
ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands Taylor andQureshi

Real-time Video Summarization on Commodity Hardware
Wesley Taylor and Faisal Z. Qureshi

Faculty of Science, University of Ontario Institute of Technology

Oshawa, ON L1G 0C5 Canada

{wesley.taylor3|faisal.qureshi}@uoit.net

ABSTRACT
We present a method for creating video summaries in real-time on

commodity hardware. Real-time here refers to the fact that the time

required for video summarization is less than the duration of the

input video. First, low-level features are use to discard undesirable

frames. Next, video is divided into segments, and segment-level fea-

tures are extracted for each segment. Tree-based models trained on

widely available video summarization and computational aesthetics

datasets are then used to rank individual segments, and top-ranked

segments are selected to generate the final video summary. We

evaluate the proposed method on The SumMe Video Summariza-

tion (SumMe) dataset and show that our method is able to achieve

summarization accuracy that is comparable to that of a current

state-of-the-art deep learning method, while posting significantly

faster run-times. Our method on average is able to generate a video

summary in time that is shorter than the duration of the video.
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1 INTRODUCTION
Cameras are now ubiquitous. This has resulted in an explosive

growth in user-generated images and videos. In the case of videos,

at least, our ability to record videos has far outpaced methods and

tools to manage these videos. A skier, for example, can easily record

many hours of video footage using an action camera, such as a Go-

Pro. Raw video footage, in general, is unviewable—the recorded

video needs to be summarized or edited in some manner before it

can be shared with others. Clearly, no one is interested in watching

many hours of skiing video when most of it is bound to be highly

repetitive. Manual video editing and summarizing is painstakingly
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slow and tedious. Consequently a large fraction of recorded footage

is never shared or even viewed. We desperately need one-touch

video editing tools capable of generating video summarizes that

capture the meaningful and interesting portions of the video, dis-

carding sections that are boring, repetitive or poorly recorded. Such

tools will revolutionize how we share video stories with friends

and family via social media.

A meaningful video summarization needs to take into account

both the user context and the video content. Two different users

may find entirely different sections of a recorded video interest-

ing. Consider, for example, the scenario where someone records a

children soccer match. Parents may only be interested in a section

in video that shows their child. We refer to this as user context.

Video summarization algorithms, therefore, should take into ac-

count the likes and dislikes of the viewers of the video summary.

Video content is also important. By necessity video summarization

algorithms relies upon video content to select which portions of

the videos make the cut.
This paper develops a real-time video summarization system

(Figure 1). The proposed system is able to perform video summa-

rization at speeds that far exceed those achieved by state-of-the-art

deep learning approaches for video summarization. We list these

approaches in the next section. The proposed system exploits low-

level image features to efficiently discard segments with low in-
terestingness or having poor quality. This means that subsequent

summarization steps, which are computationally expensive, only

deal with the remaining segments. This can lead to significant sav-

ings, especially for long duration videos, such as the all day ski trip

video in the example mentioned above. A key feature of the pro-

posed system is its ability to generate alternate summaries almost

instantaneously. A user can guide the system to generate a differ-

ent summary thereby injecting user-preference into the process of

summarization. Figure 1 shows our summarization pipeline.

We evaluate the proposed method on SumMe video summa-

rization benchmark, and compare our method with a number of

existing video summarization schemes. Our method achieves the
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Figure 1: Our summarization pipeline. Video V is processed
to construct a set of segments SV . Next, a 124-dimensional
feature vector X 124

s is extracted for each segment s ∈ SV .
These features are processed to assign a ranking to each seg-
ment s ∈ SV . Final step consists of selecting the top ranked
segments to create the summaryUV .
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highest F1-measure. It also achieves highest accuracy on over 50%

of the tested videos. We also show that the summarization times

of the proposed method increases linearly with the duration of the

input video.

The rest of the paper is organized as follows. We briefly discuss

related work in the next section. Section 3 discusses video seg-

mentation. Segment ranking is covered in Section 4. The following

section describes video summarization. We conclude the paper with

evaluation and results and conclusions in the last two sections.

2 BACKGROUND
A majority of the existing video summarization methods follow

a common recipe: step 1) video segmentation, step 2) segment

ranking and step 3) segment selection [3, 6, 12, 21]. Methods vary

in how segmentation is performed and how individual segments

are ranked. [24] is an exception to this rule that uses recent ad-

vances in deep learning and provides an end-to-end system for

video summarization. This method relies upon the availability of

suitable training data. Early video summarization methods were

unsupervised [3, 12, 21]; however, with the recent availability of

high-quality video summarization datasets, many newer methods

are supervised [6, 24].

Video summarization has also been explored in the context of

robotics [5]. Their motivation stems from the fact that transmitting

raw video footage, say to a base station, incurs large communication

costs. It is also infeasible in situations where bandwidth is limited.

They leverage topic modeling to identify the novel segments of the

recorded video with a view to construct a video summarization that

captures the salient pieces of the video.

Clustering [12] and attention [3] methods are often used as

baselines when evaluating new summarization methods. The first

method performs clustering to get segmentation, and uses a 0/1

knapsack for segment selection for final summary generation. The

second method extracts attention features for each frame, assigning

an interestingness score to each frame. Frames with high inter-

estingness scores are selected to generate the summary. We refer

the kind reader to the respective publications for technical details.

Suffice to say that both classes of methods are unsupervised and

are able to achieve higher accuracy when compared to a method

that picks frames (or segments) at random when generating a video

summarization. Recent methods outperform both these methods.

Y = 0.63

S = 1955.33

U = 0.70
Label: none

Y = 0.45

S = 83.19

U = 0.75
Label: blurry

Y = 0.02

S = 3.42

U = 0.15
Label: dark

Y = 0.14

S = 6552.91

U = 0.24
Label:

uniform

Figure 2: Using luminance (0.02), sharpness (3.42) and unifor-
mity (0.15) to label undesirable frames. The values shown in
red indicates that these fall below the empirically selected
threshold values.

Method developed in [6] is of particular interest to us. [6] not only

developed a new method for video summarization. It also created a

first-of-its-kind benchmark for video summarization. This dataset is

referred to as the SumMe dataset. We too use this dataset to evaluate

the performance of our method. [6] uses change point detection

for segmentation. These segments are subsequently ranked and

the final summary is generated using a 0/1 knapsack formulation.

[21] method is similar to the method proposed in [6]. The key

difference is that [21] method uses a different set of features for

ranking segments.

The current best performing video summarizationmethod is [24].

It uses convolutional and recurrant layers that operate upon se-

quences of frames and compute interestingness score for each frame.

Specifically, this method uses pool-5 layer of GoogLeNet model

as frame-level features, which are fed into LSTM units to gener-

ate frame and segment level interestingness scores. The key idea

is to capture temporal relationship between successive frames to

compute frame-level interestingness score suitable for video sum-

marization.

3 VIDEO SEGMENTATION
The algorithm begins by identifying frames that are too dark, blurry,

or uniform (see Figure 2). Luminance (Y ), sharpness (S) and uni-

formity (U ) values are computed for each frame to label the frame

accordingly. Luminance is given by

Y = mean(0.2126 · R + 0.7152 ·G + 0.0722 · B),

sharpness is computed as

S = mean(G2

x +G
2

y ), and

uniformity value is computed by first constucting a normalized

1D grayscale histgoram H with 128 bins and then computing the

ratio between the top 5
th

percentile bins of H and the rest of H .

These features have low computational overhead. The algorithm

thus avoids wasting precious computational resources (during the

subsequent steps) on frames that will not make the final cut any

ways.

Next, input videoV is divided into one or more non-overlapping

segments

SV = {s0, . . . , sk }.

While these segments do not overlap, we allow for gaps between

adjacent segments, i.e., we only require that end(si ) < start(si+1).
We formulate our video as a multidimensional time-series, allowing

us to cast video segmentation as a multiple change point detection

problem [2, 22].

Change point detection operates upon a time series feature ma-

trix X, where column i stores features extracted from frame i . Our
method extracts 2200-dimensional feature vector from each video

frame. Specifically each frame is represented using a HSV histogram

with 128 bins per channel and an edge orientation and magnitude

histogram with 30 bins each. These features are extracted over a

two-level pyramid consisting of 5 regions, which yields a 2200-

dimensional feature. Each video is now represented as a 2200 × n
matrix X. Here n indicates the number of frames. A set of sparse

coefficients A ∈ Rn×n is computed from X by solving the following
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convex optimization problem.

argmin

A
∥X − XA∥2

F
+
λ

2

∥A∥
2,1. (1)

A is used to assign a score to each frame, and the top ranked k
frames are selected as split points to generate k + 1 segments. We

set the problem so that average segment duration is roughly 5

seconds. This method can be thought of as a more robust version of

threshold-based and content-aware sampling. Rather than relying

simply on local color or brightness features, a combination of color

and edge histograms are used to locate segment boundaries based

on the statistical properties of the entire video.

Next we refine the segmentation by removing dark, blurry or

uniform frames. Segments having a large fraction of undesirable

frames are discarded in the process, which also results in further

savings down the line. Segments can also be trimmed, discarding

undesirable frames at the either end, or split into two or more

segments. Adjacent segments containing too few frames are also

merged to form a single segment at this stage. This process is shown

in Algorithm 1.

4 SEGMENT RANKING
Once all candidate segments SV for our video V have been located,

the next step is to rank these segments. The algorithm begins by

extracting frame-wise features, which are subsequently used to

rank the individual segments.

4.1 Frame-Level Features
We compute a 62 dimensional feature vector X 62

f for each frame

as follows. The first 59 dimensions correspond to computational

aesthetic features computed at each frame (Table 1). We refer the

interested reader to [13, 18, 19, 25] for technical details about these

features. Dimensions 60 contains the number of faces seen in this

frame, and dimension 61 records the number of “salient” faces seen

in this frame. The last dimension stores a 1 if the frame is deemed

aesthetically pleasing (see below).

4.1.1 Salient Face Detection. The process of finding salient faces
consists of three steps: a) face detection, b) (face) feature vector

extraction, and c) (face) clustering. The algorithm employs Felzen-

szwalb’s HOG (FHOG) for face detection [4]. To extract a face

feature vector, we employ a modfied version of ResNet-34 [8], con-

taining only 29 layers and half the number of filters in each layer.

We train the network using a metric loss function over 3 million

faces from the FaceScrub [15] and VGG-Face [17] datasets. This

model is able to predict with 99.38% accuracy if two faces belong

to the same individual on the Labeled Faces in the Wild (LFW) [11]

dataset.

Face feature vectors are clustered using Chinese whispers graph

clustering algorithm [1]. Chinese whispers is a linear-time hard

partitioning, randomized, flat clustering method. A linear-time al-

gorithm is highly desirable since an hour long video can easily

contain more than 50,000 face feature vectors. Clustering ensures

that each “person” ends up in at most one cluster. Clusters with

large memberships identify salient persons. Note that this method

requires no prior knowledge about salient faces.

Algorithm 1 The algorithm used for performing segment merging

and elimination.

Inputs:
S : A segmentation consisting ofn segments {s0, . . . , sn−1}

dm: The minimum segment frame duration threshold

d
b
: The between segment frame duration threshold

1: function PostProcessShortSegments(S , dm, db)

2: for sp , s , sn in Zip(S , S[1 :], S[2 :]) do
3: if frames(s) > dm then
4: continue
5: end if
6: merged← False

7: if distance(sp , s) ≤ d
b
then

8: S ← Remove(S , sp )

9: start(s) ← start(sp )
10: merged← True

11: end if
12: if distance(s , sn ) ≤ d

b
then

13: S ← Remove(S , sn )

14: end(s) ← end(sn )
15: merged← True

16: end if
17: if merged = False then
18: S ← Remove(S , s)

19: end if
20: end for
21: return S

22: end function
Output: A new version of S with segment merging and elimi-

nation applied

The initial “graph” used as input to the clustering algorithm is

constructed by simply looping over every pair of features{(
X 128

fa
,X 128

fb

) ��� fa , fb ∈ frames(s), fa , fb

}
across all segments and frames computed in the previous step, and

creating an “edge” between two nodes when their distance is below

some threshold value τ . A value of τ = 0.6 was selected, as it

matches the value that was used for the metric loss layer of the

deep neural network used in the previous step.

4.1.2 Aesthetic Score. The last dimension contains an aesthetic

score of 0 or 1 for this frame. We use an XGBoost classifier trained

on A Large-Scale Database for Aesthetic Visual Analysis (AVA) [14]

dataset to compute this score. Each image in AVA dataset has an

associated user score between 0 and 1, which captures the aesthetic

appeal of that image. For our purposes, we assign a score of 0 for

any image with ranking less than 0.5. Images with ranking more

than 0.5 are assigned a score of 1. We train an XBGoost classifier

using 10-fold cross-validation and a train/test split of 70%/30%. The
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input to this classifier are computational aesthetic features listed

in Table 1. The XGBoost classifier obtains an accuracy of 73.66%,

which is significantly higher than the referencemodel shown in [14].

The accuracy of reference model is 53.85%. ILGnet [10] posts the

current best accuracy of 82.66%. ILGnet is a deep learning based

model, which is more tricky to train and has significantly worse

runtime performance than our XGBoost classifier.

4.2 Segment Features
The proposed method computes segment-level features by aggre-

gating frame-level features extracted from frames belonging to each

segment. Recall that each frame f is represented as a 62 dimen-

sional feature X 62

f . Segment-level feature for each segment s ∈ UV
is

X 124

s =

61⋃
i=0

{
mean

({
X i
f

��� f ∈ s}) , std ({
X i
f

��� f ∈ s})} . (2)

4.3 Ranking
We studied three models—(1) decision trees, (2) random forests,

and (3) XGBoost—for ranking segments using the segment fea-

tures discussed in the previous section. We trained interestingness

prediction models for each of the above using segment-level fea-

tures extracted from videos available in SumMe and Summarizing

Web Videos using Titles (TVSum50) datasets. For training purposes

these videos are divided into 5 second segments, and segment-

level features are extracted for each segment. Train-test splits are

generated using 10-fold cross-validation on shuffled data, and the

mean-squared-error is used as the error metric for evaluating each

model. The results for each model are presented in Table 2.

As we can see from Table 2, both the XGBoost and random

forest models obtain very similar error rates, with XGBoost slightly

out-performing the random forest model, and both significantly

out-performing the decision tree model. For this reason, we will

use both XGBoost and random forest models for evaluating our

system.

4.4 Feature Importance
It is straightforward to compute feature importance when using

Decision Trees and XGBoost. In order to see the efficacy of our

choice of features, we performed feature importance analysis. Fea-

ture importance values are normalized between 0 and 1. A value

of 1 suggests that this feature plays an important role within the

model. Similarly, a value of 0 indicates that this feature is rarely

used during the prediction task. Figure 3 plots feature importance

for XGBoost model.

One important conclusion we can draw from Figure 3 is that

among all the features used by our model, face detection and recog-

nition features have the least average importance. These features,

incidently, are computationally expensive to compute. Our initial

hypothesis was that the computational cost of these features would

be offset by their actual importance when computing a segment

ranking. Figure 3 shows that this is obviously not the case. We,

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

Aesthetics Means

Aesthetics Variances

XGBoost Aesthetics Model

Face Detection and Recognition

Figure 3: A plot of feature importances for each feature in-
cluded in our final feature vector. For the purpose of vi-
sualization, we have grouped the features into four major
groups, each represented by its own color; blue represents
the mean values of aesthetic features, green the variances
of theese aesthetic features, red the mean and variance of
our XGBoost aesthetics model values, and finally purple the
mean and variance values for our face detection and face
recognition features. The background of each group addi-
tionally contains an aggregate bar which shows the average
importance across the entire group.

therefore, decided to exclude face detection and recognition fea-

tures during segment ranking. This leaves a 120 dimensional feature

for segment ranking:

{
X 120

s
�� s ∈ SV}.

Figure 3 suggests that features constructed using XGBoost pre-

dictions have the highest average importance score. Recall that

XGBoost model is trained on AVA dataset. This means that we are

able to train a supervised model for individual image aesthetics

and successfully apply this model to the task of segment ranking

within the context of video summarization.

5 VIDEO SUMMARIZATION
The final summary UV leverages segment rankings

{
Rs

�� s ∈ SV}
computed previously. We formulate segment selection as a 0/1 knap-

sack problem. Given a set of items (segments) s ∈ SV , each with a

weight (duration) frames(s) and a value (ranking) Rs , we determine

which segments to include in our final summary such that the final

length is less than or equal to our target summary duration, and

the sum of segment rankings is maximized. Mathematically, we can

describe this as

argmax

U⊆SV

∑
s ∈U

Rs subject to:

∑
s ∈U

frames(s) ≤W .

This can be solved via dynamic programming [23]. Define T as

an n ×W array, and T [i,w] as the maximum score that can be

obtained with duration up to or less thanw using the first i items

of SV = {s0, . . . , sn−1}. We get the following recursive definition:

T (0,w) = 0

T (i,w) =


T [i − 1,w]

if frames(si ) > w

max(T [i − 1,w],T [i − 1,w − frames(si )] + Rsi )
if frames(si ) ≤ w .

The solution can be found by computing the value of T [n,W ].
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Feature Dim. Description

Contrast 1 The ratio between the luminance range and average luminance.

Image Mean HSV 3 The average H, S, and V values over the entire image.

Center Mean HSV 3 The average H, S, and V values for the image center quadrant.

Itten Histograms [13] 20 Histograms of H values over 12 bins, S values over 5 bins, and V values over 3 bins.

Itten Contrasts [13] 3 Standard deviation of each Itten Histogram.

Pleasure, Arousal, Dominance [13] 3 Approximate emotional values computed as linear combinations of the mean V and S values.

Haralick Texture Features [7] 13 Average Haralick texture features over all four directions.

Contrast Balance 1 Distance between the original and contrast-normalized grayscale image.

Exposure Quality 1 Negative absolute value of luminance histogram skew.

JPEG Quality [20] 1 No-reference quality estimation algorithm for JPEG images.

Tenengrad [16] 1 Sharpness according to the Tenengrad method.

Spectral Residual [9] 9 Rule of thirds using spectral saliency in 9 quadrants.

Table 1: Low-level aesthetic features extracted from each frame.

Model Min Max Mean Std. Dev.

Decision Tree 0.04005 0.05145 0.04559 0.00380

Random Forest 0.02302 0.03025 0.02673 0.00238

XGBoost 0.02244 0.02907 0.02537 0.00214

Table 2: Mean-squared-error of each of our three base mod-
els evaluated using 10-fold cross validation. We can see that
of the threemodels, XGBoost has the best performance,with
the random forestmodel performing slightly worse, and the
decision tree significantly worse.

6 EVALUATION AND RESULTS
We evaluate the proposed method using pairwise F1-measure on

SumMe dataset. SumMe contains multiple summaries from differ-

ent users, and we need a mechanism for comparing the summary

generated by our method with these user-generated summaries.

[6] proposed pairwise F1-measure to perform this comparison and

evaluate the performance of a summarization scheme. F1-measure

is computed as follows. Given a summary U and a set of a set

of user-generated summaries J = {U 0, . . . ,U n }, for each U i
in J

compute

pi =
| frames(U) ∩ frames(U i )|

| frames(U i )|

and

ri =
| frames(U) ∩ frames(U i )|

| frames(U)|
.

Pairwise F1-measure is then

FU =
1

n + 1

n∑
i=0

2 ·
piri

pi + ri
.

For the Random Forest and XGBoost models from Section 4.3,

we perform grid search over various model parameters, and con-

tinue with the optimal parameters for each variable. In the end,

we compare the final pairwise F1-measure measures between the

Random Forest and XGBoost models, and select the model which

attains the highest value. Better methods are represented by higher

F1-measure values.

Using the default parameters for our XGBoost model, our method

obtains an average F1-measure value of 0.198. Average F1-measure

scores obtained by competing methods in [6] and [22] on SumMe

dataset are 0.234 and 0.2655, respectively. We fine-tuned the XG-

Boost model for segment ranking. The following parameters were

considered during grid search: max depth, minimum child weight,

gamma, subsample and col-sample by-tree. For our dataset, the

optimal values for max depth, minimum child weight, gamma, sub-

sample and col-sample-by-tree are 3, 5, 0, 1 and 1, respectively.

F1-measure was improved from 0.198 to 0.237 using these values.

6.1 Accuracy on SumMe Dataset
We now compare our model to existing techniques on SumMe

dataset. Table 3 lists accuracy values for various methods on SumMe

dataset. Ourmethod achieves the highest average F1-measure among

the 5 computational video summarization schemes listed here. Av-

erage F1-measure scores are provided for different videos in the

SumMe dataset. Our method posts the highest scores for roughly

50% of the tested videos.

6.2 Performance
We performed video summarization for each video in the SumMe

dataset using our method and recorded the times needed to gener-

ate the summaries. These times are shown in Table 4. Notice that
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Dataset Humans Computational Methods

Videoname Random Upper Bound Worst Mean Best Uniform Cluster Attn. Summe Ours

Air Force One 0.144 0.490 0.185 0.332 0.457 0.161 0.143 0.215 0.318 0.362
Base jumping 0.144 0.398 0.113 0.257 0.396 0.168 0.109 0.194 0.121 0.106

Bearpark climbing 0.147 0.330 0.129 0.208 0.267 0.152 0.158 0.227 0.118 0.261
Bike Polo 0.134 0.503 0.190 0.322 0.436 0.058 0.130 0.076 0.356 0.301
Bus in Rock Tunnel 0.135 0.359 0.126 0.198 0.270 0.124 0.102 0.112 0.135 0.147
Car railcrossing 0.140 0.515 0.245 0.357 0.454 0.146 0.146 0.064 0.362 0.192
Cockpit Landing 0.136 0.443 0.110 0.279 0.366 0.129 0.156 0.116 0.172 0.201
Cooking 0.145 0.528 0.273 0.379 0.496 0.171 0.139 0.118 0.321 0.348
Eiffel Tower 0.130 0.467 0.233 0.312 0.426 0.166 0.179 0.136 0.295 0.088

Excavators river crossing 0.144 0.411 0.108 0.303 0.397 0.131 0.163 0.041 0.189 0.231
Fire Domino 0.145 0.514 0.170 0.394 0.517 0.233 0.349 0.252 0.130 0.169

Jumps 0.149 0.611 0.214 0.483 0.569 0.052 0.298 0.243 0.427 0.542
Kids playing in leaves 0.139 0.394 0.141 0.289 0.416 0.209 0.165 0.084 0.089 0.093
Notre Dame 0.137 0.360 0.179 0.231 0.287 0.124 0.141 0.138 0.235 0.107

Paintball 0.127 0.550 0.145 0.399 0.503 0.109 0.198 0.281 0.320 0.213
Playing on water slide 0.134 0.340 0.139 0.195 0.284 0.186 0.141 0.124 0.200 0.218
Saving dolphines 0.144 0.313 0.095 0.188 0.242 0.165 0.214 0.154 0.145 0.128

Scuba 0.138 0.387 0.109 0.217 0.302 0.162 0.135 0.200 0.184 0.140

St Maarten Landing 0.143 0.624 0.365 0.496 0.606 0.092 0.096 0.419 0.313 0.557
Statue of Liberty 0.122 0.332 0.096 0.184 0.280 0.143 0.125 0.083 0.192 0.259
Uncut Evening Flight 0.131 0.506 0.206 0.350 0.421 0.122 0.098 0.299 0.271 0.081

Valparaiso Downhill 0.142 0.427 0.148 0.272 0.400 0.154 0.154 0.231 0.242 0.288
car over camera 0.134 0.490 0.214 0.346 0.418 0.099 0.296 0.201 0.372 0.408
paluma jump 0.139 0.662 0.346 0.509 0.642 0.132 0.072 0.028 0.181 0.334
playing ball 0.145 0.403 0.190 0.271 0.364 0.179 0.176 0.140 0.174 0.151

Average 0.139 0.454 0.179 0.311 0.409 0.143 0.163 0.167 0.234 0.237

Table 3: F1-measure values resulting from testing various summarization methods on videos from SumMe dataset. For each
video, among the computational methods, the three highest results are highlighted using different shades of green. Darker
shades are used for higher F1-measure values, and hence better results.

summarization times are smaller than the duration of the videos.

The third column shows the speed of video summarization process.

On average our method achieves a speed of 1.82 times the actual

duration of the video. In other words the time it takes to summarize

a video is on average 0.55 times the duration of the video. Figure 4

plots summarization times vs. video durations. It suggests a linear

relationship between summarization times and video durations. We

fit a first-degree polynomial to this data. The coefficient of deter-

mination for this fit is R2 = 0.943, suggesting that a line is a good

estimator for this data.

Figure 5 plots average performance vs. accuracy for different

methods. A performance value of 1.0 indicates that the summer-

ization time is the same as the duration of the video. We desire

methods with performance greater than 1.0. We can view these

methods as faster than real-time. Newer, computationally expen-

sive methods—SumMe and LSTM—achieve high summarization

accuracy; however, these methods posts poor performance. Older,

simpler methods on the other hand show high performance scores.

These methods, however, have low accuracy scores. Our method

is able to achieve high scores for both performance and accuracy.
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Figure 4: A plot of the video duration versus computation
time data from Table 4.We additionally plot a line of best fit
to our data, demonstrating the fact that the complexity of
our method appears to be linear in terms of the duration of
a video.

Only the LSTM method is able to achieve a higher accuracy score

than our method; however, the LSTM method has significantly
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Video Name Duration (s) Time (s) Speed

Jumps 38.00 19.12 1.99x

Cooking 85.80 22.16 3.87x

Fire Domino 53.73 27.99 1.92x

St Maarten Landing 70.04 36.72 1.91x

Scuba 74.03 48.45 1.53x

paluma jump 85.89 46.89 1.83x

Bike Polo 102.13 69.50 1.47x

Playing on water slide 102.27 54.76 1.87x

playing ball 103.97 54.52 1.91x

Kids playing in leaves 106.34 71.29 1.49x

Bearpark climbing 133.64 78.31 1.71x

Statue of Liberty 154.52 69.89 2.21x

car over camera 146.21 71.04 2.06x

Air Force One 179.76 103.59 1.74x

Notre Dame 192.00 106.87 1.80x

Base jumping 157.79 105.27 1.50x

Eiffel Tower 198.84 118.90 1.67x

Car railcrossing 169.34 115.14 1.47x

Bus in Rock Tunnel 171.10 109.00 1.57x

Valparaiso Downhill 172.77 115.51 1.50x

Paintball 254.25 137.37 1.85x

Saving dolphines 222.99 120.15 1.86x

Cockpit Landing 301.83 200.50 1.51x

Uncut Evening Flight 322.72 215.42 1.50x

Excavators river crossing 388.84 210.87 1.84x

Average 1.82x

Table 4: Raw performance data for our method applied to
each video in the SumMe dataset. The duration of each video
is provided, along with the time required for our method
to complete, and corresponding speed as a multiplier of the
duration of the video.

lower average performance than our method. Figure 6 shows sum-

marization results for our method on a selection of videos taken

from the SumMe dataset.

7 CONCLUSIONS
We propose a high performance video summarization systemwhich

is able to perform video summarization in an online fashion on

commodity hardware. The results demonstrate that our method

is able to acquire comparable summarization quality at a fraction

of a computational costs of a state-of-the-art LSTM method. Our

method, for example, is able to create video summaries of arbitrary

duration on a commodity desktop—a i5-3380M CPU and with 16GB
of RAM and no dedicated GPU—at times less than the duration of

the videos. This suggests that our method may be ideally suited for

mobile deployment.

The primary limitation of our method stems from how features

are computed for each segment. We have chosen low-level features,

which are computationally inexpensive to extract. A downside is

that these features are fundamentally limited in terms of captur-

ing semantic information present in a video. We aim to solve this
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Figure 5: Average performance vs. accuracy. Performance is
the ratio of the video duration and summarization time. A
performance score of greater than 1.0 suggests that summer-
ization times are less than video duration, i.e., it takes less
time to summarize a video than it is to record this video.
Higher performance valus are highly desireable. Accuracy
scores are average F1-measure. This plot also include perfor-
mance and accuracy scores of a state-of-the-art LSTM-based
method [24].

shortcoming in the future by incorporating additional features into

our framework. We are also investigating methods to adapt our

framework to incorporate user preferences when creating video

summaries.
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