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Abstract. Stream processing is currently an active research direction
in computer vision. This is due to the existence of many computer
vision algorithms that can be expressed as a pipeline of operations,
and the increasing demand for online systems that process image and
video streams. Recently, a formal stream algebra has been proposed as
an abstract framework that mathematically describes computer vision
pipelines. The algebra defines a set of concurrent operators that can
describe a pipeline of vision tasks, with image and video streams as
operands. In this paper, we extend this algebra framework by developing
a formal and abstract description of feedback control in computer vi-
sion pipelines. Feedback control allows vision pipelines to perform adap-
tive parameter selection, iterative optimization and performance tuning.
We show how our extension can describe feedback control in the vision
pipelines of two state-of-the-art techniques.

1 Introduction

Recently, there has been a rapid growth of applications capable of generating
vast amounts of images and videos. Examples of such applications include online
image and video sharing services (e.g., Flickr1 and ImageNet2), video surveil-
lance systems [1–4], and satellite imagery [5–7]. An emerging direction for un-
derstanding and harnessing such big visual data is stream processing. Stream
processing represents a category of methods that process infinite sequences of
data, also called data streams. In this paper, we are interested in image and video
streams which we refer to as Vision Streams. In order to process vision streams,
researchers use stream processing concepts such as pipelines to construct online
computer vision algorithms [8–14]. A question that then arise is how can we for-
mally and efficiently describe online computer vision pipelines? In database com-
munity, this question has been answered for text stream processing by developing
stream algebra frameworks [15–18]. A stream algebra defines a set of abstract al-
gebraic operators with well defined semantics that process streams as operands.
These operators are used to build mathematical expressions that declaratively
construct stream processing pipelines. For example, Demers et al. [18] proposed
an algebra to express queries on event streams. Chkodrov et al. [15] described

1 Flickr: https://www.flickr.com/ (last accessed on 7 September 2014).
2 ImageNet: http://www.image-net.org/ (last accessed on 7 September 2014).
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an implementation of a stream algebra that extends relational algebra for data
streams. There are several advantages for stream algebras. For example, they can
provide formal methods to resolve pipeline bottlenecks, implement dynamic re-
configuration, apply incremental evaluation, define common optimization meth-
ods, etc.

Database stream algebras are designed for structured textual streams. So,
they are inapplicable for vision streams with unstructured visual content. Despite
such challange, there exist some software frameworks such as OpenVL [19] and
GStreamer [20], that address the efficient implementation of vision pipelines.
However, these frameworks do not define a stream algebra, and lack a formal
definition of vision pipelines. Recently, Helala et al. [21] presented a stream
algebra for computer vision pipelines. This algebra revises the previous database
stream algebras, and provides an abstraction for formally expressing computer
vision pipelines. The algebra contains operators for both data processing and flow
rate control. Two online vision algorithms have been expressed in this algebra
by [21]. However, these algorithms are only for feedforward pipelines. This limits
the applicability of the algebra to other online computer vision systems that use
feedback control to perform tasks such as parameter tuning [22–25], and iterative
optimization [14]. These tasks are widely used in online vision algorithms. For
example, Sherrah [23] presented an algorithm for continuous real-time parameter
tuning of a people tracking surveillance system. Supancic et al. [25] explored
parameter tuning for long term tracking. Iterative optimization was also studied
by [14] to iteratively align Flickr’s photo streams.

In this paper, we are studying feedback control loops in computer vision
pipelines. Specifically, we extend the stream algebra of [21] to provide an alge-
braic description of feedback control; here we focus on parameter tuning, and
iterative optimization. Our description of feedback control is formal and abstract,
which makes it reusable by several online computer vision pipelines [22–25, 14].
The paper is organized as follows: Section 2 briefly reviews the algebra of [21],
and discusses feedback control. Section 3 describes the feedback control of two
state-of-the-art online computer vision algorithms. Then, we provide discussions
in Section 4, and conclude the paper in Section 5.

2 Stream Algebra

The stream algebra in [21] contains three main parts: a common notation, a set
of operators, and the formal semantics used to write pipeline expressions. This
section gives a brief review of the algebra, and states the operators used in this
paper. Finally, we discuss our algebraic extensions that provide an abstract and
formal definition of feedback control in vision pipelines.

2.1 Notation

The algebra in [21] defines a data stream as an infinite sequence of data chunks
with two function λx : x → s, and ← s, to write to and read from a stream
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s, respectively. The algebra indicates the set of all possible streams as S. To
indicate the type of the stream data, the notation S 〈T 〉 is used, where T signify
the data type. A stream operator is defined as a mapping function h : Sm → Sn :
S1
in, . . . , S

m
in → S1

out, . . . , S
n
out, that maps m input streams to n output streams.

We can define an operator by only using the following constructs as defined
by [21]:

• Shared states:
state u
-Indicates that u is a state for
subsequent loops.

• Concurrency:
loop : body of loop
-Iterates over the body forever.
-Each loop runs in its own thread.
-All loops of the same operator
share the states.
-If there are multiple concurrent
loops, loopj indicates the
j-th concurrent session.

• Atomicity:
{ statements }
-Executes the statements as an
atomic operation.

• Stream I/O:
-x← s reads from a stream s,
and saves the result in x.
-e→ s writes the expression
e to stream s.

• Attribute Access:
-x.y accesses attribute y defined
as part of variable x.

2.2 Operators

An operator can have zero or more parameters. These parameters can be simple
functions, or initial values. We start by discussing the data processing operators.

Map is an operator, that synchronously reads from k incoming streams,
applies a user-defined function f : X1×X2× . . . Xk → Y on the read values, and
writes the computed values to an outgoing stream. The operator is parametrized
by the user-defined function. map(f) : S 〈X1〉 × . . .S 〈Xk〉 → S 〈Y 〉

loop : f(← S1
in, . . . ,← Sk

in)→ Sout

Reduce is an operator that has an internal state u : U . The operator reads
from an incoming stream and applies a user defined function g : U×X → U×Y .
This function takes the saved state and the read value. Then, it computes a new
state, and an output value. The operator updates the internal state, and writes
the computed value to the output stream. The operator is parametrized by the
function g, and an initial state u0. reduce(g, u0) : S 〈X〉 → S 〈Y 〉

state u = u0

loop : u, y = g(u,← Sin)

y → Sout

Copy reads from an incoming stream, and synchronously duplicates the read
value to all outgoing streams. Copy has no parameters. copy() : S→ Sn

loop : x← Sin

x→ Si
out for all i ≤ n
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Filter has one incoming stream and two outgoing streams S1
out and S2

out. It
applies a used-defined predicate θ : X → boolean, on the incoming values. It
then writes values with θ true to S1

out, and values with θ false to S2
out. filter(θ) :

S→ S2

loop : x← Sin

if θ(x) then x→ S1
outelse x→ S2

out

Ground ends an incoming stream. Ground : S→ ∅

loop :← Sin

Now, we will discuss the rate controlling operators:

Latch has one incoming stream Sin and two outgoing streams S1
out and S2

out.
It reads from Sin, synchronously writes to S2

out, and asynchronously writes to
S1
out. It performs the asynchronous write by saving the most-recent incoming

reading, and writing it to S1
out, whenever it is possible. So Sin and S1

out have
different data rates. latch() : S→ S2.

state u = nil
loop1 : x← Sin

{u = x ;x→ S2
out}

loop2 : {u→ S1
out}

Cut is similar to Latch, but it writes the incoming values only once to the
asynchronous output stream. For the extra writes, in case S1

out has a higher data
rate, nil is used. cut() : S→ S2

state u = nil
loop : x← Sin

{u = x ;x→ S2
out}

loop : {y = u ;u = nil}
y → S1

out

Mult has k incoming streams Sk
in, and one output stream Sout. The operator

reads one value at a time from each incoming stream, forms a vector (x1, ..., xk),
and synchronously writes this vector to the outgoing stream. Mult() : Sk → S

loop :

← S1
in

...
← Sk

in

→ Sout

Left-Mult is similar to Mult; however, it has only two incoming streams
S1
in and S2

in. It latches on S2
in to make the outgoing data rate depends only on

the rate of S1
in, and independent of S2

in. Left-Mult : S2 → S

S1, S2 = Latch(S2
in) ; Ground(S2)

loop :

[
← S1

in

← S1

]
→ Sout
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Add asynchronously merges together k incoming streams Sk
in into one out-

going stream. add : Sk → S.

for j ≤ k
loopj : x← Sj

in

x→ Sout

2.3 Feedback Control

Feedback control is an essential task in several online computer vision algo-
rithms [14, 22–25] that perform parameter tuning, or iterative optimization.
These algorithms evaluate the current output results to enhance the future out-
puts. In this section, we extend the stream algebra of [21] by providing a formal
and abstract description of feedback control in computer vision pipelines.

Xi

Ii+1

// · · ·
Ij

// Left-Mult // Xj

Ij+1

// · · ·
Ik

// Xk

O

// Copy //

R��

O′

X1

I2
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Ej
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· · ·oo Ej
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· · ·oo Ei
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Fig. 1. An example of multi-point feedback control. Arrows show stream flow direc-
tions. Letters on arrows represent stream names. I1, and O′ indicate input and output
streams, respectively.

We assume an input stream I1, a vision pipeline with a sequence of operators
X1, ..., Xk, and an output stream O. Each operator Xj has an input stream Ij ,
and an output stream Ij+1. In order to define feedback control for operator Xj ,

we assume a return stream Rj , a sequence of evaluation operators Ej
1, ..., E

j
kj

,
and a feedback stream Fj . Given these assumptions; we describe the feedback
loop in a vision pipeline as in figure 1. We discuss two types of feedback control,
single-point and multi-point. In single-point, we only control one operator Xj .
So, the pipeline has one return stream R, and one feedback stream F . In order
to obtain the return stream R, we can apply either the Copy, Filter, or Cut
operator on the output stream O. This is represented by the equation,

R,O′ , Copy()(O). (1)

O′ now represents the output. We can next apply a sequence of evaluation
operators E1, ..., En on R to compute the feedback stream F . If the feedback
loop performs parameter tuning, then F represents a stream of new parameters.
We can then apply a Left-Mult operator to attach the new parameters to the
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input stream Ij , which updates the internal parameters of the pipeline operator
Xj . This is represented by the equation,

I ′j , Left-Mult()(Ij , F ). (2)

I ′j in this case represents the input to operator Xj . Note that, the feedback
loop that we just defined is synchronized with the original vision pipeline. If we
replace Copy in equation 1 by Cut, then we have an asynchronous feedback
loop that evaluates samples from the output stream O. Furthermore, in case of
iterative optimization that reprocesses the output, we can replace Left-Mult in
equation 2 by an Add operator. In this case, the stream I ′j will have interleaved
elements from the streams Ij and F .

In multi-point feedback control, we can control more than one operator. This
is performed by applying Copy on the return stream R several times to get
m duplicate streams, which we use to define the feedback loops of m operators.
Figure 1 shows multi-point feedback for two operators Xi and Xj . Each operator
has a distinct set of evaluation operators to construct its feedback stream.

3 Feedback Control in Computer Vision Pipelines

There is a large interest in developing online computer vision algorithms that
use feedback control to perform parameter tuning or iterative optimization tasks.
These tasks allow an online algorithm to adapt itself continuously to different
scene contexts, or iteratively improve output results over time. In this section, we
discuss two state-of-the-art algorithms [24, 14] that process vision streams and
apply feedback control to perform parameter tuning and iterative optimization.
Without loss of generality, we will discuss how we can effectively express the
feedback control of these algorithms using our algebraic extensions.

3.1 Online Adaptation of Tracking Parameters

Online tracking of moving objects is one of the fundamental problems in com-
puter vision, and several trackers have been proposed. However, if the input
video stream has an unknown scene, it becomes difficult to select a tracking al-
gorithm. Chau et al. [24] proposed a method for online parameter tuning that
can adapt a tracking algorithm to scene changes. This method works in two
phases: an offline training phase, and an online control phase.

In the offline training phase, the algorithm takes as input, a set of train-
ing videos together with annotated moving objects, annotated trajectories, and
a tracking algorithm with parameters. The method tracks people as the mov-
ing objects using the appearance based tracking algorithm of [26], which is
controlled by six parameters. For each training video, the algorithm extracts
context features from every frame. The context features are a vector of six el-
ements that describes the density of moving objects, their occlusion level, and
appearance characteristics. The algorithm then segments the video into consec-
utive clips, based on similarity of the context feature vectors. For each clip, the
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algorithm performs parameter optimization to select the best parameter values
of the given tracking algorithm. Then, a clustering step is performed to cluster
contexts from all training videos. Afterwards, the best tracking parameters are
defined for each cluster. Finally, the context clusters together with their best
parameters are stored in a database D.

In the online stage, the algorithm takes as input, a video stream V = {Vi|i =
0, 1, 2...}. For every frame Vi ∈ V , people is detected using the HOG-based
detection algorithm in [27]. This generates the objects stream B = {Bi|i =
0, 1, 2...}, where everyBi represents a list of detected objects (people) in frame Vi.
The algorithm then records the detected objects from every frame in a temporal
window of interval4t1. After that, the method attaches with every frame Vi ∈ V ,
the recent list of recorded objects up to frame Vi. This generates the stream U =
{Ui|i = 0, 1, 2, ...}, where Ui = (Vi, Bi). The method also defines the parameters
feedback stream F = {Fi|i = 0, 1, 2, ...}, where every Fi is a vector of tracking
parameters. We will see later how this stream is generated. Every Fi is attached
to Ui to generate the tracker input stream Q = {Qi|i = 0, 1, 2, ...}, where Qi =
(Vi, Bi, Fi). The tracking algorithm takes the stream Q as input and updates
the tracking parameters using Fi ∈ Qi. It also generates a list of trajectories
Ti for every frame. The tracker attaches the trajectories Ti to (Vi, Bi) ⊂ Qi,
and constructs the output trajectories stream J = {Ji|i = 0, 1, 2, ...}, where
Ji = (Vi, Bi, Ti). The algorithm in [24], then defines a feedback control loop that
takes the output stream J and records the video frames Vi ∈ Ji in a temporal
window of interval 4t2. This defines a clip stream C = {Ci|i = 0, 1, 2, ...}. This
stream is used with J to define the loopback stream H = {Hi|i = 0, 1, 2, ...},
where Hi = (Vi, Bi, Ti, Ci). Now, for every Hi, the algorithm uses (Vi, Bi, Ti) ⊂
Hi to calculate two error scores: An object interaction score s1 to calculate
the overlap of objects, and a tracking error score s2 to measure the tracking
quality. Given two thresholds Th1 and Th2, if s1 > Th1 and s2 > Th2, the
algorithm declares an error and retrieves the best tracking parameters suitable
to the context defined by the clip Ci ∈ Hi, from the database D. Otherwise, we
continue using the current parameters. This generates the feedback stream F
that was used previously together with the stream U to define the tracker input
stream Q. This illustrates the feedback control loop of [24].

Now, we will describe the online control stage of [24] in the algebra of [21],
and use our algebraic extensions to define the feedback control loop. We start
by defining the following data types,

Frame : 2DImage; Video : S 〈Frame〉 ; Clip : List 〈Frame〉
Histogram : List 〈R〉 ; Object : R8 × Histogram; Params : R6

FrameInfo : Frame× List 〈Object〉 ; Trajectory : List
〈
R2
〉

;

TrackInput : Frame× List 〈Object〉 × Params

TrackInfo : Frame× List 〈Object〉 × List 〈Trajectory〉
LoopBack : Frame× List 〈Object〉 × List 〈Trajectory〉 × Clip
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where a Frame is a 2D image, a Video is a stream of frames, a Clip is
a list of frames, and a Histogram is a vector of values. An Object is a pair
(a, b), where b : Histogram, and a : R8 is a vector that represents the fol-
lowing object features: 2D shape ratio, 2D area, color covariance in RGB, and
dominant color in RGB. Params is a vector that represents the 6 parameters
of the tracking algorithm [26]. FrameInfo is a pair (v, w), where v : Frame

and w : List 〈Object〉. A TrackInput is a 3 elements vector (v, w, p), where
p : Params. A Trajectory is a list of 2D points. TrackInfo is a 3 elements
vector (v, w, e), where e : List 〈Trajectory〉. Finally a LoopBack is a 4 elements
vector (v, w, e, c), where c : Clip.

Given an input video stream V ∈ Video, we copy V into two identical streams
V1, V2 using a Copy operator,

V1, V2 , Copy()(V ). (3)

We will now process V1 and return later to discuss the use of V2. We define
a function f1 : Frame → List 〈Object〉 that detects objects from every frame
Vi ∈ V1 using the HOG-based detection algorithm of [27]. This function can be
used with a Map operator to define the objects stream B : S 〈List 〈Object〉〉,

B , Map(f1)(V1). (4)

We then define the function,

g1 : List 〈Object〉 × List 〈Object〉 → List 〈Object〉 × List 〈Object〉

g1(u, x) = { for all z ∈ u
if (now()− arrival-time(z) ≥ 4t1) then

u = u	 z //remove z from u

u = u⊕ x //append x to u

return(u, u) }

This function maintains a window u of the most recent objects, in a time
interval 4t1. The function starts by deleting old objects. Then, it adds the new
objects x to u, and returns the updated window as output. We can use the g1
function together with a Reduce operator to generate the objects summary
stream M : S 〈List 〈Object〉〉,

M , Reduce(g1,Empty-List)(B). (5)

Now, we will go back and use the stream V2. Note that this stream is a copy
of the input video stream V . We synchronize the stream M with the stream V2
using a Mult operator to generate the stream U : S 〈FrameInfo〉,

U , Mult()(V2,M). (6)

At this step, we define the feedback stream F : S 〈Params〉. We will show later
how we generate this stream when we discuss feedback control. We synchronize
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the stream F with the stream U using a Left-Mult operator to generate the
stream Q : S 〈TrackInput〉,

Q , Left-Mult()(U,F ). (7)

We then define the tracking function f2 : TrackInput → TrackInfo. This
function takes the vector (v, w, p) : TrackInput, and applies the tracking al-
gorithm on v and w using the given parameters p. The function then outputs
the object trajectories which we attach to the pair (v, w), to generate the out-
put y : TrackInfo. We can use this function together with a Map operator to
process the Q stream and generate the trajectories stream J : S 〈TrackInfo〉,

J , Map(f2)(Q). (8)

Now, we discuss how we use our algebraic description to express the feedback
control of [24]. We start by evaluating the equation, R, J ′ , Copy()(J), to copy
J into the output stream J ′ and the return stream R. Then, we define the
function,

g2 : Clip× TrackInfo→ Clip× LoopBack

g2(u, x) = { for all z ∈ u
if (now()− arrival-time(z) ≥ 4t2) then

u = u	 z //remove z from u

u = u⊕ x.v //append frame x.v to u

y = x⊕ u //append clip u to x

return(u, y) }

The function g2 maintains a clip u that has the most recent frames in a time
interval 4t2. It is similar to the function g1, however g2 appends the recorded
clip to the input x, to form the output y : LoopBack. We use this function with
a Reduce operator to process the return stream R, and generate the loopback
stream H : S 〈LoopBack〉,

H , Reduce(g2,Empty-List)(R). (9)

The algorithm in [24] defines two scoring functions to calculate the tracking
errors. These functions are f3 : FrameInfo→ R for object interaction score, and
f4 : TrackInfo → R for tracking error score. We use these functions to define
another function,

g3 : Params× LoopBack→ Params× Params

g3(u, x) = { s1 = f3(x.v, x.w)

s2 = f4(x.v, x.w, x.e)

if (s1 > Th1 and s2 > Th2) then

p = search-db(x.c,D)

return(p, p)

return(u, u) }
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Note that this function starts by calculating the error scores of the current
frame. If the scores s1 and s2 are larger than the given thresholds, we search the
database D for the best parameters that meet the context of the most recent clip
x.c, and output the new parameters. Otherwise, we return the old parameters
u. This function can be used together with a Reduce operator to process the
loopback stream H, and generate the feedback stream F : S 〈Params〉,

F , Reduce(g3, Initial-Params)(H). (10)

Remember that we used the stream F together with the stream U as input
to the Left-Mult operator in equation 7 to define the tracker input stream Q.
In this way, we use our definition of single-point feedback control to continuously
update the tracker parameters.

3.2 Iterative Optimization for Aligning Photo Streams

Recently, there has been a large interest in the analysis of Web photo streams.
This interest is driven by the existence of several photo hosting websites that
contain huge amounts of personal photo collections. Kim et al. [14] proposed a
recent algorithm to build common storylines from Flickr’s photo streams. Their
algorithm takes as input, a set of n photo streams I = {Ik|k = 1, 2, 3..n} from
different Flickr users that share a common user activity. Each photo in a stream
Ik stores its capture time, a spatial pyramid histogram as a visual descriptor,
and a set of foreground regions that is initially empty. Every stream Ik is divided
into a sequence of photo blocks Bk = {B{k,i}|i = 0, 1, 2...}, where each block
B{k,i} represents the photos taken by a user over a certain period of time 4t1
(for example, a day). Each block also stores the earliest and latest capture times
of its photos. The algorithm then iterates between two tasks, an alignment task,
and a cosegmentation task.

In the alignment task, the algorithm starts by reading one block from each
stream, and constructs the block-list stream L = {Li|i = 0, 1, 2...}. Every Li ∈ L
is a list of blocks. Then, the algorithm selects from every list Li, a set of blocks
Ei that overlap in a timeline by at least a period 4t2 (for example, an hour). We
also attach to Ei, an iteration number N , that is initially zero. This generates
the overlapped blocks stream Q = {Qi|i = 0, 1, 2...}, where Qi = (Ei, Ni). The
algorithm defines a feedback stream F which is of the same type as Q. We will see
later how this stream is constructed. We add the elements of the two streams Q
and F together to construct the interleaved stream P = {Pj |j = 0, 1, 2...}, where
Pj = (Ej , Nj). Note that the stream P contains interleaved elements from the
two streams Q and H. For each block b of Ej ∈ Pj , the algorithm calculates the
similarity of b to other blocks in Ej . This is performed for two blocks (b1, b2) ⊂ Ej

by first finding for each photo x ∈ b1, its best visually similar neighbor y ∈ b2.
This similarity is calculated using a distance function f4 : Photo× Photo→ R.
If both x and y have foreground regions defined, f4 returns the distance between
the histograms of these regions. Otherwise, f4 returns the distance between
the spatial pyramid histograms of photos. The algorithm also defines another
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distance function f5 : Time× Time→ R, that calculates the difference between
the capture times of two photos. The algorithm then measures the similarity
between two blocks b1 and b2 using an energy function f6 : Block× Block→ R,
that sums the similarity defined by f4 and f5 along the correspondent photos
between b1 and b2. The method then maps every list of blocks Ej ∈ Pj into
a graph Gj : Graph 〈Block,Block× Block〉. This graph has the blocks of Ej as
vertices. An edge exists between two blocks, if they are best similar to each
other, in other words, they have the minimal distance to each other according
to f6. This generates the blocks-graph stream Z = {Zj |j = 0, 1, 2...}, where
Zj = (Gj , Nj). This stream defines the output of the alignment step.

The cosegmentation step takes as input, the blocks-graph stream Z. This step
maps every graph Gj ∈ Zj into a new graph Yj : Graph 〈Photo,Photo× Photo〉.
This is performed by first collecting all photos from the blocks of Gj . These
photos define the vertices of Yj . Then, the algorithm adds an edge between
two photos (x, y) if they are a correspondent pair of two different blocks. In
addition, for every photo x in a block b, the method adds edges to its k nearest
neighbors from the same block b. We append the graph Yj to Zj to construct
the photos-graph stream M = {Mj |j = 0, 1, 2...}, where Mj = (Gj , Nj , Yj). We
also increment Nj by 1. Afterwards, the algorithm in [28] defines for each photo
in the vertices of Yj ∈ Mj , a set of m foreground regions. This is performed by
applying the cosegmentation technique of [28] and belief propagation between
each photo and its neighbors in Yj . If a photo already have foreground regions
defined, then they are enhanced.

The algorithm of [14] iterates between the alignment task and the cosegmen-
tation task. This is achieved by defining a feedback loop that first filters the
photos-graph stream M based on the iteration number Nj ∈Mj . If Nj ≥ Nstop

then Mj is sent to the output, Otherwise, it is sent to the feedback loop. Nstop

defines the maximum number of iterations. This defines two streams M ′ and
R with similar type to stream M , where M ′ is the output stream, and R
is the return stream. The stream R is then mapped to the feedback stream
F = {Fl|l = 0, 1, 2...}, where Fl = (El, Nl). El is the list of blocks in the ver-
tices of Gl ∈ Rl and Nl is the iteration number. Remember that the feedback
stream F was added to the stream Q to define the interleaved stream P in the
alignment step. Note also that the block photos in F have foreground regions
defined. These regions enhance the matching of the feedback blocks in the align-
ment step. Consequently, This improves the output of the cosegmentation step,
which closes the feedback loop defined by [14] for iterative optimization.

Now, we will express the iterative optimization of [24] using our algebraic
extensions for feedback control. We define the following data types,

Shape : List
〈
R2
〉

; Region : Shape× Histogram

Photo : 2DImage× Time× Histogram× List 〈Region〉 × R
Block : List 〈Photo〉 × Time2; BlocksInfo : List 〈Block〉 × R;

BlocksGraphInfo : Graph 〈Block, Block× Block〉 × R
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PhotosGraphInfo : BlocksGraphInfo×Graph 〈Photo, Photo× Photo〉

Where, a Shape is a list of 2D points. A Region is a 2D vector (s, h), where
s : Shape, and h : Histogram is the region descriptor. We reuse the definition
of Histogram from the previous section. A Photo is a vector of five variables
(a, t, h, r, nn), where a : 2DImage, t : Time is the capture time, h : Histogram
is a visual descriptor, r : List 〈Region〉 is a list of foreground regions (initially
empty), and nn is the index of the nearest neighbor photo. A Block is a 3D
vector (b, t1, t2), where b : List 〈Photo〉, t1 : Time is the earliest capture time
of photos in b, and t2 is the latest capture time. A BlocksInfo is a vector
(w, itr), where w : List 〈Block〉, and itr : R indicates the iteration number. A
BlocksGraphInfo is a vector (c1, itr), where c1 is a graph on a set of blocks.
Finally, PhotosGraphInfo is a 2D vector (q, c2), where q : BlocksGraphInfo,
and c2 is a graph on a set of photos.

For simplicity, we will consider that we have three input photo streams I =
{Ik|k = 1..3}. We now define the following function,

g4 : Block× Photo→ Block× Block

g4(u, x) = { if duration(u) ≥ 4t1 then

u′ = ∅; y = u

else

u′ = u⊕ x //append x to Block u

y = ∅
return(u′, y) }

This function keeps appending the incoming photos to a block u′ and setting
the output y to an empty block. When the duration of the block4t = u′.t2−u′.t1
is larger than a certain interval 4t1 (A day in [14]), the function copies the block
u′ to the output y and resets u′ back to an empty block. We can use this function
together with a Reduce and Filter operators to process every stream Ik ∈ I
and generate a corresponding stream Bk : S 〈Block〉,

Bk, Ek , Filter(λ x : |x| 6= 0) ◦Reduce(g4,Empty-List)(Ik). (11)

Ground()(Ek). (12)

Where the ◦ operator is defined by [21] as a composition operator, that
supplies the output stream from the right operand as an input stream to the
left operand. The Filter operator removes the empty blocks from the output
stream of the Reduce operator. These empty blocks define the stream Ek which
is ignored by a Ground operator. We can now synchronize the three streams
B1, B2 and B3 using a Mult operator to construct the block-list stream L :
S 〈List 〈Block〉〉,

L , Mult()(B1, B2, B3). (13)
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We then define the function f7 : List 〈Block〉 → BlocksInfo. This function
selects from every list Li ∈ L, blocks that overlap in a timeline by at least a
period 4t2 (An hour in [14]). The function also attaches to the list of selected
blocks, an iteration number, which is initially zero. We can use f7 together with
a Map operator to define the stream Q : S 〈BlocksInfo〉,

Q , Map(f7)(L). (14)

At this step, we define the feedback stream F : S 〈BlocksInfo〉. We will
show later how we generate this stream when we discuss the feedback loop. We
add the two streams Q and F using an Add operator to generate the stream
P : S 〈List 〈Block〉〉,

P , Add()(Q,F ). (15)

Now, we define two functions f8 : BlocksInfo → BlocksGraphInfo, and
f9 : BlocksGraphInfo→ PhotosGraphInfo. The function f8 maps a blocks list
in BlocksInfo into a graph of blocks, where an edge exists between two blocks
if they are nearest neighbors according to the function f6. Note that f6 gives
better similarity distance if block photos have good foreground regions. The
function f9, on the other hand, maps a graph of blocks into a graph of photos,
and increments the iteration number by 1. Cosegmentation is applied between
each photo and its neighbors in the photos graph to define foreground regions or
enhance existing ones. We can use the two functions f8 and f9 together with two
Map operators to define the photos-graph stream M : S 〈PhotosGraphInfo〉,

M , Map(f9) ◦Map(f8)(P ). (16)

Now, we will discuss the feedback control of [14] to perform iterative opti-
mization using our algebraic extensions. We start by applying a Filter operator
on the stream M to define the output stream M ′ and the return stream R,

M ′, R , Filter(λ x : x.q.itr ≥ Nstop)(M). (17)

We access the attribute q : BlocksGraphInfo from each element Mj ∈ M .
Then, we test if the iteration number of q reached the maximum number of
iterations. If the test is trueMj is sent toM ′, if not, it is sent to R. We then define
a function f10 : PhotosGraphInfo→ BlocksInfo which maps every element in
R into an element of type BlocksInfo. This is performed by converting the
vertices of the blocks-graph attached to PhotosGraphInfo into a list of blocks,
and copying the current iteration number. The function f10 together with a Map
operator define the feedback stream F : S 〈BlocksInfo〉,

F , Map(f10)(M2). (18)

Remember that we used the stream F together with the stream Q as input
to the Add operator in equation 15 to define the stream P . This shows how
our definition of single-point feedback control describes iterative optimization
in [14].
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4 Discussions

The examples discussed in the previous section, demonstrate that we can ef-
fectively express feedback control in online computer vision algorithms using
our abstract algebraic description presented in section 2.3. In each discussed
algorithm, we first express its vision pipeline by a set of algebraic equations
based on the operators defined by [21]. Then, we use our abstract definition of
single-point feedback control to describe both the parameter tuning and the it-
erative optimization tasks. For example, the algebraic description of the online
tracking example [24] shows a flexible integration of our single-point feedback to
tune tracking parameters. Additionally, We can easily extend this single-point
feedback control to multi-point feedback control (Figure 1). We can use this,
for example, to control both the parameters of tracker and the parameters of
the HOG-based people detector algorithm [27] used by [24] to detect moving
objects. So, our multi-point description can scale up feedback to control several
operators of a vision pipeline. Furthermore, if the vision pipeline has several out-
put streams, we may extend our multi-point feedback to process multiple return
streams. In this case, we can use rate control operators such as Cut and Latch
to replace Copy in figure 1, and define asynchronous feedback control that does
not affect the flow rate of the feedforward pipeline. This also motivates that we
may perform multi-point feedback between different computer vision pipelines,
that work at separate data rates, without affecting one another.

The discussed iterative optimization example [14] suggests that our formal
feedback description may be useful for other tasks such as adaptive learning and
incremental evaluation. In addition, our feedback description may be used for
implementing blocking resolution in vision pipelines. For example, we can make
every pipeline operator attach its estimated runtime to the output stream. Then,
these runtimes can be collectively monitored by feedback control to send back
appropriate actions to the operators. So, our formal feedback description opens
new directions for tasks such as real-time debugging, performance monitoring
and bottleneck identification.

5 Conclusion

This paper develops abstract and formal methods for describing and implement-
ing feedback control in computer vision pipelines—online vision algorithms that
process images and videos (vision streams). These formal methods build upon an
existing stream algebra to flexibly integrate feedback control to vision pipelines.
We have demonstrated our formal methods for two state-of-the-art online com-
puter vision algorithms that implement feedback control for parameter tuning
and iterative optimization. We also discussed how our methods can scale up
feedback to control different stream operators of the vision pipeline. Our work
opens up new research directions to study real-time debugging, dynamic recon-
figuration, bottleneck identification, adaptive learning, and performance tuning
of vision pipelines.
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