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Integrating personal camera-equipped mo-
bile devices in traditional camera networks 
could enable a new class of mobile vision 
applications, but although integration is 
becoming technically feasible, consumer 
buy-in could be a thorny problem.

C amera networks, which comprise passive and 
pan-tilt-zoom devices, have received more atten-
tion in recent years,1 in large part because of 
their suitability in a range of applications, from 

surveillance to urban planning. This increased focus 
has come in concert with an explosion of smart camera 
devices, including smartphones, tablets, and most recently 
Google Glass. Not surprisingly, the number of mobile 
vision algorithms to capture, analyze, and store images 
has also grown. 

However, current mobile vision applications treat 
each camera device in isolation, ignoring the potential 
of collaborative sensing, in which multiple devices work 
together in a network designed to optimize energy con-
sumption and image quality. To date, this emphasis is 
understandable: smart cameras continue to evolve, and 

researchers have only recently begun to address their 
role as a sensor node in an existing network infrastruc-
ture. But newer mobile devices are certainly equipped to 
handle sensing tasks. Adding these devices to a traditional 
camera network or video surveillance infrastructure 
could usher in a whole new class of applications, from 
crowd-sourced and people-centric surveillance to par-
ticipatory event recording.

To answer technical questions about the possibility of 
integration, we looked at research in mobile vision, net-
work calibration, time synchronization, energy-efficient 
algorithms, and the dynamic use of mobile devices and 
identified a range of technical challenges in each area 
that suggest directions for additional research. Perhaps 
the most critical issue to resolve is the form of consumer 
participation: Will mobile device users be willing to join 
the network, for how long, and given what incentive? 
Given the dynamic nature of these devices, it is natural to 
question if a camera network can ever rely on consumer 
devices for its sensing needs. Although the network cannot 
rely solely on consumer devices, it can definitely use the 
images that they capture, and often to great advantage, as 
in disaster recovery.

To our knowledge, we are the first to explore in depth 
the issues in integrating camera-equipped consumer de-
vices into ad hoc networks that already comprise a mix of 
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passive and active cameras. Our aim is to produce a com-
pendium of research opportunities and open problems in 
this area.

MOBILE VISION
Mobile vision is the development of computer vision and 
image-processing techniques for camera-equipped con-
sumer devices.2 Mobile vision shares and builds on work 
in active vision, which deals with algorithms for pro-
cessing the images that active (nonstationary) cameras 
capture. Cameras in handheld devices are also active, but 
their motion is harder to model than the motion from an 
active camera on a robot, which in part has earned hand-
held camera-equipped devices the separate category of 
mobile vision. Vision algorithms that deal with egomo-
tion, or visual odometry—the process of determining a 
robot’s position, orientation, and velocity by analyzing 
associated camera images—are relevant to both active 
and mobile vision.

Mobile vision also poses unique challenges that stem 
from mobile device limitations in processing, memory, 
and bandwidth. Power requirements are of particular 
concern in implementing vision algorithms on consumer 
devices. Cameras mounted on small/light unmanned ve-
hicles (UAVs) share many characteristics with cameras 
embedded in consumer devices. 

Ultimately, by their sheer ubiquity, consumer devices 
will shape mobile vision techniques that meet the needs 
of highly mobile, transient smart cameras with restricted 
computational and energy resources. UAV cameras will 
benefit, of course, but they will not drive the change.

Device requirements and new protocols
Camera-equipped consumer devices now have the compu-
tational resources to support computer vision algorithms, 
along with sensors such as compasses, accelerometers, 
and gyroscopes that can support applications such as aug-
mented reality and geolocalization.

The last 30-plus years of research on computer vision 
algorithms have produced highly accurate and efficient al-
gorithms that consumer devices are sophisticated enough 
to handle. Even if the algorithms exceed the device’s com-
putational capacity, it can use high-speed, low-latency 
wireless communication protocols to draw on cloud-based 
computational resources to reduce that burden. 

Applications and frameworks
Software development tools, standard computer vision li-
braries, such as OpenCV (www.opencv.com) or Qualcomm 
FastCV (https://developer.qualcomm.com/mobile-devel-
opment/mobile-technologies/computer-vision-fastcv) and 
graphics libraries, such as OpenGL have made it easier 
to develop mobile applications for consumer devices. 
Open source operating systems, such as Android, and 

augmented reality platforms, such as VRToolKit, have also 
facilitated development.

Consequently, myriad mobile vision projects and prod-
ucts are appearing in object recognition (landmarks, logos, 
and goods), augmented reality, gesture recognition, road 
sign recognition, lane detection, automatic cruise control, 
and collision avoidance.2 The applications and frameworks 
in the “What’s New in Mobile Vision?” sidebar reflect some 
interesting developments. 

Some of these applications and frameworks follow the 
client-server model, in which a cloud server relieves the 
camera device of the more complex image computations. 
The degree to which computation is split between device 
and server depends on the algorithm and its complexity, 
dataset size, available bandwidth, and the application’s 
performance requirements.

INTEGRATION ISSUES
None of the new mobile vision offerings consider the 
possibility of multiple consumer devices cooperating in 
common sensing or imaging tasks, nor do they acknowl-
edge the possibility of integrating consumer devices into 
existing surveillance networks. Some researchers have 
proposed schemes in which mobile phones are stationary 
nodes in a network of pan-tilt-zoom cameras,3 but such 
proposals fail to recognize that mobility is precisely why 
integration is challenging. For instance, unlike PTZ cam-
eras, the movement of mobile phones cannot be controlled 
in a prespecified way to support a sensing goal.

The core issue for integration is that, to carry out collab-
orative sensing, each node must be able to cooperate with 
others, including any mobile devices. In a typical applica-
tion scenario, a camera network, such as that in Figure 1, 
must identify events of interest in a particular area, which 
requires answering where and when questions. To answer 
the where question, nodes in the camera network must 
have a common coordinate system (geometric calibra-
tion). To answer the when question, they must be able to 
synchronize clocks (time synchronization).

Thus, adding mobile devices to a camera network will 
require algorithmic optimization, as well as addressing 
significant geometric calibration and time synchronization 
issues. Table 1 lists key mobile device features and the 
pluses and minuses for integration. 

Integration also requires looking at energy efficiency, 
the dynamic nature of mobile device use, and other 
challenges, such as security and privacy and scalability.

Algorithmic optimization
Mobile devices require sensing algorithms that are 
opportunistic, leveraging mobile phones in the scene 
when it is possible to do so. Reengineered algorithms are 
not likely to be sufficient support in this regard. Rather, 
a new class of vision algorithms is required to analyze 
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the images that transient, highly mobile consumer 
devices capture. Any such algorithm must account for 
mobile devices’ characteristics that affect image capture 
and analysis.

Real-time performance versus limited resources. Typi-
cal mobile vision applications are interactive by design 
and hence require real-time performance. However, 
most mobile computing platforms have limited com-
putational resources. Enabling real-time performance 
in a resource-constrained environment might require 
designing algorithms from the ground up. One solution 
is to optimize data access, particularly to data stored in 
caches, by preallocating data, avoiding data duplication, 
and exploiting temporal and spatial data locality. Another 
approach is to use low-level code optimization, such as 
loop unrolling and pipelining, and to use hardware-spe-
cific instruction sets. 

Memory is also limited, and processing can be slow. 
Data types such as floating-point calculations are not 
compatible with the devices’ lack of dedicated or spe-
cialized hardware, and certain algorithms perform 
poorly in limited formats. Thus optimization should in-
clude smaller data types and limit processing to small 
data subsets. 

Motion and energy use. Mobiles devices exhibit rapid, 
jittery motion, which makes it difficult for any algorithm 
to analyze the captured images. Even if the algorithm 
could deal with these images, it is likely to have a large 
energy footprint.

Communication. A key feature of mobile devices is their 
ability to communicate with each other and with a cen-
tral server. Client-server algorithms that divide the work 
between the device and a server are a promising way to 
offload computational needs. Again, however, energy 
consumption from increased communication overhead 
is a concern.

Geometric calibration 
In some camera network applications, the nodes must es-
tablish a common coordinate system. Video surveillance, 
for example, requires multiple observations of the same 
person or object from different cameras. In these applica-
tions, a common coordinate system enables the object’s 
partial 3D reconstruction and greatly simplifies object 
matching across multiple views. However, the device’s ex-
trinsic parameters—position and orientation—must be 
calibrated, which often comes with high computational 
and energy requirements.
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Figure 1. Characteristics of cameras that could be part of an integrated camera network. The challenge is to address the 
differing needs and requirements for these devices, particularly between pan-tilt-zoom (PTZ) cameras and consumer 
mobile devices.

Table 1. How mobile device features and requirements could influence an integrated camera network.

Feature or requirement Pluses Minuses

Time synchronization with other nodes Many clock sources available Delays from communication over unreliable 
connections could affect synchronization strategy

Spatial synchronization with other 
nodes

Additional embedded sensors (such as 
gyroscope and GPS) can help calibration

Difficult to make any assumption or have static 
calibration or common coordinate system

All-in-one devices (computation, 
communication, sensors, display)

No need to assemble with communication 
(Wi-Fi/Zigbee) modules, or displays

Hard to add additional modules 
to improve the system

Freely moving camera with all the 
degrees of movement

— Challenge for computer vision algorithms

Limited power — Battery capability crucial for user satisfaction; 
limits applications

Ability to capture specific people-
centric view of a scene

New applications; perspective that can help 
in surveillance, disaster recovery, and so on

Privacy concerns (difficult to convince users to 
donate their mobile phone resources)
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Proposed algorithms. Calibration algorithms to estimate 
a mobile device’s extrinsic parameters do not exist in 
part because it is not clear how to constrain the device’s 
3D location. Standard chessboard-based approaches are 
suitable only for estimating the intrinsic parameters of 
cameras on mobile devices. Partial calibration techniques 
that estimate planar homography rely on finding corre-
spondences in the scene, but they assume that the camera 
is processing images continuously in real time to update 
the correspondences needed for those estimates. 

One decentralized calibration approach4 assumes that 
the camera constantly processes the captured images to 
extract features, which are used in a decentralized and col-
laborative way to calibrate the network. The approach also 
assumes that camera views overlap, which is not always 
the case.

Another approach5 uses extremely low resolution images 
to calibrate the network. A location sensor, such as an ul-
trasound Cricket receiver, encodes the locations of four 
reference points (correspondences). Four low-resolution 
pictures of a reference point, each taken from a different 
view, are sufficient to estimate the location and the orien-
tation of a visual sensor node. The geometric calibration 
process uses these estimates to coordinate sensor nodes. 

The method assumes that sensor nodes are stationary 
and that calibration is performed only when the network 
is set up, but by deploying multiple reference points in the 
scene, it might be possible to use the method to estimate a 
mobile device’s extrinsic parameters. However, there are 
still concerns. For example, a large number of reference 
points must be present in the scene, and reference points 
must be visible at all times. This isn’t always possible be-
cause of occlusions. The calibration’s quality and accuracy 
will depend on both the number of reference points visible 
in an image and the image resolution.

An alternate approach for camera network calibration 
is to exploit the other sensors embedded in mobile devices, 
such as gyroscopes, GPS, compasses, and accelerometers. 
Location sensors, such as GPS or Wi-Fi-based localization, 
can provide a coarse estimate of a device’s location. Recent 
work even uses encoded LED lights to estimate the location 
of mobile devices.5 

Although these approaches can only roughly estimate a 
device’s location and orientation, refinements are possible 
with computer vision techniques. Unfortunately, energy 
consumption is still an open problem. Mobile devices have 
limited energy budgets, so cameras on mobile devices are 
unsuitable for continuous use.

Requirements for new algorithms. Maintaining the cali-
bration of a camera network with highly mobile nodes is 
computationally expensive. One direction is to develop 
algorithms that can perform multicamera sensing without 
relying on camera and network calibration. Another is to 

search for new methods and techniques that can estimate 
high-quality camera and network calibration, since some 
applications, such as scene 3D reconstruction or structure-
from-motion will always require complete 3D camera 
network calibration.

Time synchronization
In collaborative sensing, a common clock allows the fusing 
of information captured at multiple nodes, yielding a more 
complete picture of the event in question. Even without 
fine-grained time synchronization, it is often desirable to 
time-order lower-level events to exploit causal relation-
ships and detect higher-level events.

Sensor network research has addressed time synchro-
nization in ad hoc wireless networks in some depth. One 
important finding6 is that classical clock synchronization 
algorithms are unsuitable for wireless sensor networks 
because each node has a limited communication range 
and all the nodes are highly mobile. Both reasons make 
continuous clock sharing infeasible. 

Classical time synchronization algorithms rely on esti-
mating communication delays between different nodes, 
which is difficult when the nodes are highly mobile. The 
timestamp transformation scheme6 circumvents this prob-
lem by using local clocks to generate timestamps, which 
nodes share. The receiving node transforms the timestamp 
to its local time. The timestamp scheme assumes that 

 • each node has a clock with a known maximum clock 
drift, and

 • the two nodes sharing timestamps remain connected 
long enough to exchange one additional synchroniza-
tion message.

Although this method works well for ad hoc wire-
less sensor networks, it might not be straightforward to 
deploy on camera networks with mobile devices because 
the second assumption would be hard to ascertain. Even 
so, adapting the timestamp scheme is worth investigat-
ing, possibly by having the centralized server perform 
timestamp transformation, similar to the way a cell tower 
handles time synchronization in mobile devices. 

Learning-based synchronization is another option. 
Such schemes attempt to model communication delays 
statistically by relying on previous observations. However, 
communication delays depend heavily on the camera net-
work’s current status, which cannot be known a priori. 
For this option to work in general, research must address 
different time synchronization needs through application-
specific time synchronization schemes.

Energy efficiency
Applications that run on camera-equipped mobile devices 
must be energy efficient. Although limiting data acquisition 
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is one way to achieve that efficiency, it is not ideal because 
both performance and interactivity benefit from constant 
data acquisition and processing. A mobile vision algorithm 
must balance sporadic and continuous data acquisition, 
and mobile vision research has explored several principles 
to achieve that balance. These principles should guide any 
methods, techniques, and tools for developing energy-
aware computer vision algorithms7–9:

 • Limit active time and increase idle time. This principle 
applies to both processing steps and sensor activa-
tion. In hierarchical processing, the mobile device 
CPU can be activated only when new data come in or 
at the user’s input, while remaining idle for the rest 
of the time. In hierarchical sensor activation, sensors 
with small energy requirements are on all the time 
and can activate sensors with higher energy require-
ments only when needed. 

 • Use hardware-specific code optimization. The algo-
rithm can turn off hardware units when they are not 
needed, saving energy and prolonging the device’s 
operational life.

 • Use the display efficiently. Using the screen on a 
mobile device drains energy. Algorithms should not 
reflect on the display intermediate results—rather, 
only final and significant ones, to keep it switched 
off for more time. 

 • Exploit multicore architectures. Many mobile devices 
have multicore processors that can handle single-
instruction, multiple-data parallelism. Moreover, 
exploiting data parallelism is intrinsic to computer 
vision and image processing algorithms.

Dynamic nature of mobile devices
Unlike other camera nodes, a mobile device is not com-
pletely subservient to the network; rather, it is there to 
serve its user. The user can remove the mobile device from 
the camera network without any warning; the mobile 
device is not always on or pointed in the right direction; 
and the user can be employing the device in a way that 
is unrelated to the sensing or processing that the camera 
network requires.

We see two ways to work around this erratic availability. 
This first is to have the mobile consumer device initiate the 
connection to the camera network and offer its imagery 
and storage and processing resources. Suppose, for exam-
ple, that an individual sees an event of interest and starts 
recording this event on his mobile device. The device can 
query other cameras, both stationary and nearby mobile 
devices, and begin a collaborative sensing session.

The second way is to have the camera network initi-
ate contact with mobile devices in the vicinity of an event 
of interest. This scenario is somewhat more problematic 

because the camera network must convince the user to 
employ his device in this way.

Both options require new network management and 
control theory and methods, as well as new techniques 
for supporting collaborative sensing using a multitude of 
imaging sensors each with different imaging, sensing, pro-
cessing, and communication capabilities. 

The dynamic availability of mobile devices must be re-
solved before integration is possible. Users will most likely 
have to give consent to network participation, and they will 
need an incentive to capture images for the camera network. 
Other needs are new techniques for opportunistic sensing 
that will enable a camera network to use mobile devices as 
they appear in the scene and redesigned scheduling and re-
source allocation algorithms that account for the network’s 
high dynamicity. Obviously, much work remains in this area.

Other integration challenges
Some integration issues do not fit neatly into the categories 
we have described so far. These include network topol-
ogy estimation, security and privacy, and network size 
and scale.

Network topology. Because mobile devices exhibit 
unpredictable and extreme motions, estimating network 
topology is often difficult. Standard approaches1 include 
centralized processing, in which every node commu-
nicates with a central server; distributed processing, in 
which nodes share information with other nodes nearby; 
and clustered processing, in which nodes are in clusters 
and clusters share information.

Centralized processing is perhaps the best starting 
point for estimating topology in a camera network with 
mobile devices. Another option might be to set up spatially 
oriented clusters of mobile devices, formed according to 
device proximity estimates from GPS or Wi-Fi localization. 
Setting up and maintaining these clusters could introduce 
communication lag.

A fully connected network might have prohibitively high 
bandwidth and energy requirements. However, topology 
estimates are one way to more efficiently use communica-
tion resources and reduce energy use. 

Security and privacy. Smart camera networks and ubiq-
uitous video surveillance raise serious social, ethical, 
privacy, and legal concerns, and integrating camera-
enabled consumer devices into these networks multiplies 
those concerns.10,11 The aim is to protect both the privacy 
of an active participant in the camera network and the 
privacy of those the participant could exploit. Fortunately, 
the same computer vision algorithms that make video 
surveillance so intrusive are also useful in implement-
ing privacy protection. This is a promising direction for 
future research.
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Integrating consumer mobile devices into video surveil-
lance networks opens an entirely different way to interact 
with the cameras on the scene. Current video surveillance 
networks are closed systems that the few use to observe 
the many. There is no way for an observed individual to 
know how the video is collected, who has access to it, and 
what happens to it.

Proponents of video surveillance claim that closed net-
works ensure individual safety. We do not dispute this 
claim, but having access to a sanitized video from a sur-
veillance system can also be a benefit. Consider a mother 
who loses a child in a busy mall. In such extreme circum-
stances, shouldn’t the parent have immediate access to the 
video feeds through her mobile phone?

Privacy and legal issues do come into play, but this 
scenario is an example of how camera-equipped mobile 
devices can enable new ways for consumers to interact 
with and benefit from an existing camera network. Such 
applications are fertile ground for user interaction and se-
curity research.

Network size and scale. Because thousands of camera-
equipped consumer devices might become nodes at 
any given time, an integrated network could become 
quite large. Camera networks not only cover extended 
spaces but also must contend with density from a small 
space with many mobile device users. Such variance 
and scale will require new tools to study issues in 
extremely large networks.

R ecent developments in processer technologies 
and embedded systems are equipping consumer 
devices with enough processing to become nodes 

in a network of active and passive cameras. We believe 
that it is both feasible and desirable to proceed with this 
kind of integration. However, the sheer scale and density 
of these networks, combined with the dynamicity of the 
consumer devices and their extreme, unrestricted motion, 
are beyond existing techniques to set up ad hoc smart 
camera networks.

We have identified a host of interesting technical 
challenges: low-power, energy-efficient computer vision 
processing; camera network calibration and time syn-
chronization; camera network control, coordination and 
scheduling; security and privacy; and user interaction. Our 
current focus is on low-power, energy-efficient computer 
vision processing on mobile devices. This ability, we feel, 
underpins some of the other areas of research identified 
in this article.

Ours is one perspective on integration, but we expect to 
see others explore the idea of using networks for partici-
patory sensing, video surveillance, and urban monitoring. 
Opportunities abound for both fundamental and applied 

research to answer technical, ethical, and social questions, 
taking the next important steps toward moving ad hoc 
smart camera networks from vision to reality. 
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