2 is used in convolution layers of encoder. A
similar operation with transpose convolution has been applied
during upsampling in decoder. In addition, we also replace
the standard full pre-activation residual block explained in [65]
with the proposed residual-dyad block, which we discuss next.

B. Residual-Dyad

The key idea in residual networks is the introduction of
identity skip connections to address the problem of vanishing
gradients, improving the accuracy of deeper networks [65].

However, each fraction of a percent of improved accuracy re-
quires nearly doubling the number of layers resulting in longer
training time. These skip connections introduce another prob-
lem, called diminishing feature reuse, which further increases
the training time. In this problem the network sometimes
avoids learning intermediate weights because of the input
being fed to each of the middle layers of the network through
skip connections. This is sometimes referred to as vanishing
gradient during the forward pass [66]. Such networks consist
of several residual blocks and hence the features computed by
early layers of the network are washed out by the time they
reach the deeper layers due to multiple weight multiplications
in between. Consequently, either a few blocks learn useful
representations or blocks share very little information with
small contributions to the final goal [67]. Zagoruyko et al.
proposed Wide-ResNet [31] to address these problems. They
emphasized on increasing the width of the network instead of
its depth by introducing multiple convolutional shortcut skip
connections in the residual block. Our approach, however, does
not restrict the choice of using identity skip connection.

For both ResNet [65] and Wide-ResNet [31], the cascaded
residual layers can result in chain of skip connections resulting
in a cascade of identity mappings. This introduces diminishing
feature reuse. Thus a solution is needed that can benefit from
skip connections (to solve vanishing gradient problem) without
introducing cascade of identity mappings (to avoid diminishing
feature reuse). To solve this problem we propose to use two
types of skip connection in cascade (identity skip connection
followed by a convolutional-shortcut skip connection) and
propose a new residual unit called residual-dyad (see Figure 3).
Figure 4 suggests that residual-dyad (in ResDyadAE) has
significantly reduced the number of (diminished) features that
are unable to learn information necessary for image recon-
struction. This can be seen in Figure 4, where dark patches
represent such diminished features. This figure also shows that
ResDyadAE achieved sharper image reconstructions.

Residual-dyad is the combination of two full pre-activation
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Actual Query Image

Feature embeddings of ResDyadAE

Feature embeddings of ResAE Reconstruction of ResAE

Reconstruction of ResDyadAE

Fig. 4. Visualization of the activations and reconstructed images for ResAE
(top row) and ResDyadAE (bottom row) for the given input image. It is
obvious from these images that ResAE generated a blurred reconstructed
image as well its features suffer from the problem of diminishing feature
reuse (black feature components though its features).

residual blocks: 1) the first block is the same as ResNets [30];
and 2) the second block includes a convolution layer through
its residual skip connection. This combination forces the
gradients to update the weights even if a residual path is
adopted for learning thus avoiding diminishing feature reuse.
While the size of the filters for the convolution layers of
both these blocks is 3 × 3, the stride for the first residual
block is 1 × 1, and the stride for second block is 2 × 2. This
configuration decreases the spatial resolution in deeper layers.
Mathematically, a conventional full pre-activation residual
block [30] is defined as:

ϕl = φl + F (φl;Θφl
), (10)

where F (.) consists of convolutional, batch normalization and
activation layers. The proposed residual-dyad also includes
conv-shortcut block [65]. This integrates another convolution
layer H(.) in the shortcut path of residual block and can be
expressed mathematically as

φl+1 = H(ϕl;Θh
ϕl
) + F (ϕl;Θ f

ϕl
). (11)

The overall residual-dyad can be mathematically expressed as:

φl+1 = H(φl;Θh
ϕl
) + F (φl;Θ f

ϕl
) +H(F (φl;Θφl

);Θh
ϕl
)

+ F (F (φl;Θφl
);Θ f

ϕl
). (12)

Here, (10) and (11) are block A and block B, respectively
and (12) shows the overall effect of dyad (see Figure 3(c)). φl
indicate the feature maps fed into lth residual-dyad block, Θh

are the parameters of convolution layer H while Θ f are the
parameters of residual function F . These equations illustrate
that the network is capable of learning new features between
any starting block l and terminating block L.

1) Residual-Dyad Autoencoder: We propose a residual-
dyad based autoencoder network (ResDyadAE) for unsuper-
vised feature learning that is robust to both vanishing gradients
and diminishing feature reuse problems. The autoencoder
network is illustrated in Figure 2. We refer to this network as
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Fig. 5. Network architecture of the proposed ResDyadDML that takes
features from ResDyadAE for an image pair and predicts the matching score.
Residual-dyad block has been integrated to boost the performance of the
network (best viewed in colour).

ResDyadAE and the network with traditional residual connec-
tion as ResAE in the remainder of this paper. ResDyadAE out-
performs the ResAE. Image reconstructed using ResDyadAE
exhibit fine-grained structures that are not visible in images
reconstructed using ResAE (Figure 4). Figure 3(d) plots val-
idation loss for ResDyadAE and ResAE for GTCrossView
dataset. Notice that ResDyadAE achieves lower validation
error faster. This trend continues when these networks are fine-
tuned on LandUse dataset (Figure 3(e)).

C. Residual Deep Metric Learning

Tang et al. [64] use autoencoders for extracting features
from image patches. These features are subsequently matched
using eight different distance metrics to evaluate the overall
feature extraction and matching performance. The metrics
used are linear, and they ignore the non-linear discriminative
patterns of the feature pair resulting in unsatisfactory retrieval
score. We propose a new metric learning approach that re-
lies upon deep residual network (ResDML). This network is
trained in a supervised setting by minimizing the binary cross-
entropy loss. Essentially, the network is trained to predict
whether or not both input images belong to the same class.
We also incorporated the proposed residual-dyad block in
this network, and we refer to this variant as ResDyadDML
(Figure 5).

The encoder sub-network computes features for both images
in the pair. Recall that the encoder sub-network is trained in an
unsupervised manner. this suggests that our feature extraction
approach eschews class labels and can be easily extended to
large unlabelled datasets. A downside of this approach is that
it constructs higher dimensional features. We found that this
is necessary to preserve the image details needed for image
reconstruction during training.

We also studied the effect of feature size on the proposed
approach. We varied autoencoder’s depth and filter sizes (in
the middle layers) to construct 1 × 1 × 1024 dimensional
features, z. Figure 6 (b) shows reconstruction results using
these features, and it is evident that these features result in
poor reconstructions. Similarly, we constructed 8 × 8 × 20
dimensional features. Figure 6 (c) shows reconstruction results
for these features. Note that while reconstruction is better
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when compared to that achieved by 1 × 1 × 1024 dimensional
features, it still exhibits blocky artifacts. In our experiments
8 × 8 × 512 dimensional features achieved the best results.
We have only experimented with MSE loss to train the
autoencoder network. In the future, we plan to study feature
size reduction by exploring techniques, such as model pruning
and sparsity inducing loss functions [68].

These features are concatenated and the resulting 8×8×1024
tensor is sent to the ResDML and ResDyadML networks.
These features are subsequently passed through a convolution
layer and a batch normalization layer. ReLU activation is
applied to it before feeding it to a residual-dyad block (simple
residual block in case ResDML). The ReLU activations are
passed through another convolutional layer followed by a fully
connected layer with softmax activation as shown in Figure 5.
The discriminator network has far fewer parameters than the
entire encoder-discriminator network, and it is possible to
learn the weights of the discriminator network using much
less labelled data. Replacing Euclidean distance with DML
network for feature matching improves matching score by 14%
as seen in Table I.

V. EVALUATION SETUP

We now discuss the benchmark datasets used to evaluate
the proposed networks.

A. Datasets

We use University of California Merced Land Use/Land
Cover dataset (LandUse) [29] and High-resolution Satellite
Scene dataset (SatScene) [12] to evaluate the proposed ap-
proach. In addition, we also use GTCrossView [28] dataset
for feature learning.

1) The LandUse dataset contains 2100, aerial orthophotos,
covering a total area of 42 thousand square kilometers.
Each image is 256×256, and belongs to one of 21 classes
(see Figure 8).

2) The SatScene dataset contains 19 diverse classes with
aerial orthoimagery at various zoom levels with about
100 images per class. Each image is 600 × 600.

3) The GTCrossView dataset contains 1 million pairs
(street-view/satellite-view). It does not contain any class
information.

The purpose of using two datasets with variety in terms of
pixel resolution, size, zoom level, and classes, is to develop
a consolidated solution for challenging scenarios in unsuper-
vised remote sensing matching.

B. Performance Metrics

We use Mean Average Precision (mAP) to capture image
matching performance. We also measure the ranking effi-
ciency for image retrieval using the proposed image matching
technique. For this purpose we use two commonly used
indicators: 1) Average Normalized Modified Retrieval Rank
(ANMRR) [19] and 2) class-wise mAP [69].

(a) (b) (c) (d)

Fig. 6. (a) Input image. Visualization of reconstructed images from (b) 1 ×
1 × 1024 dimensional encoded features (c) 8 × 8 × 20 dimensional encoded
features (d) 8 × 8 × 512 dimensional encoded features (ResDyadAE).

TABLE I. A comparison of networks with and without residual-dyad. Both
autoencoder networks have been initially trained on GTCrossView dataset and
fine tuned with LandUse dataset.

Unsupervised ResDML ResDyadDML
Autoencoder ANMRR mAP ANMRR mAP
ResAE - LandUse 0.60 25.79 0.64 22.19
ResAE - GTCrossView 0.61 25.07 0.57 31.67
ResAE - Fine Tuned 0.54 33.80 0.57 32.32
ResDyadAE - LandUse 0.61 27.52 0.55 40.97
ResDyadAE - GTCrossView 0.40 43.97 0.19 72.19
ResDyadAE - Fine Tuned 0.22 67.28 0.09 81.20

1) Mean Average Precision (mAP): Precision can be de-
fined as the fraction of retrieved images relevant to query
image. It is usually evaluated in the cut-off rank, considering
top k results yielded by RSIR system. This measure is termed
as P@k. In this research we are calculating Mean Average
Precision (mAP) and per class mAP values for the comparison
with state-of-the-art methods. Mathematically, mAP can be
computed as

mAP =
1
Q

Q∑
q=1

AP(q), (13)

where average precision (AP) is:

AP =
∑n

k=1(Precision(k) × z(k))
Number of relevant images

, (14)

where n is the number of retrieved images, k is their rank,
and z(k) ∈ {0, 1}, equaling 1 if the feature at rank k belong
to a relevant image, while zero otherwise.

2) ANMRR: ANMRR considers the number of similar
images that are retrieved and quantifies them as per their rank.
This also address the queries having varying relevant image
sets in image retrieval problem. ANMRR removes the bias
that arises during retrieving the set of relevant images give
a query when the number of relevant images present in the
given dataset for different query images vary. Mathematically
Rank(k) is defined as

Rank(k) =

{
Rank(k), if Rank(k) ≤ K(q)
1.25K(q), if Rank(k) > K(q)

(15)

where Rank(k) is the kth position at which a similar item is
retrieved. K(q) is the constant penalty term adapted to penalize
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Fig. 7. 5-Fold cross validation of ResDyadDML network on LandUse dataset
showing consistent ANMRR and mAP values for each fold, validating the
performance and reliability of the discrimination network.

TABLE II. A comparison of mAP values with Euclidean distance and a pre-
trained DML network applied to hand-crafted, supervised, and unsupervised
(autoencoder) features of LandUse dataset.

Features Feature Type Euclidean DML (Ours)
mAP mAP

HoG [19] Hand-crafted 17.85 21.88
LBP-RGB [19] 17.96 28.22

VGG-16 [70]

Supervised

28.26 58.69
GoogleNet [71] 55.86 62.23
SatResNet-50 [19] 69.94 89.69
Siamese [55] 10.39 65.87

ResDyadAE [Ours] Unsupervised 4.64 81.20

the misclassified ranking results. It is commonly chosen to be
2G(q) where G(q) is the set of relevant images. For all relevant
images Mean Rank Rankmean(q) for the given query image q
is computed using:

Rankmean(q) =
1

G(q)

G(q)∑
k=1

Rank(k). (16)

Rankmean(q) is normalized by the amount of the difference
between maximum penalty and minimum penalty value. This
Normalized modified retrieval rank (NMRR) for query q is
described as:

NMRR =
Rankmean(q) − 0.5[1 + G(q)]

1.25K(q) − 0.5[1 + G(q)]
. (17)

To generalize the results this operation is iterated over a
number of different query images Q. For which average
NMRR over all the queries can then be calculated as:

ANMRR =
1
Q

Q∑
q=1

NMRR, (18)

where Q indicates the number of queries q performed.

C. Experimental Setup

We trained two different autoencoders, a residual-dyad
autoencoder (ResDyadAE) and a regular residual autoencoder
(ResAE). For each of these autoencoders we trained two
different discriminator networks, with residual-dyad blocks

(ResDyadDML) and with regular residual connections (Res-
DML).

We carried out the following set of experiments to esti-
mate the performance gain due to the use of the proposed
residual-dyad blocks. We intially trained two autoencoders—
one using residual blocks only and the second using the
proposed residual-dyad blocks—on GTCrossView dataset [28]
containing 200K pairs of satellite and street view images in an
unsupervised manner. We used GTCrossView dataset instead
of LandUse and SatScene datasets since the last two lacked the
number of images needed to train a deep autoencoder network.
The discriminator network, which uses deep metric learning,
is trained only on LandUse and SatScene datasets using the
80/20 training/testing split. For the sake of completeness, we
also trained the networks on the following training/testing
splits: 70/30, 60/40, 50/50, 40/60, and 30/70. We discuss
the results of these experiments in the next section.

We used the same hyper-parameters’ values in all our exper-
iment. Each network is optimized using Stochastic Gradient
Decent (SGD) with initial learning rate of 0.001 and a rate
decay of 0.2. Instead of using fixed number of epochs, we used
early stopping criteria which terminates the training process
in case there is no improvements for 10 consecutive epochs.
All experiments are conducted on two systems having the
following specifications: i) Intel Core 4.20 GHz i7-6700K
processor with 32 GB RAM and NVIDIA GeForce GTX
1080Ti GPU, and ii) a Intel Xeon 48 core 2.1 GHz E7-4830
processor with 256 GB RAM and a Tesla K40 GPU.

VI. RESULTS AND ANALYSIS

A. Comparison b/w Residual Unit and Residual-Dyad Unit
To measure the performance improvements due to pro-

posed dyad block, we compare the dyad based networks
(ResDyadAE and ResDyadDML) with the networks using
regular residual blocks (ResAE and ResDML). Table I com-
pares the performance of our proposed network architectures
for image retrieval task on Landuse dataset. The residual-
dyad based network in both cases of autoencoder and deep
metric learning outperforms its other variants. When we used
ResDML with both ResAE and ResDyadAE, the ResDyadAE
achieves more than 18% improvement in mAP (from 25.07
to 43.97) as compared to ResAE. This improvement gap
increased to approximately 35% (from 33.80 to 67.28) when
these autoencoders were fine-tuned on LandUse dataset. The
improvement of over 2x (from 0.54 to 0.22) in ANMRR is
also observed after fine-tuning.

The last two columns of Table I show the improvements
achieved after introducing dyad blocks in the discriminator
network. The ResDyadDML improved the mAP by at least 2%
with ResAE (from 25.07 to 31.67) and ResDyadAE fine-tuned
features (from 67.28 to 81.20). Thus the overall improvement
achieved using dyad based architecture (ResDyadAE with
ResDyadDML) as compared to the one that does not use
residual-dyad (ResAE with ResDML) is 47.44% (form 33.80
to 81.20) and 0.36% (from 0.54 to 0.09) respectively, in mAP
and ANMRR values. This significant improvement in both
mAP and ANMRR indicates the effectiveness of residual-dyad
as compared to regular residual block.
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Fig. 8. Top 10 retrieved images for the corresponding query images of LandUse dataset. The retrieval results shown for queries taken from the classes of
Airplane, Dense Residential, Intersection, Tennis Court, Sparse Residential, and Storage Tanks. It could be clearly observed that images with very similar
features have been misclassified as a match to original query image

.

TABLE III. Comparative evaluation of our proposed approach with other recent techniques on LandUse dataset [19].

Method Feature Type ANMRR↓ mAP↑ P@5 P@10 P@50 P@100 P@1000

HoG [19]

Han
d-cr

aft
ed

0.751 17.85 48.67 41.88 25.37 19.2 6.18
LBP-RGB [19] 0.751 17.96 58.73 49.83 28.12 19.62 6.07
Dense SIFT (VLAD) [20] 0.649 28.01 74.93 65.25 38.20 28.10 7.18
Dense SIFT (FV) [19] 0.639 29.18 75.34 66.28 39.09 28.54 7.88

GoogleNet [71]

Superv
ise

d
0.360 55.86 85.36 80.96 64.71 52.36 9.68

NetVLAD [72] 0.406 51.44 83.00 78.59 61.63 49.04 9.29
MLIR CNN-Fc7 [22] 0.322 62.73 80.76 71.00 30.80 17.77 -
SatResNet-50 [19] 0.239 69.94 92.06 89.02 77.23 64.42 9.86

ResDyadAE-ResDyadDML [Ours] Unsupervised 0.090 81.20 99.4 99.2 99.0 87.4 9.90

To further study the effect of the proposed residual-dyad
unit, we performed a 5-fold cross validation (see Figure 7).
The obtained mean and standard deviation of ANMRR and
mAP ranges from 0.1116| ± 0.05| and 80.786| ± 5.65|, respec-
tively. We also studied the effect of different train-test split
illustrated in Figure 10. The ANMRR and mAP scores for
50% or more training data are better. As expected reducing the
training data has an adverse effect on the overall performance.
These results confirm the performance gain achieved by the
proposed residual-dyad unit.

B. Comparison b/w Euclidean vs. Deep Metric Learning

Euclidean distance is one of the most commonly used
measure in image matching [19]. In Table II we compare
the mAP scores between Euclidean distance and our pro-
posed DML based matching. The scores were computed for
features extracted using hand-crafted (Histogram of Oriented
Graphs (HoG) [19], Linear Binary Patterning for RGB Images
(LBP-RGB) [19]), deep supervised (VGG16 [70], GoogleNet
[71], Satellite ResNet (SatResNet) [19], Siamese [55]) and
our deep unsupervised technique. For a fair comparison, in
Siamese Network the encoder and discriminator follow the
same architecture as used in ResDyadAE and ResDyadDML,
respectively. Furthermore, we initialized the Siamese Network
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TABLE IV. Comparative evaluation of our proposed approach with the state-of-the-art hand-crafted and supervised techniques on SatScene dataset.

Method Feature Type ANMRR↓ mAP↑ P@5 P@10 P@50 P@100 P@1000

HoG [19]

Han
d-cr

aft
ed

0.724 19.97 40.24 35.31 21.73 15.82 5.20
LBP-RGB [19] 0.664 24.95 50.33 43.98 26.33 19.40 5.20
Dense SIFT (VLAD) [20] 0.649 28.01 74.93 65.25 38.20 28.10 7.18
Dense SIFT (FV) [19]

Superv
ise

d

0.552 35.89 71.30 62.78 36.19 25.03 5.20

GoogleNet [71] 0.324 60.36 85.73 82.28 68.32 55.75 9.75
NetVLAD [72] 0.371 56.37 82.54 78.41 64.40 52.19 9.48
SatResNet-50 [19] 0.207 74.19 92.11 90.55 80.91 68.02 9.87

ResDyadAE-ResDyadDML [Ours] Unsupervised 0.06 96.6 100 99.1 94.3 52.00 9.92

Fig. 9. Comparative results of class-wise mAP among supervised (VGG-16, GoogleNet, SatResNet-50), and our proposed unsupervised approach. Our
approach performs uniformly better and on average it surpasses the efficiency of supervised techniques on LandUse dataset.

Fig. 10. ResDyadDML trained on ResDyadAE features with different train-
test split ratios of LandUse dataset.

with the pre-trained weights of the ResDyadAE and then fine-
tuned it on the LandUse dataset.

It can be observed that the proposed unsupervised fea-
tures are not discriminative in the Euclidean space as they
are trained to minimize reconstruction error only. However,
when we use ResDyadDML instead of Euclidean distance,
the mAP scores improve for all types of features. Overall,
ResDyadDML has introduced about 5% to 30% improvement
of mAP score for all the feature variants. The performance
of supervised features particularly from SatResNet-50 has
improved by 20% (from 69.94 to 89.69) as compare to its
published score [19]. Similarly, for ResDyadAE features, it
increases from 4.64 to 81.20 which is highest as compared
to state-of-the-art approaches and 2nd highest as compared

to our improved version of SatResNet-50 (i.e. SatResNet-50
with proposed DML). This improvement in mAP score demon-
strates the efficacy of ResDyadDML for image matching.

C. Comparison with State-of-the-art

We compared our proposed architecture consisting of Res-
DyadAE with ResDyadDML with 9 different techniques
available in the literature: 1) Histogram of Oriented Graphs
(HoG) [19]; 2) Linear Binary Patterning for RGB Images
(LBP-RGB) [19]; 3) Dense SIFT (VLAD) [20] 4) Dense SIFT
(FV); 5) GoogleNet [71]; 6) NetVLAD [72]; 7) Multi-label
Image Retrieval (MLIR) [22]; 8) Satellite ResNet with 50
layers (SatResNet-50) [19]; and 9) Siamese Network. Out
of these techniques HoG, LBP-RGB, and Dense SIFT use
hand-crafted features; and GoogleNet, NetVLAD, MLIR, and
SatResNet-50 use deep supervised features. This comparison is
performed on both LandUse and SatScene benchmark datasets
and is shown in Tables III and IV, respectively.

It can be observed from the Table III and IV that the
ResDyadAE with ResDyadDML has outperformed the hand-
crafted as well as supervised schemes. The hand-crafted
features obtained least retrieval performance for both the
benchmark datasets. In general it is expected that supervised
approaches will perform better as compared to unsupervised
techniques. However, it is interesting to observe that the
our proposed unsupervised feature learning produced supe-
rior results as compared to supervised approaches such as
GoogleNet, NetVLAD and SatResNet-50. As compared to
the best performing supervised scheme (SatResNet-50), our
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(a) LandUse Dataset with 21 classes
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(b) SatScene Dataset with 19 classes

Fig. 11. Confusion metrics of (a) LandUse and (b) SatScene dataset averaged over 20 queries per class. This figure shows that the ambiguity between
challenging classes has reduced to less than 7% percent. For example on LandUse only 5% golf course images are mismatched with those from agricultural
class. Similarly, mismatch between river and forest is also reduced to just 3.35%.

proposed approach has approximately 11% and 22% higher
mAP score on LandUse and SatScene datasets, respectively.
Similarly, an improvement of over 14.5% can also be observed
in ANMRR for both the benchmark datasets as compared to
state-of-the-art.

Some of the detailed observations regarding remote sensing
image retrieval could be highlighted by P@k measure which
are enlisted for the values of 5, 10, 50, 100, 1000 in Tables III
and IV. For the proposed approach, top 5 retrieved images
always belong to the class of the query image while top
10 images have also been recognized with 99.2% precision
in LandUse and 100% precision in SatScene dataset. Even
with top 50 images, our proposed technique superseded all
other approaches. In case of top 100 images, SatResNet-
50 obtained 16% better results on SatScene dataset whereas
the proposed approach outperformed the state-of-the-art by
23% on LandUse dataset and approximately 14% on SatScene
dataset.

D. Class-wise Analysis

To have a deeper look at the results, we compared the
class-wise mAP of our proposed approach with 3 state-of-
the-art supervised learning approaches: 1) VGG-16 [70]; 2)
GoogleNet [71]; and 3) SatResNet-50 [19]. The results on 21
different classes as well as their average score are depicted
in Figure 9. The average mAP score clearly shows that
the proposed approach has outperformed other techniques
in literature. Our technique performed uniformly well for
all the classes of the LandUse dataset whereas the other
approaches only performed well on 8 classes including agri-
culture, airplane, baseball diamond, beach, chaparral, forest,
freeway and golf course. Many of the remaining 13 classes
share visual features such as vegetation in agricultural and
golf course classes, similarly dense trees in forest and river
classes which makes it difficult to differentiate between them
in Euclidean space. Furthermore, classes such as intersection,

dense residential and sparse residential have high intra-class
variations as structural content can appear at different locations
and with different orientations in the given image.

The challenges due to intra-class variation, and orientation
and spatial arrangements were addressed through deep metric
learning employed in the proposed approach. Confusion matrix
in Figure 11 shows that the ambiguity between challenging
classes has reduced to less than 7 percentage. For example on
LandUse only 5% golf course images are mismatched with
those from agricultural class. Similarly, mismatch between
river and forest is also reduced to just 3.3%. Likewise, on
SatScene dataset the highest ambiguity of 6.2 is between
images from residential and commercial classes, whereas the
ambiguity between all the other classes is less than 5%.

E. Qualitative Evaluation

We analyse the reconstruction results of our proposed au-
toencoder (ResDyadAE) on both the test sets and randomly
chosen images from other domains. The results on test set are
shown in Figure 4 (bottom row), in which the triplets contain
a query image, its deep features, and a decoded image. It
can be seen that the autoencoder has successfully regenerated
the query image without any blurring or loss of structural
information.

The results on cross-disciplinary images are shown in Fig-
ure 12. It can be seen that our network generalizes to efficiently
encode images from multiple domains, including but not
limited to street view, satellite view, medical imagery, and
synthetically generated images, into low dimensional space
(see Figure 12).

Similarly, Figure 8 shows the top 10 retrieved images for
a query image (left most) on LandUse dataset. It can be
noticed that despite of having common visual features of trees
in classes such as sparse residential, dense residential, and
river and variation in zoom levels, our approach has retrieved
images similar to the query image.
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Query Image

Query Image

Query Image

Query Image

Reconstructed Image

Reconstructed Image

Reconstructed Image

Reconstructed Image

a) Features of the Image

b) Features of the Image

c) Features of the Image

d) Features of the Image

Fig. 12. Visualization of deep features of multi-disciplinary images showing
that although our autoencoder is trained only on street view and satellite
images, however it works equally well on images from other domains such
as (a) street view image (b) top view/aerial image, (c) medical image and
(d) synthetic image. Out of 512 features, we have visualized only 24 features
each of size 8 × 8.

VII. CONCLUSION

We propose a remote sensing image matching system. The
proposed system consists of two parts: a) an autoencoder
that is pre-trained on GTCrossView data in an unsupervised
manner, and b) a deep metric learning network trained on
image pairs from LandUse and SatScene datasets. While the
autoencoder is trained to minimize the reconstruction loss,
the latent representation that it constructs succinctly captures
salient characteristics of an image. We can, therefore, use its
encoder sub-network to construct powerful image features.
Given features for two images, the discriminator network
decides if the two images belong to the same class. Unlike
existing learning-based approaches that require labelled data
for training networks responsible for image feature construc-
tion, our approached follows an unsupervised approach to train
a network for image feature construction. Specifically, we use
the encoder sub-network of an autoencoder that does not need
labelled data for training. This suggests that the proposed
approach requires much less labelled data for training pur-
poses, since here we only need labelled examples to train the
discriminator network.

Others have proposed to used residual connections to im-
prove network performance. We propose a new network unit,
called residual-dyad, which consists of two residual units
stacked back to back. We find that networks using residual-
dyad outperform networks that either do not use residual
units or use traditional residual units. We provide an ablative
study that confirms the benefits of using a residual-dyad over
traditional dyad in our system. The proposed autoencoder
contains 6 residual-dyad units: 3 in the encoder stage and
3 more in the decoder stage. The proposed discriminator
also uses a residual-dyad unit. We also show the benefits
of fine-tuning the encoder sub-network when training the
discriminator network.

We have compared our approach on LandUse and SatScene
benchmarks against both 1) traditional approaches that use
hand-crafted features and 2) more recent learning-based ap-

proaches. Our method outperforms other schemes in terms of
mAP and ANMRR metrics. Our method achieves an overall
improvement in performance of 11.26% and 22.41% in mAP
respectively, for LandUse and SatScene benchmark datasets
over state-of-the-art. Similarly, we achieved over 14.5% im-
provement in ANMRR for both the benchmark datasets.

In the future, we intend to study the effects of residual-dyad
unit in other deep learning settings. We also intend to explore
the use of this RS image matching framework in a full-fledged
RS image retrieval and management system, which includes
ideas, such as query expansion and relevance feedback.
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