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Abstract—This paper addresses the problem of indexing
and querying very large databases of binary vectors. Such
databases of binary vectors are a common occurrence in
domains such as information retrieval and computer vision.
We propose an indexing structure consisting of a compressed
bitwise trie and a hash table for supporting range queries in
Hamming space. The index structure, which can be updated
incrementally, is able to solve the range queries for any
radius. Our approach significantly outperforms state-of-the-art
approaches.
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I. INTRODUCTION

Increasingly many applications in domains ranging from
image matching to information retrieval generate and ana-
lyze very large number of multidimensional feature descrip-
tors [16], [15], [27], [26], [4], [14], [28], [20], [23], [10],
[29]. These feature descriptors are sometimes encoded as
binary vectors, since binary vectors can be efficiently stored,
indexed, and searched. Given a set of binary vectors D and a
query vector q, finding exact matches is often not sufficient.
Rather most applications seek to find the subset of D that are
within some distance of the query vector q [22]. Hamming
distance is a widely used distance metric over binary vector
spaces. The Hamming distance between two l-bit vectors
x,y ∈ 2l is defined as: H(x,y) =

∑l−1
i=0 (x[i]⊕ y[i]),

where ⊕ is the XOR operator. 2l is the set of all l-bit binary
vectors. We refer to the problem of finding vectors in D that
are within some Hamming distance of q as the r-neighbours
search problem (r-NSP).

Definition 1. The r-neighbours search over a set of binary
vectors D ⊆ 2l, given the query binary vector q ∈ 2l and
a radius r ∈ Z+, is defined as finding all vectors in D that
are at most at Hamming distance r of q: Nr(D,q) = {d ∈
D : H(d,q) ≤ r}.

Many schemes for solving r-NSP assume that r is fixed,
i.e., all queries use the same value of r that is known
beforehand. This is sometimes referred to as the static r-
NSP. We are interested in, the so called, dynamic r-NSP. r
is not known a priori. r in this case is part of the input [17].
It is worth mentioning that schemes developed for static r-
NSP perform poorly for dynamic r-NSP. The remainder of

Chapter 1. Introduction 3

0

2e+10

4e+10

6e+10

8e+10

1e+11

1.2e+11

1.4e+11

0 1 2 3 4 5 6 7 8 9 10

Si
ze

of
th

e
r-

va
ri

at
io

n
se

t
|Q

(q
,r

)|
Search radius r

Size of r-variation sets for 64 bit vectors (l=64)

Figure 1.1: Size of the r-variations set for 64 bits vectors. Notice the size grows expo-
nentially with increasing values for r.

efficient methods to deal with this problem. The work presented here is a step in that

direction.

1.1 r-neighbors search using hashing

Hamming distance can be computed efficiently via the xor operation followed by a bit

count ; however, a linear scan could be prohibitively expensive for large databases. Binary

vectors can be used as direct indices (addresses) into a hash table yielding a dramatic

increase in search speed over that of an exhaustive linear scan [38]. When addressing

the r-neighbors search problem using a hash table populated with the binary vectors

in the database D, the naïve approach examines every hash bucket whose indices are

within r bits of a query q (e.g., [38]). To examine these buckets, a set of queries Q(q, r)

Figure 1. Size of the r-variations set for 64 bits vectors. Notice the size
grows exponentially with increasing values for r.

this paper, simply refers to the r-NSP, dropping the term
“dynamic” in the interest of brevity.

r-NSP, for example, arises naturally in image matching,
search, and retrieval [16]. First, each image in the collec-
tion is encoded as a set of local binary descriptors [24],
[7], [1]. Next, binary descriptors collected over the entire
collection are indexed into a data structure that supports
fast r-neighbours queries or k-nearest-neighbours queries.
An inverted index matches each stored vector (descriptor)
to the image that contains it. Binary descriptors computed
from the query image are compared against the database to
find the set of “closest” vectors in the database. Each of
these vectors point to an image in the collection and voting
is performed to identify the image (stored in the collection)
that best matches the query image. Details can be found in
Landré & Truchetet [16]. The key challenge here is one of
scale. For example, say we encode each image using 103

128-bit binary vectors. This suggests that even a moderate
size collection of one million images will have 109 binary
vectors. At query time, for each image, a naı̈ve approach
would require 1012 comparisons. Clearly, we need efficient
methods to deal with this problem.

Hash tables have been used for r-NSP. The basic idea is
as follows. For a given r, all r-variations of the query vector
q are generated and checked against the hash table. q′ ∈ 2l

is an r-variation of a binary vector q ∈ 2l iff H(q,q′) ≤ r.
The set of all r-variations of a binary vector q is Q(q, r) =



{q′ ∈ 2l : H(q,q′) ≤ r}, where r ∈ [0, l]. The cardinality
of set Q(q, r) is

|Q(q, r)| =
r∑

z=0

(
l

z

)
, (1)

which grows exponentially with l and r (Fig. 1). Conse-
quently, the naı̈ve approach of generating all r-variations
and matching them against the hash table only works for
small values of l and r, say, for l < 16 and r < 2.

Current best scheme for dealing with r-neighbours
search—and its close variant, k-nearest-neighbours search—
is Multi-Index Hashing (MIH) [22], which deals with the
growth in r-variations through partitioning. MIH defines a
partition that divides the binary vector (originally of length
l) into sub-vectors (each of length less than l, obviously).
A hash table is constructed for each partition, storing sub-
vectors from that partition. The query vector is also parti-
tioned and r-variations of sub-vectors are matched against
individual hash tables. MIH works well because it generates
far fewer r-variations, since the lengths involved are smaller.

Hash based schemes, including MIH, however, do not
eliminate the problem entirely and cannot easily deal with
high-dimensional binary vectors (say l > 128). This is due
to the fact that these approaches end up doing a lot of wasted
work. Hash based schemes generate r-variations of the query
vector (or sub-vectors constructed from the query vector)
and check these variations against the hash table. The size
of r-variations grows much faster than the size of database,
suggesting that a majority of hash table lookups will end up
at an empty bucket. It is easy to confirm it by noticing that,
in general, 2l � |D|, where |D| is the total number of l-bit
vectors stored in the database. For example, the number of
r-variations for l = 64 and r = 10 is more than 133 trillions
(1.33× 1011). If there are 1 million different vectors in the
hash table, the maximum number of non-empty buckets is 1
million (assuming no collisions). That implies that the great
majority of lookups performed using the näive approach will
go to empty buckets. We need a way to avoid (or at least
reduce) generating r-variations that do not exist in the hash
table.

Hash tables alone cannot deal with the problem identi-
fied above. Hash tables can efficiently answer membership
queries (i.e., these exhibit lookup efficiency). Hash tables,
however, do not support local searchibility, i.e., given a
vector, there is no easy way to check if its neighbours in
Hamming space exist in the hash table. We propose to use
a trie data structure, which organizes the vectors according
to their prefixes. Trie exhibits good local searchibility prop-
erties, as vectors that share a prefix are easily discovered
from each other. We develop a hybrid data structure that
indexes binary vectors using both a trie and a hash table, and
we propose a query processing algorithm that switches back
and forth between the two indexing structures, generating far

fewer r-variations that need to be checked against the hash
table. Similar to MIH, the proposed method also benefits
from partitioning. Experimental evaluation demonstrates that
our method achieves state-of-the-art results.

II. RELATED WORK

Several approaches have attempted to use trie data struc-
ture for r-NSP in Hamming space. Brodal and Gasieniec, for
example, use trie to solve static r-NSP for r = 1 [6]. Arslan
and Egecioglu proposed to use trie to solve dynamic r-NSP
(for values of r ∈ [0, 2]) [3], [2]. MaaB and Nowak also pro-
pose a similar scheme for dynamic r-NSP for r ∈ [0, 2] [18].
These schemes suffer from two shortcomings: 1) they can
only deal with small values of r and 2) they require that
the binary vectors fit within a machine word. Clearly, we
need methods that can deal with binary vectors of arbitrary
lengths.

The second class of methods for r-NSP leverages hier-
archical decomposition of search space. Yao and Yao, for
example, propose a binary search tree inspired data structure
for static r-NSP [30]. Their method, however, only allows
for r = 1. Geometric Near-Neighbour Access Tree, or
GNAT, was proposed by Brin in 1995 [5]. GNAT has been
applied to r-NSP in many metric spaces, including Hamming
space. Brin’s method, however, only solves approximate r-
NSP, and is suitable only for small l and r. Muja and Lowe
proposed an algorithm based on k-medoids decomposition
of the search space [21]. This algorithm does not attempt to
give an exact answer and some r-neighbours are missed. Liu
et al. present a method that extends the idea of Muja and
Lowe. Their method searches not only the query but a small
set of its r-variations (say p perturbations of the query vector
q, where p ≈ 10 � |Q(q, r)|) [17]. These methods either
only solve static r-NSP [30] or solve approximate dynamic
r-NSP and that for small values of r [5], [21], [17].

Locality Sensitive Hashing (LSH) schemes use hash tables
for r-NSP problems. The key operation here is to generate
all r-variations of the query vector and intersect this set with
the set of vectors D using hash lookups. [13] is a widely
used hashing technique that uses a projection operation to
project input vectors into a lower dimensional space. LSH
methods builds upon the idea that if two vectors are close
in Hamming space then their projections will be close in
Hamming space as well. Projection defines a partition over
the input vector, which can be used to break the vector
into sub-vectors. An index is setup for each partition, and
all sub-vectors belonging to a partition are indexed in its
corresponding index. At search time, the query vector is
divided into sub-vectors using the same partition and its
sub-vectors are searched in the corresponding indexes. The
results obtained from different indexes are scanned linearly
to answer the original query.

A simple scheme is to use a random projection opera-
tor [25], [12], [11]; however, this reduces accuracy. Actu-



ally, accuracy decreases with increasing values of r. LSH
techniques that construct non-overlapping set of sub-vectors
from the input vectors have also been explored. Notice that
it is possible to divide the vector in m non-overlapping sub-
vectors of

⌊
l
m

⌋
or
⌈

l
m

⌉
bits. Then, if two binary vectors

differ in r bits, there are at least p = m −
⌊

r
b r
m c+1

⌋
sub-

vectors that differ in at most r′ = b r
mc bits [31]. [19],

[17], [31] approaches are based on this idea; however, these
approaches only solve the static r-NSP problem.

Norouzi et al. [22] method can deal with dynamic r-NSP.
They also partition the vectors into m sub-vectors. All sub-
vectors in a partition are indexed using hash tables. Their
method can handle arbitrary values of r. Query vector is
divided into m sub-vectors as before. Each sub-vector is
searched within the hash table for its partition using value
r = b r

mc. The number of lookups performed for each hash
table is computed on-the-fly using l, m, and r. Here l is the
dimension of query vector, m is the number of partitions,
and r is the search radius for the original query. Results
obtained from m partitions are combined and checked for
correctness to answer the original query. Finding a good
value for m is central to the efficiency of multi-index hashing
with non-overlapping subvectors. When the value of m is too
large or too small the approach will not be effective. For [22]
m = log2(|D|) yields a near-optimal search cost. Here |D|
is the size of the vector. [22] is the current best scheme for
dynamic r-NSP (and k-nearest-neighbours), and we show
the our method outperforms [22] on dynamic r-NSP.

III. r-NSP USING TRIE AND HASH TABLE

In the interest of keeping our discussions on point, we
assume that the reader is familiar with 1) binary vectors
and 2) common operations, such as prefix, suffix, etc., on
these vectors. We begin our discussions by formalizing null
r-variations and the trie data structure.

Definition 2. Given a set of binary vectors D ⊆ 2l, a binary
vector q ∈ 2l and a value r ∈ Z+, all vectors x ∈ Q(q, r) \
Nr(D, q) are called null variations. l is the length of binary
vector.

A. Bitwise Trie

A trie is a tree data structure where all the descendants
of a node have a common prefix stored at that node. The
root node stores the empty string) [9]. So nodes at level
i represent the set of all vectors that begin with the same
prefix of length i, and branching at node i is determined by
i+1 character of the string. Trie data structure storing binary
vectors is commonly referred to bitwise trie (see Fig. 2
(left)). For bitwise trie, each node has two children, since
i+ 1 character of a binary string can only take one of two
possible values.

Definition 3. Given D ⊂ 2l. A bitwise trie of D denoted as
TD is defined as follow:
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Figure 3.1: Bitwise trie for D = { 01010000, 00010000, 00011100, 00011101, 00000110,
00000100, 00000000 }

each subtree. Formally |p(V (n))| = |p(V (left(n)))| + 1 = |p(V (right(n)))| + 1.

Nodes with the two children equal to the empty set are called leaf nodes. Nodes with at

least one non-empty child are called tree nodes.

The root node corresponds to the whole set D. Each tree node corresponds to the

Chapter 3. r-Neighbors Query Processing Using Hybrid Index Structures 29

splitPos=1

splitPos=3

splitPos=5

00000000

0

splitPos=6

00000100

0

00000110

1

1

0

splitPos=4

00010000

0

splitPos=7

00011100

0

00011101

1

1

1

0

01010000

1

Figure 3.3: Compressed bitwise trie for D = { 01010000, 00010000, 00011100, 00011101,
00000110, 00000100, 00000000 }

{x 2 V (n) : x[|p(V (n))|] = 1}.

Figure 3.3 shows an example of the compressed bitwise trie.

Algorithm 3.3 can be revised to proces r-neighbors queries using a compressed bitwise

trie (see Algorithm 3.4).

In a compressed trie, a pair of parent-child nodes could represent a compression of

several nodes in the trie that has only one child. It is obvious that the only bits with

two options to explore when searching for r-variations are those at the split position,

but the query vector could have different bit values of those bit that has only one child.

For example, if the common prefix of a node is 01, and the query is 111, when the

split position of that node is 2, the first value of the query (0) differs from the prefix.

Algorithm 3.4 uses a lazy evaluation strategy since it does not verify that all bits of the

Figure 2. Bitwise trie (left) and compressed bitwise trie (right) for
D={01010000, 00010000, 00011100, 00011101, 00000110, 00000100,
00000000}.

i) All nodes n ∈ TD represent a subset of vectors of D
denoted as V (n) that share a common prefix p(V (n)).

ii) All node n ∈ TD is divided in two subtree named
left(n) and right(n) (see Fig. 2 (left)):
• The left subtree represents a subset of the vectors

associated with n that has a bit equal zero in
the position after the common prefix. Formally
V (left(n)) = {x ∈ V (n) : x[|p(V (n))|] = 0}.

• The right subtree represents a subset of the vectors
associated with n that has a bit equal one in
the position after the common prefix. Formally
V (right(n)) = {x ∈ V (n) : x[|p(V (n))|] = 1}.

iii) For all nodes n, the length of its prefix is one bit less
than the length of the prefix of each subtree. Formally
|p(V (n))| = |p(V (left(n)))|+1 = |p(V (right(n)))|+
1.

Nodes without any children are called leaf nodes. Nodes
with at least one child are called tree nodes.

The root node corresponds to the whole set D. Each tree
node corresponds to the common prefix of its leaf nodes.
Furthermore, the common prefix of a child is strictly longer
than that of its parent. Thus, the length of the trie built from
D ⊂ 2l must be at most (exactly) l.

B. r-NSP Queries Using Trie

Our method is motivated by the observation that, given a
query vector, it is possible to identify its r-neighbours in the
set of vectors stored in a bitwise trie. We can traverse the trie
searching for r-variations as follows. At every node we are
going to visit both children keeping track of the Hamming
distance of the maximum common prefix of the visited node
with the query vector. However, since one of the two children
of an internal node can be empty, no non-null r-variation can
be generated from that child. Any leaf that is reached during
this traversal is an r-variation (of the query vector) that also
exists in the set D. Note that this process effectively prunes



Algorithm 1 r-neighbours search using a trie
1: procedure RANGEQUERY(TD,q, r)
2: if TD = ∅ then
3: return ∅
4: return RQA(root(TD), 0,q, r)

5:
6: procedure RQA(node, i,q, r)
7: if node = NIL or r < 0 then
8: return ∅
9: if isLeaf(node) then

10: return {q}
11: else
12: if q[i] = 0 then
13: vLeft = RQA(left(node), i+ 1,q, r)
14: vRight = RQA(right(node), i+1,q, r− 1)
15: else
16: vRight = RQA(right(node), i+ 1,q, r)
17: vLeft = RQA(left(node), i+ 1,q, r − 1)

18: return vLeft ∪ vRight

all null variations. Algorithm 1 shows the pseudo-code for
generating all non-null r-variations of q given TD:

Lemma 1. Algorithm 1 does not generate null variations.

Proof: Since Algorithm 1 only returns vectors when a
leaf node is reached (line 10), all r-variations returned by
this algorithm are in D.

1) Compressed Bitwise Trie: It is possible to store set D
in a trie more efficiently by using compressed bitwise trie
that was first proposed by Coffman and Eve in [8]. Here
internal nodes that only have one child are merged with
their parents (Fig. 2 (right)).

Definition 4. Given D ⊂ 2l. A compressed bitwise trie of
D denoted as CTD is defined as follow:

i All nodes n ∈ CTD represent a subset of vectors of D
denoted as V (n) that share a common prefix p(V (n)).
The value |p(V (n))| is called split position (splitPos).

ii When the split position of a node is l, it is a leaf node,
otherwise it is an internal node.

iii All internal nodes N ∈ CTD have two subtree named
left(N) and right(N).

• The left subtree represents some subset of the vectors
associated with n that has a bit equal to zero
in the position after the common prefix. Formally
V (left(n)) = {x ∈ V (n) : x[|p(V (n))|] = 0}.

• The right subtree represents a subset of the vectors
associated with n that has a bit equal to one
in the position after the common prefix. Formally
V (right(n)) = {x ∈ V (n) : x[|p(V (n))|] = 1}.

Figure 3. This image shows the nodes traversed when r > 0 (in red) and
when r = 0 in blue on a trie of 1 million 64-bit vectors searched with
r = 2. This suggests that a mechanism to avoid traversal when r = 0 will
lead to significant performance gain by avoiding traversing all blue paths.

Algorithm 2 r-neighbours search using a compressed bit-
wise trie

1: procedure RANGEQUERY(CTD,q, r)
2: if TD = ∅ then
3: return ∅
4: return RQA(root(CTD),q, r)

5: procedure RQA(node, i,q, r)
6: if node = NIL or r < 0 then
7: return ∅
8: if isLeaf(node) then
9: return {q}

10: r = r −H(q[: splitPos(node)], p(V (node)))
11: q = p(V (node))‖q[splitPos(node) :]
12:
13: if q[splitPos(node)] = 0 then
14: vLeft = RQA(left(node),q, r)
15: q[splitPos(node)] = 1
16: vRight = RQA(right(node),q, r − 1)
17: else
18: vRight = RQA(right(node),q, r)
19: q[splitPos(node)] = 0
20: vLeft = RQA(left(node),q, r − 1)

21: return vLeft ∪ vRight

C. r-NSP Using Hybrid Index

While bitwise trie offers superior pruning of null vari-
ations, we noticed that using trie alone for r-NSP does
not achieve acceptable performance. This is due to the
processing overhead of traversing a trie to generate non-null
r-variations as compared to, say MIH [22], which generates
all r-variations and checks them against the hash table. The
good news is that it is possible to combine trie with hash
table to improve null variations pruning, such that the r-NSP
query performance of combined hybrid (trie + hash table)
index is better than methods using only trie or hash table.
We observe that it is possible to stop trie traversal early (i.e.,
before reaching a leaf node) by matching the current node



with the hash table. Fig. 3 highlights this observation. Paths
shown in red refer to trie traversals when r > 0; where
as, paths shown in blue refer to trie traversals after r has
reached 0. Notice that there are far fewer red paths than
there are blue paths. We can get large savings by avoiding
going down the blue paths.

We have developed a novel strategy that uses a hash
table to avoid subsequent traversals when r = 0 is reached.
This results in a substantial reduction in the number of
nodes explored during candidate r-variations generation.
The proposed scheme stores the collection of binary vectors
in both a trie and a hash table. Given a query vector, trie
data structure is used to generate the candidate r-variations.
This is accomplished by traversing the trie. During traversal,
when r reaches 0, the current candidate is looked up in
the hash table; we refer to it as the membership check.
This determines in constant time if the current r-variation
candidate is in the collection. No further traversals are
needed below this node. Choosing hash table lookup at r = 0
is simply a design decision. It is indeed possible to extend
the idea of using hash table for membership checks to r > 0;
however, we would like to remind the reader the exponential
growth of membership checks for values of r greater than
0 (see Eq. 1). Thus choosing r > 0 may result in little or
no performance gain. We leave an in depth study of this
phenomenon for a later date.

The hybrid index structure consists of a hash table HT
and a compressed bitwise trie CT . All elements of D will be
inserted in both structures. Algorithm 3 shows the pseudo-
code to query the hybrid index. We direct readers attention
to the fact that the only difference between Algorithm 2
and Algorithm 3 is that the latter terminates recursion early
(lines 13 and 14), thereby avoids exploring the blue paths
(Fig. 3).

D. Multi (Hybrid) Index

The hybrid index structure is proposed as a replacement
of a pure hash table index. However, for high-dimensional
vectors (i.e., large l) and large radius r, the current best
approach is MIH proposed by Norouzi et al. [22]. We
appropriate MIH method for our purposes by replacing hash
table indexes with our hybrid indexes. Everything else stays
the same.

The multi hybrid index approach that uses our proposed
hybrid index structure is as follows. Given D ∈ 2l and m ∈
[1, l):

1) vectors v of D are partitioned into m non-overlapping
sub-vectors v1,v2, . . .vm of size b l

mc or d l
me such as∑m

i=1 |vi| = l.
2) m hybrid indexes, denoted as HI1, HI2, . . . HIm, are

created. Each hybrid index will store sub-vectors from
the corresponding partition, i.e., all v1’s are indexed in
HI1, all v2’s are indexed in HI2, and so on.

Algorithm 3 r-neighbours search using hybrid index
1: procedure RANGEQUERY(HTD, CTD,q, r)
2: if TD = ∅ then
3: return ∅
4: v = RQA(root(CTD),q, r)
5: Result = ∅
6: for all v ∈ v do
7: if v ∈ HTD then
8: Result = Result ∪ {v}
9: return Result

10: procedure RQA(node, i,q, r)
11: if node = NIL or r < 0 then
12: return ∅
13: if isLeaf(node) or r = 0 then
14: return {q}
15: vAtNode = ∅
16: if H(q[: splitPos(node)], p(V (node))) > 0 then
17: r = r −H(q[: splitPos(node)], p(V (node)))
18: q = p(V (node))‖q[splitPos(node) :])

19: if q[splitPos(node)] = 0 then
20: vLeft = RQA(left(node),q, r)
21: q[splitPos(node)] = 1
22: vRight = RQA(right(node),q, r − 1)
23: else
24: vRight = RQA(right(node),q, r)
25: q[splitPos(node)] = 0
26: vLeft = RQA(left(node),q, r − 1)

27: return vLeft ∪ vRight

During search, the query vector q is also partitioned into
m sub-vectors as before, i.e., q will be divided into
q1,q2, . . .qm sub-vectors. Next, each query sub-vector is
matched in the corresponding hybrid index using radius r′,
where r′ = b r

mc. In other words, qi is searched in HIi
using r′. The results obtained from each index are then
combined to see if the corresponding vector in D is at most
at Hamming distance r of the the query q. We refer to reader
to [22] for more details about how this is accomplished.

IV. EXPERIMENTAL EVALUATION

As stated previously, MIH is the current best scheme for
r-NSP [22]. Therefore, we compare our method with MIH.
MIH implementation is available to the research commu-
nity, and we have used their implementation to generate
performance results for their approach. We also added our
compressed trie into their system to implement our MI-Trie
and MI-Hybrid methods. MI-Trie and MI-Hybrid replace
hash table index used in MIH scheme with our MI-Trie and
hybrid (compressed trie + hash table) index, respectively.
We will compare four methods: 1) linear scan; 2) MIH [22];
3) MI-Trie; and 4) MI-Hybrid. Similar to MIH, MI-Trie and
MI-Hybrid methods partition the vectors into m sub-vectors.



Experiments are performed on a workstation with a 2.9
GHz quad-core Intel Xeon processor, 20 MB of L2 cache,
and 64 GB of RAM. It is worth noting that large L2 cache
significantly improves the performance of linear scan [22].
For our experiments, we only used a single core to simplify
runtimes measurements. The runtimes reported in this work
are the result of five runs of the algorithm in exactly the same
conditions. The datasets used for evaluation are uniformly-
distributed randomly-generated vectors.

We realize that MIH technique developed in [22] provides
a mechanism for selecting an “optimal” value for m given
the dataset. Our method also benefits from this value of
m. The results shown here suggest that our method MI-
Hybrid outperforms MIH even for optimal values of m.
The results also suggest that our method performs slightly
worse than MIH when trie is full. We discuss below that trie
is almost never full when dealing with high dimensional
vectors, suggesting that our method will outperform MIH
when dealing with such vectors.

A. Hash Table Lookups

Since the goal of our hybrid approach is to improve
runtime by reducing the number of hash table lookups that
need to be performed, we compare both methods on the
number of hash table lookups performed. MIH uses the naı̈ve
approach to compute all r-variations, and the total number of
lookups that it will perform can be computed using Eq. 1 for
every block (parameter m). MI-Hybrid, however, skips null
r-variations, reducing the number of lookups to perform.

Fig. 4 (left) plots the number of hash table lookups for
MIH and MI-Hybrid methods for a dataset of one million
128-bits vectors for m = 4. Each index, therefore, stores
32-bit sub-vectors. Notice that hash table lookups for our
method (MI-Hybrid) is significantly lower than those for
MIH. Furthermore, the difference in the number of lookups
increases sharply as r increases. Clearly, MI-Hybrid method
is effectively pruning null null r-variations.

Fig. 4 (middle) repeats the experiment with 6 indexes.
m = 6 is the theoretical “best” value for this scenario as
determined by MIH [22]. Again, observe the hash table
lookups savings obtained by our method (MI-Hybrid) over
MIH. This time, however, the savings obtained are not as
good as those obtained in the previous case (m = 4). For
m = 6, each index is storing 21-bit sub-vectors. The total
number of 21-bit vectors is 221, which is ≈ 106. We are
storing 1 million vectors, so trie corresponding to each index
is nearly full. When trie is full, it looses its ability to prune
null r-variations. Still even in this case, our method (MI-
Hybrid) performs far fewer lookups than MIH.

Fig. 4 (right) is designed to showcase what happens when
trie is “full.” Here we index 1 million 64-bit vectors using 4
indexes, i.e., m = 4. Each index here stores 16-bit vectors.
The total number of 64-bit vectors is approximately 64000
(� 1 million). So the trie is full. In this case the number of

lookups for both methods—ours and MIH—is exactly the
same. The trie offers no advantage. This suggests that it is
important to pick m carefully. Large values for m will result
in a dense trie. The performance for MIH also depends upon
m. It turns out that performance of both MI-Hybrid and MIH
decreases if m is too small or too large.

B. Runtime Comparison

The above results compare the number of hash table
lookups for our method MI-Hybrid and MIH. We observe
that when trie is not full, our method generates far fewer
hash table lookups. Here, we explore if this reduction in
lookups results in improved runtimes.

Fig. 5 (left) shows a comparison of the runtimes on 1000
queries for the linear scan method (that serves as baseline),
the MIH scheme [22], and our methods MI-Trie and MI-
Hybrid. The linear scan method does not depend on the
radius r, while MIH, MI-Trie, and MI-Hybrid methods
depend upon r. Specifically, the processing times for all
three increase sharply for increasing r. This behaviour is to
be expected. As can be seen, MI-Hybrid outperforms other
methods (Linear scan, MIH, and MI-Trie) by a significant
margin for large values of r. Note also that MIH performs
worse than linear scan for r > 20; granted that m = 4 used
here is not the optimal value of m for MIH.

Fig. 5 (middle) shows a comparison of the runtimes on
1000 queries for MIH, MI-Trie, and MI-Trie+MIH methods.
Here we use m = 6, which is the recommended value of m
as determined by MIH. MIH in this case performs better than
linear scan (not shown here, but indicated by the red line
in the left-hand plot) and MI-Trie. MI-Trie+MIH, however,
again outperforms MIH by a significant margin for large
values of r. For r = 20, MI-Hybrid is twice as fast as MIH.

Fig. 5 (right) shows the case when trie is full. In this case
64-bit vectors are partitioned into 4 16-bit sub-vectors. Here
MIH outperforms MI-Trie and MI-Trie+MIH methods. This
is to be expected. We designed this test to get a full trie. We
know that our method performs worse than MIH (the current
best method) when trie is full. The good news is that this is
a somewhat contrived example, since trie is almost always
highly sparse for high dimensional vectors (see discussion
below).

C. How Likely is Sparse Trie

These results demonstrate two things: 1) the number of
lookups for our method MI-Hybrid when trie is sparse is
significantly less than MIH and 2) the far fewer number of
lookups is closely tied to the overall runtime performance.
Specifically, when trie is sparse our method MI-Hybrid
significantly outperforms MIH, which is the current best
method. This confirms our hypothesis that it is possible to
decrease runtimes by decreasing the number of lookups. The
question then is, how likely is it to get a sparse trie for real
world dataset. Since the savings in the number of lookups



Figure 4. Number of hash table lookups for MIH and our hybrid approach (MI-Hybrid) for a database of 1 million 128-bit vectors (left and middle) and
64-bit vectors (right). The number of lookups is an average over 1000 queries. (Left) m = 4 and each index stores 32-bit vectors. (Middle) m = 6 and
each index stores 21-bit vectors. (Right) m = 4 and each index stores 64-bit vectors.

Figure 5. Runtimes comparison of Linear scan, MIH, MI-Trie, and our hybrid approach (MI-Hybrid) for a database of 1 million 128-bit (left and middle)
or 64-bit (right) vectors using 1000 queries. (Left) m = 4 and every index manages 32-bits. (Middle) m = 6 and every index manages 21-bit vectors.
m = 6 is the recommended value of m for MIH. (Right) m = 4 and this plot shows the performance when trie is full. Linear scan runtimes shown on
the left (red) apply to all three plots; linear scan runtimes depend only upon the size of the database.

are tied to the degree of sparseness of the trie. Generally
speaking, a trie that stores high-dimensional vectors is much
more likely to be sparse. Lets do a thought experiment. Say,
we need to store 512-bit vectors using a multi-index method.
For 512-bit vectors, according to MIH, the optimal value
for m is 9. This suggests that we should use 9 indexes,
each of which will be storing 56-bit sub-vectors constructed
from the original 512-bit sub-vectors. If using trie, we would
need more than 1016 vectors to get a full trie. We conclude
that for high dimensional vectors, getting a full trie is
extremely unlikely. Consequently, our method (MI-Hybrid)
will outperform MIH for high-dimensional vectors.

V. CONCLUSION

We propose a novel solution to dynamic r-NSP. We
have developed a hybrid data structure for indexing binary
vectors, plus the associated query processing machinery. The
data structure combines a compressed bitwise trie and a hash
table to index the dataset and the query algorithm seam-
lessly uses both—hash table and trie—during r-neighbours
searches. The proposed data structure exhibits both lookup
efficiency and local searchibility, and it achieves better
performance than if using hash table or trie alone. Our
method is able to efficiently prune null r-variations of the
query vector, which results in far fewer hash table lookups,

translating in better performance and reduced runtimes.
MIH scheme that appeared in [22] is the current best

approach for dynamic r-NSP, and its close variant the k-
nearest-neighbours search problem. We observe that MIH
cannot effectively deal with high-dimensional vectors due
to exponential growth in r-variations for large l and r,
where l is the length of the vector and r is the radius
used for r-NSP. This is true even though MIH partitions
incoming l-bit vectors into log2 l sub-vectors. MIH uses hash
table as index, and it is unable to exploit local searchibility
to prune null r-variations. We too partition the incoming
query vector into sub-vectors; however, we store these sub-
vectors into our hybrid (hash table + compressed bitwise trie)
index. Our hybrid index outperforms hash table when trie is
sparse. Furthermore, the difference in performance of our
hybrid index and the hash table increases dramatically with
increasing l, since the degree of sparseness of trie increases
with l.

We devised 6 tests to study the performance of our method
and show that for sparse trie, our method can result in
substantial performance increase for large r. We also show
that our method achieves similar performance to MIH when
trie is full, albeit on a somewhat contrived example. This
is so because trie is almost never full. Actually, for high-
dimensional vectors, a trie is much more likely to be highly



sparse. Consequently, we safely conclude that our approach
(MI-Hybrid) achieves state-of-the-art performance for real
world datasets.

It is obvious that high-dimensional vectors result in a
sparse trie. However, it is possible that the distribution of
the data also effects the performance of our method. We
suspect that the effect of data distribution on the performance
of ours (MI-Hybrid), and on MIH, will be minimal. We plan
to investigate it in detail in the future.

This work addresses dynamic r-NSP; where as, MIH also
works for k-nearest-neighbours problem. We can as easily
adapt our index to solve for k-nearest-neighbours problem
through successive expansion on r. This is, however, a
trivial solution. We want to explore if local searcibility
provided by our hybrid index can be exploited to answer
k-nearest-neighbours queries more efficiently. Currently all
index structures exist in main memory, thus the dataset
is limited by the size of the physical memory available
to the algorithm. We would like to investigate the issues
and solutions of designing disk based index structures. We
foresee that there are some interesting issues associated
with merging our Hybrid index with well-known disk based
hashing using B+ tree.
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