
Automatic Parsing of Lane and Road Boundaries in Challenging
Traffic Scenes

Mohamed A. Helala, Faisal Z. Qureshi, Ken Q. Pu
University Of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario,
Canada, L1H 7K4

Abstract.
Automatic detection of road boundaries in traffic surveillance imagery can greatly help subsequent traffic analysis

tasks, such as vehicle flow, erratic driving, stranded vehicles, etc. This paper develops an online technique for identify-
ing the dominant road boundary in video sequences captured by traffic cameras under challenging environmental and
lighting conditions, e.g., unlit highways captured at night. The proposed method works at real-time of upto 20 frames
per second, and generates a ranked list of road regions that identify road and lane boundaries. Our method begins
by segmenting each frame into a set of superpixels. An adaptive sampling step approximates superpixel contours to
a collection of edge segments. Next, we show how online hierarchical clustering can be efficiently used to organize
edges into clusters of co-linearly similar sets. Promising clusters are paired with each other to form cluster pairs.
Then, we present and prove a statistical ranking measure that is used along with road-activity and perspective cues to
find the dominant road boundaries. We evaluate the proposed approach on two real world datasets to test our method
under camera viewpoint changes and extreme environmental and lighting conditions. Results show that our method
outperforms two state-of-the-art techniques in precision, recall and runtime.

Keywords: Traffic Video Analysis, Video Surveillance, Hierarchical Clustering, Statistical Ranking, Superpixel Seg-
mentation, Road and Lane Detection..

Address all correspondence to: Mohamed A. Helala, University Of Ontario Institute of Technology, Faculty of
Science, 2000 Simcoe Street North, Oshawa, Ontario, Canada, L1H 7K4; Tel: +1 905-721-8668 ext: 2387; Fax: +1
905-721-3304; E-mail: mohamed.helala@uoit.ca

1 Introduction

Roadway traffic surveillance cameras play a major role in modern traffic management systems [1,
2]. Imagery captured by traffic cameras can be used, among other things, for traffic flow monitoring
and analysis, detecting and responding to traffic accidents, automatic highway toll billing, etc.
Increasingly, videos recorded by traffic cameras are available in real-time to the general public on
their hand-held devices, such as smart phones. TrafficLand∗ website, for example, provides live
streams of over 18 thousand traffic cameras from more than 200 North American cities. Access
to live feeds from traffic cameras enable commuters to pick an alternate route, say to avoid traffic
congestion. It is then not surprising that traffic cameras are being installed in increasing numbers on
roads and highways in and around big urban centers. We can only conclude that the trend for using
traffic cameras to monitor roads and highways will continue and that the number of traffic cameras
will continue to increase. Corollary to this statement is that the data collected by smart cameras
will also experience unprecedented growth. Using humans to monitor the video data collected
by these cameras is prohibitively costly, and we need automated techniques for consuming and
analyzing this data.

This work focuses on the task of road boundary detection in traffic cameras. The ability to iden-
tify road regions simplifies subsequent traffic analysis tasks. Traffic cameras are typically mounted

∗TrafficLand: http://www.trafficland.com/ (last accessed on 10 May 2015).

1

Fig 1: Challenging environmental conditions encountered by traffic surveillance cameras.

on polls along the highways. These cameras are almost never calibrated, since it is tedious and ex-
tremely costly to maintain the calibration over the course of the lifetime of a traffic camera. These
are also often pan/tilt/zoom cameras, which allows an operator to change the viewing direction of
a camera if needed. Therefore, it is desirable to have a road boundary detection algorithm that
requires minimal human intervention. Traffic cameras are mounted outdoors and images captured
by these cameras exhibit a wide variety of lighting and environmental conditions. For example,
these cameras can experience significant sway under strong winds, rendering classical background
subtraction infeasible. Roads are barely visible at nighttime or during weather conditions, such as
snow, fog, and heavy rain, that can lead to low-visibility. Strong sunlight can give rise to strong,
exaggerated shadows. Wet roads when illuminated by vehicle headlights give rise to strong specu-
lar reflections. Figure 1 shows a collection of images gathered from traffic cameras mounted along
highway 401 in Ontario, Canada. The road detection method presented here is designed to deal
with the large environmental and lighting conditions observed in traffic cameras.

Broadly speaking, the existing methods for road and lane detection can be classified into three
categories: (1) activity-driven [3, 4]; (2) feature-driven [5, 6, 7]; and (3) model-driven [8, 9, 10].
The activity-driven approaches divide the traffic scene into active (road) and inactive (non-road)
regions and construct an activity map based on the observed vehicular motion in the scene. The
feature-driven approaches extract image features and organize them into meaningful structures to
detect road and lane boundaries. The model-driven approaches casts road detection as a classifi-
cation task or as model fitting. [10], for example, uses convolutional neural network to classify
image regions into road and non-road sections. Given a traffic image, this technique generates a
confidence map that assigns each pixel a likelihood of belonging to road regions. [8, 9], on the

2

Fig 1: Challenging environmental conditions encountered by traffic surveillance cameras.

on polls along the highways. These cameras are almost never calibrated, since it is tedious and ex-
tremely costly to maintain the calibration over the course of the lifetime of a traffic camera. These
are also often pan/tilt/zoom cameras, which allows an operator to change the viewing direction of
a camera if needed. Therefore, it is desirable to have a road boundary detection algorithm that
requires minimal human intervention. Traffic cameras are mounted outdoors and images captured
by these cameras exhibit a wide variety of lighting and environmental conditions. For example,
these cameras can experience significant sway under strong winds, rendering classical background
subtraction infeasible. Roads are barely visible at nighttime or during weather conditions, such as
snow, fog, and heavy rain, that can lead to low-visibility. Strong sunlight can give rise to strong,
exaggerated shadows. Wet roads when illuminated by vehicle headlights give rise to strong specu-
lar reflections. Figure 1 shows a collection of images gathered from traffic cameras mounted along
highway 401 in Ontario, Canada. The road detection method presented here is designed to deal
with the large environmental and lighting conditions observed in traffic cameras.

Broadly speaking, the existing methods for road and lane detection can be classified into three
categories: (1) activity-driven [3, 4]; (2) feature-driven [5, 6, 7]; and (3) model-driven [8, 9, 10].
The activity-driven approaches divide the traffic scene into active (road) and inactive (non-road)
regions and construct an activity map based on the observed vehicular motion in the scene. The
feature-driven approaches extract image features and organize them into meaningful structures to
detect road and lane boundaries. The model-driven approaches casts road detection as a classifi-
cation task or as model fitting. [10], for example, uses convolutional neural network to classify
image regions into road and non-road sections. Given a traffic image, this technique generates a
confidence map that assigns each pixel a likelihood of belonging to road regions. [8, 9], on the

2

other hand, attempt to fit a geometric road model to the traffic scene to identify road regions.
This paper focuses on the automatic detection of dominant road boundaries in videos collected

by traffic cameras. For our purposes, dominant road boundary divide the image into road and
non-road regions. Dominant road boundary is particularly suited for highway traffic cameras. The
detected regions can be used to support more efficient higher-level analysis—such as examining
traffic flows, detecting erratic driving behavior, identifying stranded vehicles, etc.—since subse-
quent analysis can focus only on road regions. The proposed approach works as follows. First, it
collects low-level edge-like features from a sequence of images (feature-driven). These features
are then clustered using hierarchical clustering. Each cluster represents a potential road boundary.
We model road boundaries as straight lines (model-driven). The clusters are then ranked using χ2

and Student t statistical measures. The top-ranked clusters are combined to form road boundary
pairs. Each pair is then ranked using vehicle activity (activity-driven) and perspective cues. The
top ranked pair is chosen as the dominant road boundary.

The method outlined herein extends our work in [11]. Unlike [11], the current method uses
online hierarchical clustering. Online hierarchical clustering allows our method to maintain domi-
nant road boundary even as traffic cameras are re-positioned or their view directions are changed.
Previously, one had to reinitialize the system once the cameras are moved. We attempted to address
this problem by re-initializing the system every 25 frames, where the number 25 was chosen by
trial and error. The system needed to regenerate a new cluster hierarchy every 25 frames, which re-
sulted in a performance hit. In contrast to our previous work, here we use ClusTree [12], an online
top-down hierarchical clustering algorithm, which maintains (approximate bottom-up) hierarchical
clustering (tree) over a sliding window; new evidence is added to the tree and the stale informa-
tion is removed from it. This not only results in significant speed up over our previous method
that did not use online hierarchical clustering. It also enables our system to adaptively maintain
road boundaries as cameras are moved. Live vision systems, such as a traffic surveillance setup,
that continuously process incoming imagery are an instance of vision stream processing pipelines.
Within the context of (visual) stream processing [13], hierarchical clustering used in [11] acts as
a blocking operator. Blocking operators adversely effect the runtime performance and scalability
of stream processing; therefore, blocking operators are undesirable in live systems. The online
hierarchical clustering algorithm used here, on the other hand, is a non-blocking operation. This is
indeed the primary motivation for using online hierarchical clustering for our purposes. The results
bear that the current system outperforms several state-of-the-art systems, including our prior work,
on two challenging datasets.

We evaluate the proposed method on two real-world datasets collected from the highway 401
traffic cameras. The first dataset comprises 14 traffic videos exhibiting a variety of environmental
and lighting conditions. Each video consists of 25 low-resolution daytime and 25 low-resolution
nighttime images. This dataset was also used in [11]. The second dataset consists of 1627 frames
long traffic video, showing camera viewing direction switching. We compare our approach against
three other schemes: Gabor filter based method that appeared in [7]; a recent approach that uses
convolutional neural networks [10]; and the last iteration of our method [11]. Our method out-
performs both Gabor filter approach and convoluational neural networks approach in terms of
accuracy and runtime. Plus, the current method is roughly 800 times faster than our previous work
in [11].

The contributions of this paper are fourfold. First, we present a novel online method for parsing
challenging traffic scenes into the dominant road boundaries. The method locates roads under

3

low-visibility and difficult lighting conditions. Second, our method can process low-resolution
(320 × 240) videos at rates of upto 20 frames per second on 2.9 GHz quad-core AMD Athlon
processor. This makes it useful for processing live video streams and handling the bandwidth
limits of large camera networks. Our method is able to maintain road boundary even when the
cameras are re-positioned or their viewings direction changed. Finally, we develop a statistical
measure for ranking the road edge clusters that eschews prior knowledge or any heuristics. We
believe that this statistical measure may prove useful for ranking clusters in other situations as
well.

2 Related Work

As stated earlier, the techniques of lane and road detection can be broadly classified into three cat-
egories: (1) activity-driven, (2) feature-driven and (3) model-driven. Here, we briefly summarize
the techniques of each category that are relevant to our method. For a detailed survey, we refer the
reader to [1, 14].

Activity-driven Methods: The activity-driven techniques [3, 4, 15] use vehicle motion to build
an activity map for the traffic scene, and divides the road region into active (road) and inactive
(non-road) regions. The work of Stewart et al. [3] developed one of the earliest activity-driven
methods. Their method accumulates an activity map that records scene changes resulting from
vehicle motion. Then, the traffic scene is divided into either active or inactive areas. Melo et al. [4]
builds on the idea of [3] and develops a method that incorporates the Kalman filter to track moving
vehicles. Then, they model the resulting motion trajectories using second degree polynomials, and
apply K-means clustering to calculate lane centers. Recently, Chen et al. [15] extends the work
of [4] by developing a trajectory similarity distance to improve clustering.

Feature-driven Methods: The feature-driven methods [5, 6, 7] rely on low level image fea-
tures such as colors and textures to detect the lane and road boundaries. The work of Aly [6]
developed a method for detecting lane marks in urban roads. His method applies Lane Analysis
using Selective Regions (LASeR), which requires camera calibration and uses inverse perspective
mapping to construct a top-view of the road. Next, the algorithm applies image filtering and thresh-
olding to extract lane features. Finally, the RANSAC algorithm is used to ignore feature outliers
and fit Bezier Splines to lane boundaries. Satzoda et al. [5] proposed a similar method to [6] for
detecting lanes. However, their work processes selected image bands and applies steerable filters to
extract lane features. They also uses a lane geometric model to deal with feature outliers. Kong et
al. [7] developed an alternative method that divides the road detection problem into two task: 1)
estimation of the road vanishing point, 2) segmentation of the road region based on the estimated
vanishing point. The estimation task applies Gabor filters to extract texture orientations, and feeds
them into a soft voting scheme to estimate the vanishing point. Then, the segmentation task uses
the detected vanishing point as a constraint to identify the dominant road boundary.

Model-driven Methods: The model-driven methods [8, 9, 10, 16] performs either road clas-
sification or model fitting. Road classification aims to learn a prior model for road regions, which
is used later to assign each pixel, a likelihood of belonging to road regions. For example, Brust et
al. [10] presented an algorithm that uses convolutional neural networks to classify image patches
of belonging to either road or non-road regions. The algorithm learns a prior model that incorpo-
rates both spatial and appearance information of image patches belonging to road regions. Then,
the neural network generates a classification map that assigns the likelihood of each pixel. Model

4

Algorithm 1 Overview of the propose algorithm for finding top-K dominant road and lane regions.
input: Image sequence
output: Dominant road boundary, K

1: Divide each image into homogeneous regions through superpixel segmentation.
2: Approximate each superpixel contour with polygons to get edges.
3: Perform online hierarchical clustering on these edges.
4: Use statistical measures (χ2 and Student-t test) to identify the top-ranked clusters, each cluster

represents a road boundary in the image.
5: Construct top-ranked cluster pairs through perspective filtering and road-activity analysis.
6: Return the top-K ranked cluster pairs as the dominant lane and road boundaries.

fitting methods [8, 9, 16], on the other hand, match a geometric road model to the traffic scene.
The work of Wang et al. [9], for example, proposed a lane detection method based on B-Snakes.
This method applies edge detection on the input image and partition it into a number of horizontal
segments. Then, the algorithm assumes perspective parallel lane lines, and detects a set of control
points along the mid-line of the lane. These points are used to define an active contour model
based on B-Splines, and energy minimization is used to deform the contour to both left and right
to detect the lane boundary. Zhou et al. [8] proposed another lane geometrical model that has four
parameters, starting position, lane original orientation, lane width and lane curvature. Their algo-
rithm performs three stages: 1) off-line calibration to estimate the camera parameters, 2) model
parameters estimation to locate the lane width and dominant orientation, 3) model matching to
find the best lane model. Recently, the method of [16] extends the previous techniques by us-
ing geographical information to estimate several road priors. Then, it develops a road generative
model that combines the road priors with other contextual cues extracted from the traffic scene,
such as horizon lines, lane marks, and vanishing points. The generative model is used to construct
a confidence map that assigns each pixel, a likelihood of belonging to road regions.

3 Road Boundary Detection

The proposed technique consists of four steps: 1) line segment detection; 2) online hierarchical
clustering; 3) confidence assignment (cluster ranking); and 4) pairwise ranking. We discuss each
of these steps below.

3.1 Line Segment Detection

Edges are one of the fundamental features for identifying dominant road and lane boundaries in
traffic scenes. However, the appearance changes that result from various environmental, traffic and
lighting conditions usually make the output of edge detection techniques very noisy. This requires
several filtering steps that may need a priori knowledge about the road structure. Another problem
in standard edge detection techniques such as Canny edge detection is the tuning of threshold
parameters. Such tuning becomes difficult under appearance changes. Nevertheless, a further
analysis of traffic scenes shows that road regions usually span large areas of the scenes. So, if we
are able to extract a number of abstract regions from a traffic scene, the contours of these regions
will be attracted to some or all parts of the lane and road boundaries and form a good candidate set
of detected edges.

5

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig 2: Generating a hierarchy of superpixels by merging neighbouring regions based on the hue
component. (a) Original image. (b) Image after applying morphological open and close operations.
(c) The result of HSV color quantization. (d) Over-segmented Image. (e) No. of superpixels = 25.
(f) No. of superpixels = 50. (g) No. of superpixels = 100 and (h) No. of superpixels = 150.

3.1.1 Superpixel Segmentation

We found that superpixel segmentation can provide us with a good set of abstract regions. Super-
pixel segmentation, originally proposed by Ren and Malik, segments an image into a collection
of homogeneous regions where pixels belonging to each region share similar color and texture at-
tributes. Several approaches have been proposed to perform superpixel segmentation [17, 18, 19,
20]. However, these approaches are slow and do not attain the speeds required for traffic scene
analysis. Our target is to perform superpixel segmentation at near real-time and at the same time
maintain an adequate description for the superpixels. TurboPixels [21] was proposed as a fast
algorithm for superpixel segmentation, however, it requires a manual selection of seed points.

We use the superpixel segmentation method of [22], which can generate superpixels at a much
higher speed compared to TurboPixels. This technique relies on simple operations to form su-
perpixels and can be implemented in parallel to work at real-time rates. The method starts by
applying morphological operations on the input image, followed by Hue-Saturation-Value (HSV)
color quantization. Then, adjacent pixels that have similar color values are merged to form initial
regions. Neighbouring regions are next merged together based on the similarity of the hue color
component to form a hierarchy of superpixels.

Figure 2 shows an example of generating superpixels for a nighttime traffic scene. Figure 2b
shows the result of applying the morphological open and close operations on the input image. The
open operation smooths the contours, breaks narrow strips and removes tiny bumps visible in the
image. The close operation, on the other hand, fills gaps, removes small holes and completes
contours visible in the image. HSV color quantization (Figure 2c) is then applied by partitioning
the HSV color space into 16 ⇥ 8 ⇥ 8 bins and assigning each pixel, the color of its closest bin.
Figure 2d shows the construction of initial regions by merging neighbouring pixels having the
same color values. Finally, smaller regions are merged with adjacent regions of similar hue values
to form a hierarchy of superpixels.

6

Fig 2: Generating a hierarchy of superpixels by merging neighboring regions based on the hue
component. (a) Original image. (b) Image after applying morphological open and close operations.
(c) The result of HSV color quantization. (d) Over-segmented Image. (e) No. of superpixels = 25.
(f) No. of superpixels = 50. (g) No. of superpixels = 100 and (h) No. of superpixels = 150.

3.1.1 Superpixel Segmentation

We found that superpixel segmentation can provide us with a good set of abstract regions. Super-
pixel segmentation, originally proposed by Ren and Malik, segments an image into a collection
of homogeneous regions where pixels belonging to each region share similar color and texture at-
tributes. Several approaches have been proposed to perform superpixel segmentation [17, 18, 19,
20]. However, these approaches are slow and do not attain the speeds required for traffic scene
analysis. Our target is to perform superpixel segmentation at near real-time and at the same time
maintain an adequate description for the superpixels. TurboPixels [21] was proposed as a fast
algorithm for superpixel segmentation, however, it requires a manual selection of seed points.

We use the superpixel segmentation method of [22], which can generate superpixels at a much
higher speed compared to TurboPixels. This technique relies on simple operations to form su-
perpixels and can be implemented in parallel to work at real-time rates. The method starts by
applying morphological operations on the input image, followed by Hue-Saturation-Value (HSV)
color quantization. Then, adjacent pixels that have similar color values are merged to form initial
regions. Neighboring regions are next merged together based on the similarity of the hue color
component to form a hierarchy of superpixels.

Figure 2 shows an example of generating superpixels for a nighttime traffic scene. Figure 2b
shows the result of applying the morphological open and close operations on the input image. The
open operation smooths the contours, breaks narrow strips and removes tiny bumps visible in the
image. The close operation, on the other hand, fills gaps, removes small holes and completes
contours visible in the image. HSV color quantization (Figure 2c) is then applied by partitioning
the HSV color space into 16 × 8 × 8 bins and assigning each pixel, the color of its closest bin.
Figure 2d shows the construction of initial regions by merging neighboring pixels having the same
color values. Finally, smaller regions are merged with adjacent regions of similar hue values to
form a hierarchy of superpixels.

6

(a) (b) (c) (d)
Fig 3: Polygon approximation using adaptive sampling. (a) Approximated polygons for superpix-
els in Figure 2e. (b) Same image in (a) but showing edges that are more than 10 pixels in length.
(c) Showing a single superpixel from (a). (d) Edges more than 10 pixels for the superpixel in (c).

Algorithm 2 Approximate-Contour.
input: �, l, e
output: Straight Edges.

1: Set vl = �(l), ve = �(e), m = 1
2
(l + e), and vm = �(m).

2: If the curve’s tangents at vl, vm and ve are almost parallel Then,
Output the straight segment vlve.

3: Otherwise,
Approximate-Contour(�, l, m).
Approximate-Contour(�, m, e).

Figure 2e to 2h show the segmentation results by varying the number of superpixels from 25
to 150. Notice how the superpixel boundaries stick to the stable edges in the image even when
environmental, traffic and lighting conditions affect the size of these superpixels. Our method
exploits this characteristic of superpixel segmentation and uses it to collect edge information from
each input image.

3.1.2 Contour Approximation

Edges are computed by approximating the superpixel contours as 2D polygons. This approxima-
tion is performed using adaptive sampling [23], which is applied independently on the contour of
each superpixel. Let � : [0, 1] ! r2 be a parametric curve that represents a superpixel contour ly-
ing in 2D space. Adaptive sampling chooses n representative points 0 = t1 < t2 < · · · < tn = 1,
which defines the vertices v1 = �(t1), · · · , vn = �(tn) and best approximates the contour � while
keeping n as small as possible. Initially, each superpixel contour is sampled at two points, a start-
ing point vl = �(l) where l = 0 and an ending point ve = �(e) where e = 1. Then, Algorithm 2
is applied to generate an approximated polygon. This algorithm selects an intermediate point m
within the interval [l, e] and tests the co-linearity of the three points vl, vm and ve by evaluating
a flatness test. This test ensures that the curve tangents ��!vlvm and ��!vmve are almost parallel. If
the segment vlvmve is flat, it will be recorded in the output polygon. Otherwise, the algorithm is
recursively called on the intervals [l, m] and [m, e].

Adaptive sampling can sometimes lead to over-sampling, i.e.; a straight segment of the super-
pixel boundary is divided into much smaller segments. This is handled by deleting the intermediate
vertexes. Figure 3 shows an example of approximating the superpixel contours to polygons. Fig-

7

Fig 3: Polygon approximation using adaptive sampling. (a) Approximated polygons for superpix-
els in Figure 2e. (b) Same image in (a) but showing edges that are more than 10 pixels in length.
(c) Showing a single superpixel from (a). (d) Edges more than 10 pixels for the superpixel in (c).

Algorithm 2 Approximate-Contour.
input: γ, l, e
output: Straight Edges.

1: Set vl = γ(l), ve = γ(e), m = 1
2
(l + e), and vm = γ(m).

2: If the curve’s tangents at vl, vm and ve are almost parallel Then,
Output the straight segment vlve.

3: Otherwise,
Approximate-Contour(γ, l,m).
Approximate-Contour(γ,m, e).

Figure 2e to 2h show the segmentation results by varying the number of superpixels from 25
to 150. Notice how the superpixel boundaries stick to the stable edges in the image even when
environmental, traffic and lighting conditions affect the size of these superpixels. Our method
exploits this characteristic of superpixel segmentation and uses it to collect edge information from
each input image.

3.1.2 Contour Approximation

Edges are computed by approximating the superpixel contours as 2D polygons. This approxima-
tion is performed using adaptive sampling [23], which is applied independently on the contour of
each superpixel. Let γ : [0, 1] → r2 be a parametric curve that represents a superpixel contour ly-
ing in 2D space. Adaptive sampling chooses n representative points 0 = t1 < t2 < · · · < tn = 1,
which defines the vertices v1 = γ(t1), · · · , vn = γ(tn) and best approximates the contour γ while
keeping n as small as possible. Initially, each superpixel contour is sampled at two points, a start-
ing point vl = γ(l) where l = 0 and an ending point ve = γ(e) where e = 1. Then, Algorithm 2
is applied to generate an approximated polygon. This algorithm selects an intermediate point m
within the interval [l, e] and tests the co-linearity of the three points vl, vm and ve by evaluating
a flatness test. This test ensures that the curve tangents −−→vlvm and −−→vmve are almost parallel. If
the segment vlvmve is flat, it will be recorded in the output polygon. Otherwise, the algorithm is
recursively called on the intervals [l,m] and [m, e].

Adaptive sampling can sometimes lead to over-sampling, i.e.; a straight segment of the super-
pixel boundary is divided into much smaller segments. This is handled by deleting the intermediate
vertexes. Figure 3 shows an example of approximating the superpixel contours to polygons. Fig-
ure 3b shows the generated polygon segments that have a length of more than 10 pixels each.

7

(a) (b) (c) (d)
Fig 4: The line segments of four sibling clusters in an example clustering hierarchy tree. (a) Root
cluster. (b) and (c) Two clusters with large variance. (d) A cluster with small variance and large
number of segments which is a good candidate for representing the road boundary.

ure 3b shows the generated polygon segments that have a length of more than 10 pixels each.
Figures 3c and 3d zoom onto the contour of one superpixel and show how Algorithm 2 can gener-
ate promising edge segments.

3.2 Online Hierarchical Clustering

Our method accumulates a set of approximated line segments from a sequence of frames. Figure 4
presents an example of this set where several concentrations of co-linear segments are visible
along the road and lane boundaries. Therefore, finding a good candidate set of clusters that best
represents these co-linear segments can allow the algorithm to infer the dominant road boundaries.

In our previous work [11], we applied hierarchical agglomerative clustering with average link-
age to construct a hierarchical clustering tree for the accumulated set of segments. Each segment s
is represented in polar coordinates as a 2D vector (⇢, ✓). Let S = {si|i = 1 · · · n} be a set of line
segments for a given image sequence. This set is normalized to have zero mean and unit variance.
Then, hierarchical agglomerative clustering is initialized by assigning each segment si to a cluster
ci. Next, a cluster hierarchy is generated by recursively merging the closest pairs of clusters as one
moves up the hierarchy until we have only one root cluster.

As stated elsewhere, previously our method employed bottom-up hierarchical clustering. This
algorithm incrementally builds clustering tree; however, the size of this tree grows as time pro-
gresses, i.e., more video frames are processed. We noticed that as a result the system becomes
sluggish over time. Furthermore, this system assumes that the location and viewing direction of
traffic cameras are fixed, an assumption that does not hold in real life. We addressed these two
limitations by partitioning the incoming video stream in chunks. Each chunk was processed sep-
arately and we needed to rebuild the clustering hierarchy for every chunk from scratch. We now
propose a better solution. The method proposed here uses ClusTree [12]—an online hierarchical
clustering. This algorithm builds and maintains the clustering tree by adding new information and
removing stale information. Using online hierarchical clustering not only improves the run-time
performance of our system. It also enables our method to correctly identify roads even after a
camera has been moved.

ClusTree algorithm maintains cluster hierarchy by reacting to changes in existing clusters and
creating new clusters when needed. It builds a R-tree based multidimensional index where each
node stores a cluster feature vector CF = (n, LS, SS), a timestamp t of last update, and a pointer
to its children. Here, n is the number of currently inserted objects, LS is their linear sum and SS

8

Fig 4: The line segments of four sibling clusters in an example clustering hierarchy tree. (a) Root
cluster. (b) and (c) Two clusters with large variance. (d) A cluster with small variance and large
number of segments which is a good candidate for representing the road boundary.

Figures 3c and 3d zoom onto the contour of one superpixel and show how Algorithm 2 can gener-
ate promising edge segments.

3.2 Online Hierarchical Clustering

Our method accumulates a set of approximated line segments from a sequence of frames. Figure 4
presents an example of this set where several concentrations of co-linear segments are visible
along the road and lane boundaries. Therefore, finding a good candidate set of clusters that best
represents these co-linear segments can allow the algorithm to infer the dominant road boundaries.

In our previous work [11], we applied hierarchical agglomerative clustering with average link-
age to construct a hierarchical clustering tree for the accumulated set of segments. Each segment s
is represented in polar coordinates as a 2D vector (ρ, θ). Let S = {si|i = 1 · · ·n} be a set of line
segments for a given image sequence. This set is normalized to have zero mean and unit variance.
Then, hierarchical agglomerative clustering is initialized by assigning each segment si to a cluster
ci. Next, a cluster hierarchy is generated by recursively merging the closest pairs of clusters as one
moves up the hierarchy until we have only one root cluster.

As stated elsewhere, previously our method employed bottom-up hierarchical clustering. This
algorithm incrementally builds clustering tree; however, the size of this tree grows as time pro-
gresses, i.e., more video frames are processed. We noticed that as a result the system becomes
sluggish over time. Furthermore, this system assumes that the location and viewing direction of
traffic cameras are fixed, an assumption that does not hold in real life. We addressed these two
limitations by partitioning the incoming video stream in chunks. Each chunk was processed sep-
arately and we needed to rebuild the clustering hierarchy for every chunk from scratch. We now
propose a better solution. The method proposed here uses ClusTree [12]—an online hierarchical
clustering. This algorithm builds and maintains the clustering tree by adding new information and
removing stale information. Using online hierarchical clustering not only improves the run-time
performance of our system. It also enables our method to correctly identify roads even after a
camera has been moved.

ClusTree algorithm maintains cluster hierarchy by reacting to changes in existing clusters and
creating new clusters when needed. It builds a R-tree based multidimensional index where each
node stores a cluster feature vector CF = (n, LS, SS), a timestamp t of last update, and a pointer
to its children. Here, n is the number of currently inserted objects, LS is their linear sum and SS
is their squared sum. CF represents the sufficient statistics required to calculate and incrementally
update the mean and variance of a cluster. In order to maintain up-to-date clustering and forget

8

stale objects, theCF vector is weighted using an exponential decay function ω(∆t) = βλ∆t, where
λ is the decay rate. This function assigns weights to the feature vector of each cluster as

n(t) =
n∑

i=1

ω(t− tsi), (1)

LS(t) =
n∑

i=1

ω(t− tsi)si, (2)

LS(t) =
n∑

i=1

ω(t− tsi)s2
i , (3)

where t is the current time and tsi is the timestamp at which the line segment si arrived. It was
shown by [12] that the additive properties of weighted cluster features are maintained, in addition to
temporal multiplicity. For example, a cluster feature CF (t+∆t) = ω(∆t)CF (t) if no object is added
during the interval [t,∆t]. Moreover, a cluster with k children has CF (t+∆t) = ω(∆t)

∑k
i=1CF

(t)
i ,

where CF (t)
i is the cluster feature of child i. We refer the kind reader to [12] for the proof of these

properties.
When inserting a line segment s into the clustering tree, the algorithm attaches the current

timestamp ts to the object. Then it descends the tree by choosing at each cluster node, the child
cluster that has the smallest Euclidean distance between its mean and the inserted object. While
descending into a node, the algorithm updates the node’s cluster feature by adding the new object,
multiplying with the decay function ω(t − ts) and updating the cluster timestamp t = ts. If a
child cluster has n(t) < βλ∆tc , it is declared outdated and is deleted. ∆tc is a user defined interval
that controls the deletion rate. Descending stops when we reach a leaf node, where the new object
is inserted to become a new leaf. Figure 4 shows four sibling clusters in an example clustering
hierarchy. Although the root cluster is noisy, the innermost nested cluster can clearly capture one
of the road edges.

For each incoming frame, our method updates the clustering tree by inserting the frame’s ap-
proximated line segments. For each inserted segment, it records the clusters updated by the inser-
tion. Then, it defines the union set of all current updated clusters as the candidate set of frame’s
dominant lines.

3.3 Confidence Assignment

After generating the candidate set of clusters, the technique ranks them based on the cluster vari-
ance and number of samples. This ranking penalizes clusters with high variance or small number
of samples. We model the road boundary as a line in the parametric form:

m̂u+−→v , u ∈ R, (4)

where m̂ is a directional unit vector and−→v is an offset vector from the origin of a given coordinate
system. We can then represent a segment along a certain road boundary line as

−→msu+−→vs , u ∈ [a, b], (5)

9

which can be used to define the following generative model,

−→ms =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
· m̂, φ ∈ N (µ1, σ

2
1), (6)

−→vs = ρ−→v , ρ ∈ N (µ2, σ
2
2), (7)

where φ and ρ are random variables with Gaussian noise that depends on the set of parameters
θ = (µk, σ

2
k)k=1,2. We can then describe our model by the probability P (π|θ) where the hidden

variables π = (−→m,−→v) represent a true road boundary line.

which can be used to define the following generative model,

�!ms =

cos(�) � sin(�)
sin(�) cos(�)

�
· bm, � 2 N (µ1, �

2
1), (6)

�!vs = ⇢�!v , ⇢ 2 N (µ2, �
2
2), (7)

where � and ⇢ are random variables with Gaussian noise that depends on the set of parameters
✓ = (µk, �

2
k)k=1,2. We can then describe our model by the probability P (⇡|✓) where the hidden

variables ⇡ = (�!m,�!v) represent a true road boundary line.

(a) ⇢ histograms.

(b) � histograms.
Fig 5: The ⇢ and � histograms for the four clusters shown in Figure 4a to 4d respectively. (a)
shows the ⇢ histograms and (b) shows the � histograms. Each column corresponds to one cluster.
The first column shows noisy histograms for the root cluster, while the second column shows
less noisy histograms for the sub-cluster in Figure 4b, with few peaks in the ⇢ histogram and a
normally distributed � histogram. The third column shows a gradually reduced noise for the next
sibling cluster and the final column presents the histograms for the road boundary cluster with
much reduced Gaussian noise.

Figure 5 shows the ⇢ and � histograms for the clusters presented in Figure 4. The first column
shows the histograms of the root cluster which are very noisy and contain several clear peaks.
These peaks indicate the existence of different sibling clusters each with similar ⇢ and/or � values.
The second column shows the histograms of the nested cluster in Figure 4b, which has the line
segments concentrated upon two boundary lines. The � histogram is normally distributed while
the ⇢ histogram contains few peaks one for each boundary line. The last two columns show the
histograms of the next nested clusters which are normally distributed with less Gaussian noise in
the last cluster. This verifies that the Gaussian model is effective in representing the expected noise
in our generative model. It also shows that hierarchical clustering is a useful tool for analyzing the
collected line segments at different spatial scales.

Given the generative model, we assume that each candidate cluster c has an underlying bound-
ary line that belongs to a normally distributed population with true mean ⇡⇤. We only observe
random samples from this population where the estimated cluster mean e⇡ is an unbiased estima-
tion of ⇡⇤. So, we want to verify that e⇡ is a reasonable estimate for ⇡⇤. In other words, we are

10

Fig 5: The ρ and φ histograms for the four clusters shown in Figure 4a to 4d respectively. (a)
shows the ρ histograms and (b) shows the φ histograms. Each column corresponds to one cluster.
The first column shows noisy histograms for the root cluster, while the second column shows
less noisy histograms for the sub-cluster in Figure 4b, with few peaks in the ρ histogram and a
normally distributed φ histogram. The third column shows a gradually reduced noise for the next
sibling cluster and the final column presents the histograms for the road boundary cluster with
much reduced Gaussian noise.

Figure 5 shows the ρ and φ histograms for the clusters presented in Figure 4. The first column
shows the histograms of the root cluster which are very noisy and contain several clear peaks.
These peaks indicate the existence of different sibling clusters each with similar ρ and/or φ values.
The second column shows the histograms of the nested cluster in Figure 4b, which has the line
segments concentrated upon two boundary lines. The φ histogram is normally distributed while
the ρ histogram contains few peaks one for each boundary line. The last two columns show the
histograms of the next nested clusters which are normally distributed with less Gaussian noise in
the last cluster. This verifies that the Gaussian model is effective in representing the expected noise
in our generative model. It also shows that hierarchical clustering is a useful tool for analyzing the
collected line segments at different spatial scales.

Given the generative model, we assume that each candidate cluster c has an underlying bound-
ary line that belongs to a normally distributed population with true mean π∗. We only observe
random samples from this population where the estimated cluster mean π̃ is an unbiased estima-
tion of π∗. So, we want to verify that π̃ is a reasonable estimate for π∗. In other words, we are

10

interested in measuring the quality that a cluster lies upon a real boundary line which can be written
as

quality (c) = P (‖π∗ − π̃‖ ≤ ε) (8)

=
∏

x̃∈π̃

x̃+ε∫

x̃−ε

N
(
u|µx̃, σ2

x̃

)
du. (9)

The cluster quality quality (c) has its highest probability value when π̃ coincides with π∗,
and the value becomes lower when π̃ moves further away from π∗. We also treat π̃ as a vector of
independent components, where each component x̃ ∈ π̃ has a true Gaussian model with parameters
(µx̃, σ

2
x̃), and µx̃ ∈ π∗. For clarity, we will refer to (µx̃, σ

2
x̃) as (µ, σ2) in next discussions. Notice

that, µ and σ2 are random variables so quality (c) is also a random variable, and we can calculate
its expectation as

E (P (‖µ− x̃‖ ≤ ε))) = E

(
x̃+ε∫
x̃−ε
N (u|µ, σ2)du

)

=

∞∫

−∞

dµ

+∞∫

0

dσ2

x̃+ε∫

x̃−ε

duN
(
u|µ, σ2

)
P
(
µ, σ2|c

)
,

(10)

and using conditional probability, we have

P
(
µ, σ2|c

)
= P

(
σ2|µ, c

)
P (µ|c) = P

(
σ2|c

)
P (µ|c) , (11)

given that µ and σ2 are independent variables. So, the integral of equation 10 becomes

∞∫

−∞

dµ

+∞∫

0

dσ2

x̃+ε∫

x̃−ε

duN
(
u|µ, σ2

)
P
(
σ2|c

)
P (µ|c). (12)

We can then evaluate the inner integral as

h(σ2, x̃− µ) =

x̃+ε∫

x̃−ε

duN
(
u|µ, σ2

)
(13)

=
1√
4

(
erf

(
x̃− µ+ ε√

2σ

)
− erf

(
x̃− µ− ε√

2σ

))
, (14)

where erf is the error function. Now, we can write g(σ2) = P (σ2|c), f(µ) = P (µ|c), and rewrite
the integral over σ in Equation 12 as the inner product

(g.h) (x̃− µ) =

+∞∫

0

dσ2g(σ2)h(σ2, x̃− µ), (15)

11

and Equation 10 becomes

E (P (‖µ− x̃‖ ≤ ε))) =

∞∫

−∞

dµ f(µ) (g.h)(x̃− µ) (16)

=f ∗µ (g.h), (17)

where ∗µ denotes the convolution operator over µ. This provides a simple expression to evaluate
the expected quality of every candidate cluster. Intuitively, a cluster with a small variance and large
number of segments should have a higher chance for the estimated mean x̃ to be closer to the true
mean µ, which drives Equation 17 to give high expectation values.

Given that each cluster has random samples drawn from a true population with unknown mean
µ and variance σ2, we can use Bayesian inference to define the posterior probability distribution
of σ2 as

P (σ2|c) ∝ P (σ2)P (c|σ2) (18)

∝ 1

σn+2
e−

∑n
i=1(xi−µ)

2

2σ2 , (19)

where we used Jeffrey’s prior to set p(σ2) = 1
σ2 . In our case, this distribution has also an unknown

mean µ and

P (σ2, µ|c) ∝ 1

σn+2
e−

∑n
i=1(xi−µ)

2

2σ2 (20)

∝ 1

σn+2
e−

∑n
i=1(xi−x̃)

2

2σ2 e−
∑n
i=1(µ−x̃)

2

2σ2 . (21)

Now we can calculate the marginal probability distribution for σ2 as

P (σ2|c) ∝ 1

σn+2
e−

∑n
i=1(xi−x̃)

2

2σ2

∞∫

−∞

e−
∑n
i=1(µ−x̃)

2

2σ2 dµ (22)

=
1

σn+2
e−

∑n
i=1(xi−x̃)

2

2σ2

√
2πσ2

n
(23)

∝ (σ2)−
(v+2)

2 e−
vs2

2σ2 , (24)

where v = n− 1 is the cluster degree of freedom, and s2 =
∑n
i=1(xi−x̃)2

v
is the estimated variance.

This is actually a scaled inverse chi-squared distribution [24] χ2
S.inv(σ

2, v, τ 2) with a scaling pa-
rameter τ 2 = s2. Bayesian inference can also be used to get the marginal probability distribution
for µ where

P (µ|c) =

∫
P (µ, σ2|c)dσ2 (25)

=

∫
P (µ|σ2, c)P (σ2|c)dσ2, (26)

12

given that

P (µ, σ2|c) ∝ P (µ|σ2, c)P (σ2|c), (27)

which also implies

1

σn+2
e−

∑n
i=1(xi−x̃)

2

2σ2 e−
∑n
i=1(µ−x̃)

2

2σ2

∝ P (µ|σ2, c)(σ2)−
(v+2)

2 e−
vs2

2σ2 , (28)

and we get

P (µ|σ2, c) = N
(
x̃,
σ2

n

)
(29)

∝ 1√
σ2
e−

n(µ−x̃)2

2σ2 . (30)

Equation 26, therefore, becomes

P (µ|c) ∝
∞∫

0

1√
σ2
e−

n(µ−x̃)2

2σ2 (σ2)−
(v+2)

2 e−
vs2

2σ2 dσ2 (31)

∝
∞∫

0

σ−v−3e−
1

2σ2
(n(µ−x̃)2+vs2)dσ2 (32)

∝
(

1 +
n(µ− x̃)2

vs2

)−(v+1
2

)

, (33)

which is simply the standardized Student t distribution [24] where t = µ−x̃
s/
√
n

. Now, we can see
that the two functions f(µ) and g(σ2) of Equation 17 represent the marginal distributions of the
unknown random variables σ2 and µ. We also proved that g(σ2) is a scaled inverse chi-squared
distribution, and f(µ) is a student-t distribution. This enables us to define confidence intervals for
both σ2 and µ and numerically evaluates Equation 17. In our experiments, we empirically set the
confidence intervals for both µ and σ2 to 0.95 and ε = 0.05.

Equation 17 gives low confidence to 1) clusters with large variance and to 2) clusters with low
variance and few samples. At the same time, the equation promotes clusters with low variance
and large number of samples. These clusters correspond to the dominant edges accumulated from
multiple frames over time. Figure 6 shows the selection of the high confidence clusters over a
sample test sequence. Figure 6a shows the mean lines of the top 20% high confidence clusters.
These lines are ranked by the confidence value where the more reddish the lines are, the higher
the confidence. Figure 6b shows a subset of clusters in Figure 6a that has the largest number of
segments. This verifies our assumption of tracking stable edges over time. Notice that, a cluster
mean line is generated by projecting the segments on the cluster mean and determining the extent
of these projections. This allows the technique to filter out clusters with very small length and
generate long road boundaries even if there are missing parts between frames.

13

(a) (b)
Fig 6: High confidence clusters generated from a 25 frame sequence. (a) Mean lines corresponding
to clusters containing at least 20 segments. (b) Mean lines corresponding to clusters containing at
least 60 segments. The more reddish the line, the higher the cluster confidence.

(a) (b)
Fig 7: Using perspective filtering and image activity to rank cluster pairs. Solid lines indicate mean
lines for cluster pairs that survived the perspective filtering and activity ranking. (a) Perspective
filtering where the red arrow indicates the downward direction. (b) Activity based filtering where
circles represent vehicular traffic.

3.4 Pairwise Ranking

The detected mean lines of high confidence clusters are usually the dominant lines in an image
sequence, but we need to filter these lines to identify the road and lane boundaries. To perform
this filtering, a heuristic is applied that constructs cluster pairs and ranks them based on the camera
perspective and the image activity cues. The top-ranked pairs are then selected to represent the
dominant road and lane boundaries.

Pairwise ranking (Figure 7) starts by computing the vanishing point for each cluster pair. Then,
the camera perspective view is used to filter out the pairs which have their vanishing point heading
downward (see Figure 7a). The survived pairs are then ranked based on a confidence score rConf

14

Fig 6: High confidence clusters generated from a 25 frame sequence. (a) Mean lines corresponding
to clusters containing at least 20 segments. (b) Mean lines corresponding to clusters containing at
least 60 segments. The more reddish the line, the higher the cluster confidence.

(a) (b)
Fig 6: High confidence clusters generated from a 25 frame sequence. (a) Mean lines corresponding
to clusters containing at least 20 segments. (b) Mean lines corresponding to clusters containing at
least 60 segments. The more reddish the line, the higher the cluster confidence.

(a) (b)
Fig 7: Using perspective filtering and image activity to rank cluster pairs. Solid lines indicate mean
lines for cluster pairs that survived the perspective filtering and activity ranking. (a) Perspective
filtering where the red arrow indicates the downward direction. (b) Activity based filtering where
circles represent vehicular traffic.

3.4 Pairwise Ranking

The detected mean lines of high confidence clusters are usually the dominant lines in an image
sequence, but we need to filter these lines to identify the road and lane boundaries. To perform
this filtering, a heuristic is applied that constructs cluster pairs and ranks them based on the camera
perspective and the image activity cues. The top-ranked pairs are then selected to represent the
dominant road and lane boundaries.

Pairwise ranking (Figure 7) starts by computing the vanishing point for each cluster pair. Then,
the camera perspective view is used to filter out the pairs which have their vanishing point heading
downward (see Figure 7a). The survived pairs are then ranked based on a confidence score rConf

14

Fig 7: Using perspective filtering and image activity to rank cluster pairs. Solid lines indicate mean
lines for cluster pairs that survived the perspective filtering and activity ranking. (a) Perspective
filtering where the red arrow indicates the downward direction. (b) Activity based filtering where
circles represent vehicular traffic.

3.4 Pairwise Ranking

The detected mean lines of high confidence clusters are usually the dominant lines in an image
sequence, but we need to filter these lines to identify the road and lane boundaries. To perform
this filtering, a heuristic is applied that constructs cluster pairs and ranks them based on the camera
perspective and the image activity cues. The top-ranked pairs are then selected to represent the
dominant road and lane boundaries.

Pairwise ranking (Figure 7) starts by computing the vanishing point for each cluster pair. Then,
the camera perspective view is used to filter out the pairs which have their vanishing point heading
downward (see Figure 7a). The survived pairs are then ranked based on a confidence score rConf

14

and an activity score rActivity, where the overall rank for a cluster pair (i, j) is given by

r(i, j) = r
(i,j)
Conf × r

(i,j)
Activity, (34)

where
r

(i,j)
Conf = Conf(ci)× ni × Conf(cj)× nj, (35)

and

r
(i,j)
Activity =

#objects within (i, j) region
area spanned by (i, j) region

, (36)

where Conf(ci) defines the confidence assigned by equation 8 to cluster ci. The area spanned
by a cluster pair (i, j) is the area of the image region enclosed by the mean lines of the cluster pair
(ci, cj). The confidence score r(i,j)

Conf encourages pairs with a large number of segments; whereas
the activity score prefers pairs that enclose higher activity. We measure the image activity† by first
applying background subtraction to detect the moving objects [25], then counting the number of
objects inside each cluster pair.

4 Experimental Results

We evaluate the proposed method on two datasets recorded from 15 cameras mounted along On-
tario’s 401 highway. The first dataset consists of video sequences consisting of 50 frames each
from 14 camera locations. Each sequence contains 25 frames recorded during the day and an equal
number recorded during the night. This dataset is captured at 320 × 240 resolution. The second
dataset consists of one 1627 frames long video that shows camera viewing direction changes and
transition from daytime to nighttime. This dataset is recorded at 704 × 480 resolution. Together
the datasets exhibit a wide range of environmental and lighting conditions observed in traffic cam-
eras, including harsh shadows, unlit roads that are only visible in headlights of passing vehicles,
headlight glare, camera shake, variations in traffic density, etc. The second dataset also shows the
effects of switching camera viewing directions mid-operation. For both datasets, the frames are
captured 15 to 20 minutes apart. The frames are manually annotated to generate ground truth. For
the results presented here, we set the number of superpixels equal to 100. The online hierarchical
clustering parameters are chosen as follows: β = 2, λ = 0.2, and ∆tc = 3 (seconds). We set the
clustering tree height to 9.

We compare our method against 1) the Gabor filter based technique (Gabor) that appeared in [7]
and 2) the deep learning based scheme (CN24) [10]. CN24 requires a pre-trained network. We use
the network learnt in [10] for our purposes. Specifically, CN24 computes a confidence map that
assigns to each pixel the likelihood of belonging to the road region. We normalize the confidence
map returned by CN24 and consider all pixels with likelihood values equal to or greater than 0.5 to
be belonging to the road region. Experiments are carried out on a 2.9 GHz quad-core AMD Athlon
processor. Our system is implemented in C++ and Go. It uses multi-threading. The algorithm runs
as a pipeline of non-blocking concurrent routines, implementing individual processing steps of
the algorithm (super-pixel generation, clustering, ranking, etc.). For Gabor and CN24, we use the
code provided by respective authors. Previously, in [11], we proposed three strategies for ranking
individual and pair-wise clusters (i.e., boundaries): 1) using χ2 and Student t test to rank individual

†The assumption is that dominant image activity is the result of vehicular traffic in traffic surveillance images.

15

Ground Truth Gabor [7] CN42 [10] Ours(top) Ours(2nd) Ours(3rd)

BrockRoad

DVP

Hwy-137

Liverpool

Reynolds

Whites

Yonge

Avenue
Fig 8: Dataset 1 daytime. Results of the proposed technique in eight different camera locations,
compared to the Gabor-based method [7], and the deep learning CN24 method [10]. The first
seven locations show day lighting scenarios, whereas the last location presents an occluded road
boundary scenario. The first column is the ground truth; the second and the third are the results
of [7] and [10], respectively. Notice that the classified road regions of [10] are highlighted by red.
The fourth column is our top-ranked pair, and the remaining columns are our top pairs upto the 3rd
rank.

16

Fig 8: Dataset 1 daytime. Results of the proposed technique in eight different camera locations,
compared to the Gabor-based method [7], and the deep learning CN24 method [10]. The first
seven locations show day lighting scenarios, whereas the last location presents an occluded road
boundary scenario. The first column is the ground truth; the second and the third are the results
of [7] and [10], respectively. Notice that the classified road regions of [10] are highlighted by red.
The fourth column is our top-ranked pair, and the remaining columns are our top pairs upto the 3rd
rank.

16

Ground Truth Gabor [7] CN42 [10] Ours(top) Ours(2nd) Ours(3rd)

Brock Road

DVP

Hwy-137

Liverpool

Reynolds

Whites

Yonge

Montreal
Fig 9: Dataset 1 nighttime. Results of the proposed technique in eight different camera loca-
tions during night light, compared to the Gabor-based method [7], and the deep learning CN24
method [10]. The first column is the ground truth; the second and the third are the results of [7]
and [10], respectively. Notice that the classified road regions of [10] are highlighted by red. The
fourth column is our top-ranked pair, and the remaining columns are our top pairs upto the 3rd
rank.

17

Fig 9: Dataset 1 nighttime. Results of the proposed technique in eight different camera loca-
tions during night light, compared to the Gabor-based method [7], and the deep learning CN24
method [10]. The first column is the ground truth; the second and the third are the results of [7]
and [10], respectively. Notice that the classified road regions of [10] are highlighted by red. The
fourth column is our top-ranked pair, and the remaining columns are our top pairs upto the 3rd
rank.

17

(a) Precision

(b) Recall

(c) Runtime
Fig 10: Dataset 1. Precision, recall and runtime comparisons between different versions of our
method, the Gabor filter based method [7], and the convolutional network classification method
(CN24) of [10]. The V1 (Conf) method represents our results based on only cluster confidence
ranking, whereas the V2 (Conf+Persp) shows our results after both perspective filtering and clus-
ter confidence ranking. The V3 method represents our previous results in [11] using bottom up
hierarchical clustering. The proposed method combines V2 with activity ranking. While the pro-
posed method achieves accuracies comparable to those for V3, the proposed method is significantly
faster than V3.

18

Fig 10: Dataset 1. Precision, recall and runtime comparisons between different versions of our
method, the Gabor filter based method [7], and the convolutional network classification method
(CN24) of [10]. The V1 (Conf) method represents our results based on only cluster confidence
ranking, whereas the V2 (Conf+Persp) shows our results after both perspective filtering and clus-
ter confidence ranking. The V3 method represents our previous results in [11] using bottom up
hierarchical clustering. The proposed method combines V2 with activity ranking. While the pro-
posed method achieves accuracies comparable to those for V3, the proposed method is significantly
faster than V3.

18

clusters; 2) using (1) and perspective cues to rank pair-wise clusters; and 3) using (1), (2), and
vehicle activity to rank pair-wise clusters. To make this section more accessible, we identify the
three versions of our previous method (which uses bottom-up hierarchical clustering) as V1, V2,
and V3. Here, V1 uses only (1) for ranking clusters, V2 uses both (1) and (2) for ranking pair-wise
clusters, and V3 uses (1), (2), and (3) for ranking clusters. Recall that the method proposed here
uses online hierarchical clustering algorithm. We expect the performance of the method proposed
here to be different from V3.

4.1 Dataset 1

Figure 8 shows the detected road regions in 8 (out of 14) daytime sequences. Note also that the
Avenue location (last row) contains a partially occluded highway. The first column represents
manually labeled ground truth. The next two columns show road regions returned by Gaber [7]
and CN24 [10] methods, respectively. The last three columns show results of our method (the three
top-ranked road regions computed by our method). Notice how our method is able to pick the road
region even when the road is partially occluded.

Figure 9 shows the detected road regions for the 8 (out of 14) locations at nighttime. Again, the
left column contains ground truth. Gabor [7] results are presented in column 2 and CN24 results are
in column 3 [10]. The last three columns show the three top-ranked pairs returned by our method.
This clearly is a challenging sequence. In some cases road is barely visible. Consider Reynolds
location (row 5) and Montreal location (row 8), for example, where the road is only visible in
vehicle headlights. Despite challenging environmental and lighting conditions, our method does a
much better job of identifying road regions than competing Gabor and CN24 methods.

Using the manually labeled data as ground truth, we also compute precision, recall [26], and
runtime numbers for ours, Gabor, and CN24 methods. The precision is defined as the ratio of the
intersection area between the estimated boundary and ground truth to the area of the estimated
boundary. The recall is the ratio of the overlapped area between the detected road boundary and
the ground truth to the area of the ground truth. Figure 10 shows the precision, recall, and run-time
comparisons, which indicate that the proposed method (when using both perspective and activity
cues for ranking pair-wise clusters) outperforms the Gabor and CN24 schemes. Our method also
outperforms V1 and V2 by a large margin in terms of precision and recall. Still the precision and
recall numbers for the proposed method are similar to V3. Notice, however, that the proposed
method is order of magnitude faster than Gabor, CN24, and V3. We do not plot runtimes for V1
and V2, since their accuracy (as seen from precision and recall) is poor. The proposed method
uses the same individual and pair-wise ranking cues as V3, so the numbers for V1, V2, and V3
serve to indicate the role and importance of cluster ranking and perspective and activity cues for
our proposed method. For these figures the number of frames seen in horizontal axes refer to the
size of the sliding window over which evidence is accumulated.

Table 1 summarizes the mean and standard deviation statistics for precision and recall numbers.
Our method achieves an average of 77% and 75% for precision and recall, respectively. The Gabor
method, on the other hand, achieves 60% and 52% for precision and recall, respectively. Precision
and recall numbers for CN24 are 40% and 41%, respectively. Precision and recall numbers for
V1 and V2 are low, suggesting that activity information gleaned from the image is an important
cue to rank road region candidates. V3 achieves the best precision and recall numbers at 80% and
77%. The reason for this is that the proposed method, which uses an online hierarchical clustering

19

Methods Precision Recall Average Runtime (seconds)
Proposed 77%±24% 75%±25% 0.05
V1 (Conf) 24%±36% 45%±39% 0.05
V2 (Conf+Persp) 16%±25% 48%±37% 0.05
V3 [11] 80%±25% 77%±37% 40
Gabor [7] 60%±31% 52%±31% 40.2
CN24 [10] 40%±21% 41%±34% 18.8

Table 1: Dataset 1. A summary of the mean and standard deviation statistics for the precision and
recall comparisons shown in figure 10. Moreover, we show the average runtime (in seconds) of
each compared method.

algorithm, is only able to construct approximate cluster hierarchy as opposed to V3, which uses
bottom-up agglomerative clustering to create the true cluster hierarchy. The proposed method,
however, is an order of magnitude faster than V3. The current streaming implementation of the
proposed method achieves speedups of upto 300 times as compared to CN24 and upto 800 times
as compared to Gabor and V3.

4.2 Dataset 2

This dataset is recorded by a camera over the course of three days and it shows 8 instances of
changing the viewing direction of this camera. Changes in viewing directions are either initiated
by human operators or occur at predefined times. Such viewing direction changes do not pose a
challenge for Gabor and CN24 methods, since these schemes process each frames individually.
Changes in viewing directions, however, pose a problem for V3 and the proposed method, which
accumulate evidence over multiple frames. V3 deals with this situation in an ad hoc manner by
estimating the road region (from scratch) after every 25 frames. The proposed method, however,
is able to maintain road regions through viewing direction changes by “forgetting” stale evidence.

Figure 11 shows the results of our method on example frames selected from the sequence; no-
tice the changes in viewing directions. The columns (one to five) show results for ground truth,
Gabor, CN24, V3, and the proposed method, respectively. Rows indicate different viewing direc-
tions. Gabor performs poorly; however, CN24 gives decent results, but fails on nighttime frames.
Looking at the last two columns the proposed method, which does a better job of dealing with
camera viewing direction changes, outperforms V3. Table 2 also confirms this observation. The
average precision and recall numbers of the proposed method are 90% and 71%, respectively.
These numbers for Gabor are 78% and 43%, respectively. Average precision for CN24 is 64%, and
the average recall for CN24 is 49%. For V3, the numbers are 47% and 76%, respectively. Clearly,
the proposed method is able to deal with mid-operation camera movement. The proposed method
not only has better accuracy, it also has significantly better runtimes. The average (per frame)
runtime for the proposed method is 0.13 seconds, which is roughly ≈ 1500 times faster than that
of V3, ≈ 400 times faster than that of Gabor, and ≈ 600 times faster than that of CN24.

5 Discussion

We evaluate our method on two real-world datasets. BrockRd, Yonge, and LiverPool cameras
show different lighting conditions. Hwy-137 location is unlit and the road is only visible in ve-
hicle headlights. Locations LiverPool, Yonge, and Whites show strong headlight reflections in

20

Ground Truth Gabor [7] CN42 [10] V3 [11] Ours

Fig 11: Dataset 2. Results of the proposed technique in six different camera viewing directions of
the long video stream dataset, compared to the Gabor-based method [7], the deep learning CN24
method [10], and the V3 algorithm [11]. The first column is the ground truth and the next three
colums show the results of [7], [10] and [11], respectively. Notice that the classified road regions
of [10] are highlighted by red. The last column is our top-ranked pair.

Methods Precision Recall Average Runtime (seconds)
Proposed 90%±11% 71%±20% 0.13
V3 [11] 47%±33% 76%±22% 200
Gabor [7] 78%±14% 43%±12% 54.9
CN24 [10] 64%±26% 49%±43% 81.5

Table 2: Dataset 2. Mean and standard deviation statistics for the precision and recall comparisons
on Dataset 2. The last columns shows average runtime in seconds for each method.

vehicle headlights. Locations Bathurst, Bayview, and Whites show strong headlight reflections in
wet conditions. Avenue location shows a partially occluded highway. The results suggest that our
method is able to identify dominant road boundaries under challenging environmental and lighting
conditions.

Results listed in Table 1 showcase the importance of activity cue for dominant road region de-

21

Fig 11: Dataset 2. Results of the proposed technique in six different camera viewing directions of
the long video stream dataset, compared to the Gabor-based method [7], the deep learning CN24
method [10], and the V3 algorithm [11]. The first column is the ground truth and the next three
columns show the results of [7], [10] and [11], respectively. Notice that the classified road regions
of [10] are highlighted by red. The last column is our top-ranked pair.

wet conditions. Avenue location shows a partially occluded highway. The results suggest that our
method is able to identify dominant road boundaries under challenging environmental and lighting
conditions.

Results listed in Table 1 showcase the importance of activity cue for dominant road region de-
tection. Methods V1 and V2, which ignore activity cue for pair-wise ranking, performs worse than
V3 and the proposed approach. V1 favors stable “boundaries,” which may or may not be a road
boundary. V2 adds perspective filtering to V1; however, this does not result in better performance.
V3, which uses activity cue, does well in detecting road regions. The proposed method that uses
the same strategy for ranking individual and pair-wise clusters as that of V3 also performs well in
detecting road regions. The proposed method also outperforms Gabor and CN24.

The proposed method is significantly faster than V3, Gabor and CN24. It also uses online

21

Methods Precision Recall Average Runtime (seconds)
Proposed 90%±11% 71%±20% 0.13
V3 [11] 47%±33% 76%±22% 200
Gabor [7] 78%±14% 43%±12% 54.9
CN24 [10] 64%±26% 49%±43% 81.5

Table 2: Dataset 2. Mean and standard deviation statistics for the precision and recall comparisons
on Dataset 2. The last columns shows average runtime in seconds for each method.

(top-down, approximate) hierarchical clustering, which is much more efficient than computing
bottom-up hierarchical clustering. The proposed approach also addresses a limitation of V3. V3
cannot remove or update information within the cluster hierarchy. Consequently, V3 is unable
to deal with cameras whose viewing direction may change. Also, V3 performs poorly on stream
segments that have few scene activity as it independently estimates road region for every 25 frames.
Moreover, the computational time of V3 grows rapidly for higher resolution images because the
clustering hierarchy accumulates a larger set of edges. These limitations results in the degraded
precision of results and the increased computational cost on Dataset 2. The online hierarchical
clustering algorithm employed in the proposed method is able add, update, or remove information
in the cluster hierarchy. Precision and recall numbers for the proposed method are similar to those
for V3 on Dataset 1, while outperforming V3 on Dataset 2.

Gabor method did not do well on dataset 1. Dataset 1 contains low-resolution frames, which
creates a problem for Gabor method. Remembering that this method uses the output of Gabor
filtering to define a vanishing point and subsequently exploits this information to estimate the
road boundary. In case of possibly noisy, low-resolution images, the vanishing point estimation is
wrong, which leads to poor performance on road region detection. For dataset 1, CN24 performs
poorly on some frames. CN24 network is learnt using road patches. In case of dataset 1, these road
patches have low-resolution and may be noisy. This leads to CN24 poor performance for some
frames in dataset 1. Dataset 2 is higher resolution and CN24 begins to do well. Still the proposed
method outperforms Gabor, CN24, and V3.

6 Conclusion and Future Work

The paper develops a new online method for detecting dominant road regions in traffic cameras.
The proposed method is able to process live video streams at “real-time” frame-rates. It is also
able to maintain road regions as cameras are re-positioned or their viewing directions changed.
We have evaluated our method on two real-world datasets consisting of images captured by traffic
cameras mounted along Ontario’s 401 Highway. These datasets adequately capture the extreme
environmental and lighting conditions seen in traffic cameras, such as harsh shadows, unlit roads,
headlight glare, etc. The first dataset contains low-resolution (320 × 204) images; whereas, the
second dataset comprises of higher-resolution (704 × 480) images. The results show that our
method is robust to environmental and lighting conditions encountered in traffic cameras. Also
that the proposed method can deal with low-resolution imagery. The ability to deal with low-
resolution imagery becomes exceedingly relevant as bandwidth begins to be the bottleneck, say as
we move towards larger networks of traffic cameras.

We have compared our technique with two competing schemes—[7] and [10]—and our method
outperforms these both in terms of runtime performance and accuracy. We also compare this

22

method with a previous iteration of our work that appeared in [11] and show that the current
method outperforms its previous iteration in terms of runtime performance. Additionally, the cur-
rent technique can maintain dominant road regions through camera movement.

In the future, we plan to investigate various applications of our method for traffic flow analysis:
car counting, excessive speeding, careless driving, accidents, etc.

References

[1] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, “A survey of video processing techniques for
traffic applications,” Image and Vision Computing 21, 359–381 (2003).

[2] N. Buch, S. Velastin, and J. Orwell, “A review of computer vision techniques for the anal-
ysis of urban traffic,” IEEE Transactions on Intelligent Transportation Systems 12, 920–939
(2011).

[3] B. Stewart, I. Reading, M. Thomson, T. Binnie, K. Dickinson, and C. Wan, “Adaptive lane
finding in road traffic image analysis,” in Proc. of 7th IEEE International Conference on Road
Traffic Monitoring and Control, 133–136, (Napier Univ. Edinburgh) (1994).

[4] J. Melo, A. Naftel, A. Bernardino, and J. Santos-Victor, “Detection and classification of high-
way lanes using vehicle motion trajectories,” IEEE Transactions on Intelligent Transportation
Systems 7, 188–200 (2006).

[5] R. Satzoda and M. Trivedi, “Selective salient feature based lane analysis,” in Proc. of IEEE
ITSC, 1906–1911 (2013).

[6] M. Aly, “Real time detection of lane markers in urban streets,” in Proc. of IEEE Intelligent
Vehicles Symposium, 7–12, (Eindhoven, The Netherlands) (2008).

[7] H. Kong, J. Audibert, and J. Ponce, “General road detection from a single image,” IEEE
Transactions on Image Processing 19, 2211–2220 (2010).

[8] S. Zhou, J. Xi, J. Gong, G. Xiong, and H. Chen, “A novel lane detection based on geometrical
model and gabor filter,” in Proc. of Intelligent Vehicles Symposium, 59–64, (San Diego, CA)
(2010).

[9] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using b-snake,” Image and
Vision Computing 22, 269–280 (2004).

[10] C. Brust, S. Sickert, M. Simon, E. Rodner, and J. Denzler, “Convolutional patch networks
with spatial prior for road detection and urban scene understanding,” in Proc. of 10th Inter-
national Conference on Computer Vision Theory and Applications, 11–14 (2015).

[11] M. Helala, K. Pu, and F. Qureshi, “Road boundary detection in challenging scenarios,” in
Proc. 9th IEEE Conference on Advanced Video and Signal-Based Surveillance, IEEE Com-
puter Society, (Beijing, China) (2012).

[12] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “Self-adaptive anytime stream clustering,” in
Proc. of IEEE ICDM, 249–258 (2009).

23

[13] M. Helala, K. Pu, and F. Qureshi, “A stream algebra for computer vision pipelines,” in
CVPRW, 800–807 (2014).

[14] A. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane detection: a
survey,” Mabchine Vision and Applications 25(3), 727–745 (2014).

[15] Z. Chen, Y. Yan, and T. Ellis, “Lane detection by trajectory clustering in urban environments,”
in Poc. of IEEE ITSC, 3076–3081 (2014).

[16] J. Alvarez, A. Lopez, T. Gevers, and F. Lumbreras, “Combining priors, appearance, and
context for road detection,” IEEE Transactions on ITS 15, 1168–1178 (2014).

[17] S. Paris and F. Durand, “A topological approach to hierarchical segmentation using mean
shift,” in Proc. of IEEE CVPR, 1–8, (Minneapolis, MN) (2007).

[18] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate superpixel segmentation,”
in Proc. of IEEE CVPR, 2097–2104, (Colorado) (2011).

[19] C. Chefd’Hotel and A. Sebbane, “Random walk and front propagation on watershed ad-
jacency graphs for multilabel image segmentation,” in Proc. of IEEE ICCV, 1–7, (Rio de
Janeiro) (2007).

[20] S. Yu and J. Shi, “Multiclass spectral clustering,” in Proc. of IEEE ICCV, 1, 313–319, (Nice,
France) (2003).

[21] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinsonl, and K. Siddiqi, “Turbopixels:
Fast superpixels using geometric flows,” IEEE Transactions on Pattern Analysis and Machine
Intelligence 31, 2290–2297 (2009).

[22] M. Helala, M. Selim, and H. Zayed, “A content based image retrieval approach based on
principal regions detection,” International Journal of Computer Science Issues 9, 204–213
(2012).

[23] L. Figueiredo, “Adaptive sampling of parametric curves,” in Graphics Gems V, 173–178,
Academic Press (1995).

[24] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin in Bayesian Data
Analysis, Florida : CRC Press (2004).

[25] K. Kyungnam, T. Chalidabhongse, D. Harwood, and L. Davis, “Background modeling and
subtraction by codebook construction,” in Proc. of Int. Conf. ICIP, 5, 3061–3064, (Singapore)
(2004).

[26] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, New York: ACM Press,
Addison-Wesley (1999).

Mohamed A. Helala is currently a Ph.D. candidate in the department of Computer Science at
UOIT. He received a M.Sc. degree in Computer Engineering from Benha University, Egypt in

24

2010. His research interests include computer vision, machine learning, and data stream process-
ing.

Faisal Z. Qureshi received M.Sc. and Ph.D. degrees in Computer Science from the University
of Toronto, Toronto, Canada, in 2000 and 2007, respectively. He is an Associate Professor of
Computer Science and the (founding) director of the Visual Computing lab. He joined the UOIT
in 2008 from Autodesk Canada Co. in Toronto, where he was a Software Developer. His research
interests include sensor networks, computer vision, and computer graphics. He has also published
papers in space robotics. He is a member of the IEEE, the ACM and the CIPPRS.

Ken Q. Pu is an Associate Professor of Computer Science at UOIT. He received his PhD in Com-
puter Science from University of Toronto in 2006. His research area is in the theory and applica-
tions of database and information systems. His current research interests include data processing
in computer vision systems, embedded and pervasive databases, and human data interaction. He is
a member of the IEEE and the ACM.

List of Figures
1 Challenging environmental conditions encountered by traffic surveillance cameras.
2 Generating a hierarchy of superpixels by merging neighboring regions based on

the hue component. (a) Original image. (b) Image after applying morphological
open and close operations. (c) The result of HSV color quantization. (d) Over-
segmented Image. (e) No. of superpixels = 25. (f) No. of superpixels = 50. (g) No.
of superpixels = 100 and (h) No. of superpixels = 150.

3 Polygon approximation using adaptive sampling. (a) Approximated polygons for
superpixels in Figure 2e. (b) Same image in (a) but showing edges that are more
than 10 pixels in length. (c) Showing a single superpixel from (a). (d) Edges more
than 10 pixels for the superpixel in (c).

4 The line segments of four sibling clusters in an example clustering hierarchy tree.
(a) Root cluster. (b) and (c) Two clusters with large variance. (d) A cluster with
small variance and large number of segments which is a good candidate for repre-
senting the road boundary.

5 The ρ and φ histograms for the four clusters shown in Figure 4a to 4d respectively.
(a) shows the ρ histograms and (b) shows the φ histograms. Each column corre-
sponds to one cluster. The first column shows noisy histograms for the root cluster,
while the second column shows less noisy histograms for the sub-cluster in Fig-
ure 4b, with few peaks in the ρ histogram and a normally distributed φ histogram.
The third column shows a gradually reduced noise for the next sibling cluster and
the final column presents the histograms for the road boundary cluster with much
reduced Gaussian noise.

6 High confidence clusters generated from a 25 frame sequence. (a) Mean lines
corresponding to clusters containing at least 20 segments. (b) Mean lines corre-
sponding to clusters containing at least 60 segments. The more reddish the line,
the higher the cluster confidence.

25

7 Using perspective filtering and image activity to rank cluster pairs. Solid lines
indicate mean lines for cluster pairs that survived the perspective filtering and ac-
tivity ranking. (a) Perspective filtering where the red arrow indicates the downward
direction. (b) Activity based filtering where circles represent vehicular traffic.

8 Dataset 1 daytime. Results of the proposed technique in eight different camera
locations, compared to the Gabor-based method [7], and the deep learning CN24
method [10]. The first seven locations show day lighting scenarios, whereas the
last location presents an occluded road boundary scenario. The first column is the
ground truth; the second and the third are the results of [7] and [10], respectively.
Notice that the classified road regions of [10] are highlighted by red. The fourth
column is our top-ranked pair, and the remaining columns are our top pairs upto
the 3rd rank.

9 Dataset 1 nighttime. Results of the proposed technique in eight different camera
locations during night light, compared to the Gabor-based method [7], and the deep
learning CN24 method [10]. The first column is the ground truth; the second and
the third are the results of [7] and [10], respectively. Notice that the classified road
regions of [10] are highlighted by red. The fourth column is our top-ranked pair,
and the remaining columns are our top pairs upto the 3rd rank.

10 Dataset 1. Precision, recall and runtime comparisons between different versions
of our method, the Gabor filter based method [7], and the convolutional network
classification method (CN24) of [10]. The V1 (Conf) method represents our results
based on only cluster confidence ranking, whereas the V2 (Conf+Persp) shows
our results after both perspective filtering and cluster confidence ranking. The
V3 method represents our previous results in [11] using bottom up hierarchical
clustering. The proposed method combines V2 with activity ranking. While the
proposed method achieves accuracies comparable to those for V3, the proposed
method is significantly faster than V3.

11 Dataset 2. Results of the proposed technique in six different camera viewing direc-
tions of the long video stream dataset, compared to the Gabor-based method [7],
the deep learning CN24 method [10], and the V3 algorithm [11]. The first column
is the ground truth and the next three columns show the results of [7], [10] and [11],
respectively. Notice that the classified road regions of [10] are highlighted by red.
The last column is our top-ranked pair.

List of Tables
1 Dataset 1. A summary of the mean and standard deviation statistics for the preci-

sion and recall comparisons shown in figure 10. Moreover, we show the average
runtime (in seconds) of each compared method.

2 Dataset 2. Mean and standard deviation statistics for the precision and recall com-
parisons on Dataset 2. The last columns shows average runtime in seconds for each
method.

26

