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Abstract—This paper presents a new approach for automatic
road detection in traffic cameras. The technique proposed
here detects the dominant road boundary and estimates the
vanishing point in images captured by traffic cameras under
a wide range of lighting and environmental conditions, e.g., in
images of unlit highways captured at night, etc. The approach
starts by segmenting the traffic scene into a number of
superpixel regions. The contours of these regions are used to
generate a large number of edges which are organized into
clusters of co-linearly similar sets using hierarchical bottom
up clustering. A confidence level is assigned to each cluster
using a statistical approach and the best clusters are chosen.
Pairs of clusters with high confidence levels are then ranked
and filtered according to image perspective and activity. The
top ranked pair is selected as the road boundary. The proposed
technique is tested on a real world dataset collected from the
Ontario 401 traffic surveillance system. Experimental results
demonstrates a distinct speedup and improvement in accuracy
of the proposed technique in detecting the dominant road
boundary in challenging scenarios compared to the state of
the art Gabor filter based technique.

Keywords-Road Boundary Detection; Hierarchical Cluster-
ing; Superpixel Segmentation.

I. INTRODUCTION

Traffic surveillance cameras are ubiquitous [1], [2]. Traffic
cameras are being deployed all over the globe in an effort
to 1) automate road toll collection, 2) analyze traffic, 3)
enhance road safety, 4) increase situational awareness of
emergency personnel, etc. Given the shear amount of video
data being collected through these systems at any given time,
it is concomitant to develop algorithms capable of analyzing
this video data with little human input. Within this context
an important enabling capability is automatic road detection.
Once the road region is identified subsequent processing
can focus on these regions to measure traffic flows, road
incidents, erratic or dangerous driving, etc.

Automatic road detection in traffic surveillance video is
challenging due to the range of environmental conditions
under which these systems operate: rain, snow, sunshine,
day, night, fog, etc. Several techniques have been proposed
for road detection in traffic cameras. Broadly speaking these
can be divided into three categories: (1) activity-driven [3],
[4], (2) feature-driven [5], [6], [7] and (3) model-driven
[8], [9]. The activity-driven approaches benefit from the
relatively high vehicle motion activity along the roads. These
generally work by extracting an activity map which divides
the image into active (road) and inactive (non-road) regions.

Algorithm 1 Finding dominant road boundaries in traffic
sequences: an outline
Input: Image sequence
Output: Dominant road boundary

1: Divide each image into homogeneous regions through
superpixel segmentation.

2: Approximate each superpixel contour with polygons to
get edges.

3: Perform bottom up hierarchical clustering of these
edges.

4: Use statistical measures (χ2 and Student-T Test) to
identify the top-ranked clusters, each cluster represents
a road boundary in the image.

5: Construct top-ranked cluster pairs through perspective
filtering and road-activity analysis.

6: Top-ranked cluster pair is returned as the dominant road
boundary.

Feature-driven approaches rely upon the extraction of image
features to detect lane and road boundaries. Model-driven
approaches aim to match a road model to the image.

This work develops a novel scheme for detecting domi-
nant road boundaries in traffic cameras (see Algorithm 1).
Our approach looks for stable edges in an image sequence
to find the dominant road boundary. Since the proposed
approach accumulates evidence over multiple images, it is
immune to traffic variations that plague schemes relying
upon a single frame to identify road boundaries. We compare
our approach with another recent scheme that uses Gabor
filters to detect dominant road boundaries [7]. We show that
our approach outperforms the Gabor filter approach.

The proposed technique is fully automatic and requires no
human input. It can detect road regions under challenging
environmental conditions, such as day, night, rain, snow, wet
roads that exhibit strong reflections from vehicle headlights,
dark roads that are seen only through vehicle headlights,
etc. The proposed technique is aimed at low-framerate, low-
resolution imagery; however, it works equally well when
presented with high-framerate, high-resolution imagery. We
have evaluated the proposed technique on a manually labeled
real world image sequence dataset collected from the Ontario
401 traffic surveillance system. A secondary contribution of
this work is the cluster selection strategy that we have devel-



Figure 1: Superpixel segmentation. (Left) original image.
(Middle) superpixel boundaries. (Right) approximating su-
perpixel contours with polygons and showing edges that are
more than 10 pixels in length.

oped for choosing the most promising clusters in hierarchical
bottom up clustering.

The remainder of this paper is organized as follows.
Sec. II describes the proposed technique. Next we present
experimental evaluation in Sec. III. Sec. IV concludes the
paper.

II. ROAD BOUNDARY DETECTION

The proposed technique consists of five steps: superpixel
segmentation, contour approximation, hierarchical bottom
up clustering, confidence assignment, and pairwise ranking.
We discuss each of these steps below.

A. Superpixel Segmentation

Superpixel segmentation, originally proposed by Ren and
Malik [10], segments an image into a collection of homo-
geneous regions. Several approaches have been proposed
to perform superpixel segmentation [11], [12], [13], [14].
Generally speaking all of these techniques are slow and not
suitable for our application. We are interested in near real-
time superpixel segmentation. [15] develops a fast algorithm
for performing superpixel segmentation, but it requires man-
ual seed-point selection. Instead we employ the approach
described in [16] to perform superpixel segmentation at
near real-time rates (see Fig. 1). This technique starts
by performing morphological open/close operations on the
input image. Next Hue/Saturation/Value color quantization
is applied, fusing neighboring regions having similar color
values in the process. Region labeling, sorting and merging
addresses the over-segmentation that typically occurs when
performing superpixel segmentation. For further details we
refer the kind reader to [16].

We observe that while the size of superpixels is sensitive
to the lighting and environmental conditions under which
the image was captured, superpixel boundaries are still
able to identify stable edges in the scene. By accumulating
these edges over a sequence of images, road region can
be identified even in the presence of extreme lighting and
environmental conditions.

B. Contour Approximation
Edges that feed into the hierarchical clustering are com-

puted by approximating the boundary of each superpixel
with a polygon. Superpixel boundaries are approximated
by polygons through adaptive sampling [17]. Initially each
superpixel boundary is sampled at three points (start, middle,
and end). Tangent values at these points are computed to
determine the degree of colinearity of the three points. The
sampling continues as long as the degree of colinearity is
below a certain threshold. This approach can sometimes lead
to over-sampling, i.e., a straight section of the superpixel
boundary is represented by three or more line segments. We
resolve this be deleting the intermediate vertices (sample
points) that lie on a straight segment. Fig. 1(c) shows the
polygon edges that are at least 10 pixel long.

C. Hierarchical Bottom up Clustering
Hierarchical bottom up clustering with average linkage

is applied to the segments of the polygons approximating
superpixels from an image sequence. We represent each
segment s in polar coordinates giving rise to 2D vectors of
the form (ρ, θ). Let {si|i = 1 · · ·n} be the set of all segments
for a given image sequence. We normalize the segments such
that these have zero mean and unit variance. Henceforth we
use si = (ρi, θi) to refer to the ith normalized segment. The
set S of normalized segments are fed into the bottom up
hierarchical clustering as inputs.

Figure 2: Segments from three clusters along a single path
in the cluster hierarchy tree. (Left) root cluster. (Middle) A
cluster with large variance and a large number of samples.
(Right) A cluster with small variance and a large number of
samples, representing a road boundary.

Hierarchical bottom up clustering starts by creating a
cluster ci for each segment si. The closest pair of clusters
is merged to form a single cluster as one moves up the
hierarchy. The process continues until only a single cluster
is left (root). Distance between two clusters is defined to
be the Euclidean norm in the Hough space. Let ni be the
number of segments in cluster ci. Furthermore we define Si
to be the set of segments belonging to cluster ci. Then the
average distance between two clusters ci and cj is defined
as,

d(ci, cj) =
1

ninj

∑
si∈Si

∑
sj∈Sj

|si − sj |. (1)



Figure 3: Clusters with high confidence value using a 25
frame sequence. (Left) Cluster means corresponding to clus-
ters containing at least 30 segments. (Right) Cluster means
corresponding to clusters containing at least 50 segments.

D. Confidence Assignment

A confidence level is assigned to each cluster in order
to penalize clusters with high variance or small number of
segments. For each cluster, we have the cluster mean x and
variance s2 to be unbiased estimation of the unknown true
mean x∗ and true variance σ2. Intuitively a cluster with a
small variance and a large number of segments should have
a higher chance for the estimated mean to be closer to the
true mean. This can be stated as P [|x∗ − x| ≤ ε], for a small
error ε. The expectation of this probability is

E (P [|x∗ − x| ≤ ε]) =
∞∫
−∞

Px(u)

∞∫
0

Ps2(v)

x+ε∫
x−ε

N (w|µ = u, σ2 = v)dw dv du,

(2)
where the cluster is modeled as a multivariate normal
distribution N (µ, σ2) evaluated over a confidence interval
±ε around the cluster estimated mean x. The first and second
integrals represent the likelihood of various assignments to
the random variables x and s2 around the cluster true mean
x∗ and true variance σ2. This integral is difficult to solve
for each cluster. Instead we can factor this integral and
approximate the likelihood terms over confidence intervals
as

∞∫
−∞

Px(u)du

∞∫
0

Pσ2(v)dv ≈
x+α∫
x−α

Px(u)du

s2+β∫
s2−β

Ps2(v)dv,

(3)

where α and β define confidence intervals around the true
mean and true variance, respectively. Here k is the degree of
freedom which equals n−1, n being the number of samples
in the cluster. The first likelihood term can be modeled
by Student-T distribution Studx(x, s2, k) [19], where the
likelihood is calculated over a confidence interval α and
has a high value when a cluster has low variance and large
number of samples. The second likelihood term can be
modeled by a Chi-square (χ2

k) distribution over a confidence

Figure 4: Perspective filtering and image activity based
ranking cluster pairs. The solid lines indicate mean lines
corresponding to cluster pairs that survive the perspective
filtering and activity ranking. (Left) Perspective filtering with
respect to the red arrow indicating the downward direction.
(Right) Activity based filtering. Here circles represent ve-
hicular traffic.

interval β [19], where the likelihood has a high value when
the number of samples is large, indicating good estimation
of cluster variance. We can then define the confidence value
for a cluster ci as

Conf(ci) =

x+α∫
x−α

PT (u|s2, k)du
s2+β∫
s2−β

Pχ2(v|s2, k)dv (4)

where the interval α is calculated from the Student-T
statistics to be ±0.05 s√

n
and the interval β is calculated

from the (χ2
k) statistics to be (k, 1.2k). This assigns low

confidence values to 1) clusters with large variances and
to 2) clusters with low variances but having only few
samples. Clusters that have large number of samples and
low variances will be assigned high confidence values. These
clusters correspond to dominant edges in the image. Since
we integrate information from multiple frames, these edges
also need to be persistent across multiple images. Fig. 3
shows the top 20% high confidence clusters with different
values for the number of segments per cluster.

Lines corresponding cluster means are constructed by
projecting cluster segments onto the cluster means, which
determines the extent of support provided by cluster mem-
bers for its mean. This serves two purposes: 1) clusters can
be rejected if the length of its mean line segment is less than
some threshold and 2) detect road boundaries that may have
gone undetected between frames.

E. Pairwise Ranking

Although the means of the high confidence clusters can
determine the dominant lines in a frame sequence, several
lines can be misclassified as the the road boundary. This
is resolved by constructing cluster pairs and ranking these
pairs based upon perspective and image-activity cues. Lines
corresponding to top ranked clusters are paired with each
other to find the top-ranked pair, representing the dominant
road boundary. Specifically, for each pair, the vanishing point



is calculated. The pairs are then filtered toward the camera
perspective view of roads which makes the road boundary
lines (parallel in real world) have an angle of 90 degrees
at max with a vector that point downwards in the image
plane (Fig. 4(a)). Pairs that do not meet this requirement are
rejected. Confidence score rConf and activity score rActivity
are computed for each of the remaining pairs. The overall
rank of a pair (i, j) is

r(i, j) = r
(i,j)
Conf × r

(i,j)
Activity,

where

r
(i,j)
Conf = Conf(ci)× ni × Conf(cj)× nj

and

r
(i,j)
Activity =

#objects in the region
area of the region

.

The region is defined to be the image region enclosed by
the lines representing cluster means. r(i,j)Conf prefers cluster
pairs containing large number of segments and having stable
means; whereas, r(i,j)Activity prefers cluster pairs that enclose im-
age activity.1 The image activity is extracted by segmenting
the moving vehicles using background subtraction [20] and
calculating object centroids. Fig. 4(b) illustrates perspective
and image activity based ranking of cluster pairs.

III. EXPERIMENTAL RESULTS

We have tested the proposed road boundary detection
strategy on a dataset collected from 14 cameras installed
on the Ontario 401 highway. These cameras are part of
the 401 traffic surveillance system. We have manually la-
beled 50 frames from each location to serve as ground
truth. 25 of these frames are taken during the day time;
where as, the rest are taken during the night time. Out
of 14, two cameras are installed at locations where the
highway is not lit at night. Here the road can only be
seen through vehicle headlights. The dataset shows large
variations in color, texture, illumination and the surrounding
environment. The frames are recorded 15 to 20 minutes apart
to ensure coverage of different environmental conditions.
Frame resolution is 320×240. We have intentionally avoided
high-resolution/high-frame rate images to demonstrate that
the proposed road boundary detection strategy works well
under resource constrained settings. For our experiments, the
number of detected superpixels are at most 100 depending
on the scene details.

The proposed technique is capable of detecting the dom-
inant road boundary that surrounds the active regions in
the image. The technique is compared to the Gabor filter
based technique that appeared in [7], which uses Gabor filter
outputs to vote for the vanishing point corresponding to the

1The assumption being that dominant image activity is the result of
vehicular traffic in traffic surveillance images.

(a) Precision

(b) Recall

(c) Runtime Performance (in seconds)

Figure 5: Statistical comparisons between the proposed
method and the Gabor filter based method [7]. X-axis
represents the frame number.

most dominant road boundaries. Gabor filters are also used
in [9] to estimate the vanishing point.

Figure 6 shows sample results in 8 different locations. For
each location, the first image is the ground truth, the second
is our result computed over 25 frames, and the third is the
Gabor filter based result. For Gabor filter based method, we
randomly selected one of the 25 frames to find the dominant
road boundary. The Gabor filter based method is sensitive
to noise, illumination changes, light reflections, and unlit re-
gions of the roads. However, Our technique is able to return
a reasonable estimate of the dominant road boundaries under
severe lighting and environment conditions. The Gabor filter
based method, being memory-less, is also affected by the
current traffic conditions.

The results demonstrate that our method is able to detect
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Figure 6: Results of the proposed technique compared to the Gabor-based approach [7] in 9 different locations in day/night
lighting. The first image in each location is the ground truth, the second is our results and the third is Gabor-based results.

the dominant road boundary correctly under a wide-variety
of challenging lighting and environmental conditions. The
BrockRd, Yonge and LiverPool locations provide example
of day and night lighting conditions. A side lane is visible in
the Bayview location. The Hwy137 location is unlit. Here at
night the road is only seen through vehicle headlights. The
Whites location illustrates how vehicle headlight reflections
can be nuisance under wet road conditions. The Bathurst
and Bayview location shows reflections of vehicle lights that
disrupt the road region. At the Avenue location the camera’s
view of the dominant road is blocked by another road.

The precision and recall comparisons [21] have been
used to evaluate the performance of the proposed approach.
Manually labeled ground truth road regions are defined for
each location. The precision is defined as the ratio of the
intersected area of the estimated road boundary and the
ground truth to the area of the estimated boundary. The recall
is the ratio of the intersected area of the estimated boundary
and the ground truth to the area of the estimated truth.

Figure 5a shows the precision comparison between our
method and the Gabor filter-based technique. It can be seen
that our method achieved 80% precision on average with
23%σ after 25 samples. The Gabor filter based technique
achieved 35% on average with 16%σ. Figure 5b shows the
recall comparison where the proposed method achieved 77%
on average with 20%σ compared to the Gabor filter based

technique which achieved 40% on average with 23%σ.
Runtime comparison of our approach with the Gabor filter

based approach is shown in Figure 5c. Experiments were
executed on an 2.9GHz Quad-core AMD Athlon II 635
machine with 6GB RAM. Our method achieved 40sec on
average over 25 image sequence with a standard deviation
of 8.7 sec, while the Gabor filter based technique achieved
105sec on average with a standard deviation of 1.8 sec.
The proposed technique clearly outperforms the Gabor filter
based method.

These results confirm the effectiveness of the proposed
technique in estimating the dominant road boundary in
several difficult lighting and environmental conditions. Ad-
ditionally, our method outperforms the Gabor filter based
state of the art technique in terms of precision, recall and
runtime.

IV. CONCLUSION AND FUTURE WORK

This paper presents a new technique for dominant road
boundary detection. The proposed method is evaluated on
a realistic dataset gathered from traffic surveillance cam-
eras installed on the Ontario 401 highway. The dataset
exhibits a large variation in lighting and environmental
conditions. We compare our method against a state-of-the-
art Gabor filter based method, and our method outperform
the exiting method in terms of precision, recall and runtime



performance. We plan to improve the performance of our
algorithm by means of incremental hierarchical algorithms
implemented in a distributed map-reduce framework. We
also wish to explore applying GPU-based techniques to
further improve the proposed algorithm so it can be applied
to traffic video sequences in real-time.
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