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Abstract

Keywords:

We present a visual sensor network—comprising wide field-of-view (FOV)
passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of
automatically capturing closeup video of selected pedestrians in a des-
ignated area. The passive cameras can track multiple pedestrians si-
multaneously and any PTZ camera can observe a single pedestrian at
a time. We propose a strategy for proactive PTZ camera control where
cameras plan ahead to select optimal camera assignment and handoff
with respect to predefined observational goals. The passive cameras
supply tracking information that is used to control the PTZ cameras.

Smart cameras, camera networks, computer vision, PTZ cameras, visual
surveillance, persistent human observation

1. Introduction

Automated human surveillance systems comprising fixed CCTV cam-
eras can detect and track multiple people, but they perform poorly on
tasks that require higher resolution images, such as acquiring closeup
facial images for biometric identification. On the other hand, active
pan/tilt /zoom (PTZ) cameras can be used to capture high-quality video
of relevant activities in the scene. This has led to surveillance systems
that combine passive wide field-of-view (FOV) cameras and active PTZ
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Figure 1.1: (a) A camera network for video surveillance consists of cam-
era nodes that can communicate with other nearby nodes. Collabora-
tive, persistent surveillance requires that cameras organize themselves
to perform camera handover when the observed subject moves out of
the sensing range of one camera and into that of another. (b) The need
for planning in camera assignment and handoff: A control strategy that
does not reason about the long-term consequences of camera assignments
might prefer Assignment 1 over Assignment 2, which would eventually
lead to an observation failure.

cameras. Typically, the PTZ camera control routines rely on the track-
ing information supplied by the passive cameras.

Manual control of PTZ cameras is clearly infeasible for large networks,
especially as the number of persons and activities in the scene exceeds
the number of available PTZ cameras. Consequently, it is desirable to
develop control strategies that enable the PTZ cameras to carry out ob-
servation tasks autonomously or with minimal human intervention. The
dynamic nature of the observation task greatly complicates the problem
of assigning cameras to observe different pedestrians.

We tackle the challenging problem of controlling active PTZ cameras
in order to capture seamless closeup video of pedestrians present in a
designated area. In general, no single camera is able to achieve this
goal, as the pedestrians enter and exit the observational ranges of dif-
ferent cameras (Fig. 1.1(a)). Furthermore the camera network must be
able to resolve conflicts that might arise when tasking multiple cameras
to observe different pedestrians simultaneously. We treat the control of
active PTZ cameras as a planning problem whose solution achieves opti-
mal camera utilization with respect to predefined observational goals. A
successful camera assignment and handoff strategy should consider both
the short-term and long-term consequences of camera assignments when
deciding how to carry out an observational task.

Consider, for example, the scenario shown in Fig. 1.1(b). A control
strategy that does not reason about the long-term consequences of cam-
era assignment might task Cam3 to observe the red pedestrian (indicated
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by the circle) and task Cam2 to observe the green pedestrian (indicated
by the square). While this assignment may satisfy the immediate goals,
it creates a problem as the green pedestrian continues moving to the
right while the red pedestrian continues moving to the left. It is im-
possible to capture seamless closeup video of the red pedestrian as he
moves from Cam3 to Caml since there is no overlap between the two
cameras. On the other hand, a camera control strategy that reasons
about the long-term consequences of camera assignment should assign
Cam?2 to the red pedestrian and Cam3 to the green pedestrian, assuming
that both pedestrians will continue moving in their current directions.
This allows for a seamless handoff between Cam2 and Cam3.

The type of research that we report here would be very difficult to
carry out in the real world given the expense of deploying and experi-
menting with an appropriately complex smart camera network in a large
public space such as an airport or a train station. Moreover, privacy laws
generally restrict the monitoring of people in public spaces for experi-
mental purposes. To bypass the legal and cost impediments, we espouse
Virtual Vision, a unique synthesis of computer graphics, artificial life,
and computer vision technologies [Qureshi and Terzopoulos, 2008]. Vir-
tual Vision is an advanced simulation framework for working with ma-
chine vision systems, including smart camera networks, that also offers
wonderful rapid prototyping opportunities. Exploiting visually and be-
haviorally realistic environments, called reality emulators, virtual vision
offers significantly greater flexibility and repeatability during the cam-
era network design and evaluation cycle, thus expediting the scientific
method and system engineering process. Our companion chapter in this
volume provides a more detailed review of the Virtual Vision paradigm.

Related Work

Several authors (e.g., [Collins et al., 2002; Farrell and Davis, 2008;
Meijer et al., 2007; Heath and Guibas, 2008]) have studied multicamera
issues related to low-level sensing, distributed inference, and tracking.
Recently, however, the research community has been paying increasing
attention to the problem of controlling or scheduling active cameras in
order to capture high-resolution imagery of interesting events. High-
resolution imagery not only allows for subsequent biometric analysis, it
also helps increase the situational awareness of the surveillance system
operators. In a typical setup, information gathered by stationary wide-
FOV cameras is used to control one or more active cameras [Hampapur
et al., 2003; Qureshi and Terzopoulos, 2006; Krahnstoever et al., 2008].
Generally speaking, the cameras are assumed to be calibrated and the
total coverage of the cameras is restricted to the FOV of the stationary
camera. Nearly all PTZ scheduling schemes rely on site-wide multitar-
get, multicamera tracking. Numerous researchers have proposed camera
network calibration to achieve robust object identification and classifi-



4

cation from multiple viewpoints, and automatic camera network cali-
bration strategies have been proposed for both stationary and actively
controlled camera nodes [Pedersini et al., 1999; Gandhi and Trivedi,
2004; Devarajan et al., 2006].

The problems of camera assignment and handoff have mainly been
studied in the context of smart camera networks. To perform camera
handoffs, [Park et al., 2006] construct a distributed lookup table, which
encodes the suitability of a camera to observe a specific location. For con-
tinuous tracking across multiple cameras, [Jo and Han, 2006] propose the
use of a handoff function, which is defined as the ratio of co-occurrence
to occurrence for point pairs in two views. Their approach does not re-
quire calibration or 3D scene information. [Li and Bhanu, 2008] develop
a game theoretic approach to achieve camera handoffs. When a target
is visible in multiple cameras, the best camera is selected based on its
expected utility. They also propose a number of criteria to construct the
utility function, such as the number of pixels occupied by the selected
target in an image. Their approach eschews spatial and geometric in-
formation. [Kim and Kim, 2008] develop a probabilistic framework for
selecting the “dominant” camera for observing a pedestrian, defined as
the camera with the highest proximity probability, which is computed
as the ratio of the foreground blocks occupied by the selected pedestrian
and the angular distance between the camera and that pedestrian. [Song
et al., 2008] present a game-theoretic strategy for cooperative control of
a set of decentralized cameras. The cameras work together to track every
target in the area at acceptable image resolutions. The camera network
can also be tasked to record higher-resolution imagery of a selected tar-
get.

Our work on proactive camera control differs from prior work in an
important way. With the notable exception of [Krahnstoever et al.,
2008], existing schemes for camera assignment do not reason about the
long-term consequences of camera assignments and handoffs. In essence,
existing schemes are purely reactive. By contrast, the strategy intro-
duced in this paper is proactive and deliberative. When searching for
the best current camera assignment, it considers the future consequences
of possible camera assignments. The ability to reason about the future
enables our system to avoid camera assignments that might appear op-
timal at present, but will eventually lead to observation and tracking
failures. For an overview of planning and search techniques, we refer the
reader to [Russell and Norvig, 2003].

2. Proactive Camera Control
Problem Statement

Consider a camera network comprising N, calibrated wide FOV pas-
sive cameras and N, PTZ active cameras. The passive cameras track
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and estimate the 3D positions and velocities of the observed pedestri-
ans. Let H = {hj|j = 1,2,---} denote the set of pedestrians observed
during the operation of the camera network. At time instant ¢, the
state of the pedestrians observed by the camera network is given by
(xt,vl), where x; and v; represent the ground plane position and ve-
locity, respectively, of observed pedestrian i. Let C' = {¢;|i € [1, Ng|}
denote the set of active PTZ cameras. Each PTZ camera is described
by a tuple (0, Qmin, Mmaxs Bmins Pmax)s Where we assume that the 3D po-
sition o of each PTZ camera is known a priori, and where [min, Qmax]
and [Bmin, Bmax) represent pan and tilt limits, respectively, for each PTZ
camera. Furthermore, we assume that each PTZ camera stores a map
between the gaze direction parameters («, ) and 3D world locations.
In [Qureshi and Terzopoulos, 2006], we describe how such a map can
be automatically learned by observing pedestrians present in the scene.
Thus, given the 3D location of the pedestrian, a PTZ camera is able to
direct its gaze towards the pedestrian. We model each PTZ camera as
an autonomous agent—complete with search, fixate, and zoom behaviors
and low-level pedestrian tracking routines—that is capable of recording
closeup video of a designated pedestrian without relying on continuous
feedback from passive cameras.

With the above assumptions, we formulate collaborative camera con-
trol as a centralized planning problem. We favor a centralized planner
as it is not obvious how to cast the problem of capturing closeup video of
the selected pedestrians within a distributed planning framework. How-
ever, we remain cognizant of the fact that centralized planning is not
suitable for large networks of PTZ cameras due to timeliness concerns.

A planning problem is characterized by states, actions, and goals, and
its solution requires finding a sequence of actions that will take an agent
from its current state to a goal state. Fig. 1.2 defines the states, actions,
goal, etc., for our system. We can then formulate the solution state
sequence to the planning problem as

S* = argmax 9Q(S),
Ses,

where Q(S8) is the quality of state sequence S among a set of admissible
state sequences S,. The corresponding action sequence is A*.

Finding Good State Sequences

The overall performance of the camera network is intimately tied to
how capable the individual PTZ cameras are at carrying out the obser-
vation tasks assigned to them. In order for the planner to find the plan
with the highest probability of success, we must quantify the quality of
a state sequence (or a plan) in terms of the expected performance of in-
dividual PTZ cameras. We construct a probabilistic objective function
that describes the quality of a state sequence in terms of the success



Definition 1 (State) Tuple s’ represents the state of the system during time interval
[t,t+1). st = (sf|i = 1,---,N,), where s! denotes the status of the PTZ
camera i at time t. Possible values for s are Free(c;), Acquiring(ci,h;), or
Recording(c;, hj), for pedestrian h; € H and for camera ¢; € C.

Definition 2 (Actions) Each PTZ camera has a repertoire of four actions: Acquire,
Record, Continue, and Idle. Table 1.1 tabulates these actions, along with their
preconditions and effects. a! denotes the action for PTZ camera ¢; at time t.
The Continue action instructs a PTZ camera to continue its current behavior.

Definition 3 (Joint Action) At any given instant, each PTZ camera is executing
exactly one action (possibly a Continue). The concurrent set of actions across
the different cameras is called a joint action. The tuple a* = (al|i = 1,--- , Ny)
represents the joint action of N, PTZ cameras at time t.

Definition 4 (Action Sequence) Let A = {a'|t = 0,1, --} denote an action se-
quence. Note that the elements of an action sequence are joint actions.

Definition 5 (State Sequence) Let S = {s'|[t =0, 1,-- -} denote a state sequence.
Sequence S is obtained by starting in some initial state s and applying an
action sequence A. We express the quality of the sequence S as Q(S), which
we define in the next section.

Definition 6 (Goal) The goal of the system is to capture closeup video of se-
lected pedestrians during their presence in a designated area. Owur choice
of goal leads to the notion of admissible state sequences. An admissible
state sequence satisfies the observational constraints. Consider, for exam-
ple, the goal of observing pedestrians h C H during the time interval [ts, te].
Then, S, = {s‘|t = ts,---,tc} represents an admissible state sequence if
(Vt € [ts,te])(3i € [1,Na])si = Acquiring(ci,hj) V Recording(cs, hj), where
h; € h and ¢; € C. Clearly, our notion of an admissible state sequence must be
revised to cope with situations where the FOVs of the cameras do not overlap.

Figure 1.2: States, actions, and goal of our planning problem.

Actions Preconditions Effects Description
Continue(c;) none none Do nothing

Idle(c;) none s; = Free(c;) Stop recording
Acquire(ci, hj) | s; # Acquiring(c;, hj) A s; # Recording(c;i, hj) | si = Acquiring(c;, hj) | Start recording pedestrian h;
Record(c;, hj) s; = Acquiring(ci, hj) s; = Recording(c;, h;) | Keep recording pedestrian h;

Table 1.1: Action schema for PTZ cameras (¢;,i € [1,n]).

probabilities of the individual PTZ cameras. Such an objective func-
tion then enables the planner to compute the plan that has the highest
probability of achieving the goals.

PTZ Camera Relevance. We begin by formulating the relevance
7(ci, O) of a PTZ camera ¢; to an observation task O. The relevance
encodes our expectation of how successful a PTZ camera will be at
satisfying a particular observation task; i.e.,

p(cilO) = r(c;, 0),
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Camera-pedestrian distance r4: gives preference to cameras that are closer to the
pedestrian.

Frontal viewing direction r.: gives preference to cameras having a frontal view of
the pedestrian.

PTZ limits r,z6: takes into account the turn and zoom limits of the PTZ camera.

Observational range r,: reflects the observational constraints of a camera. It is set
to 0 when the pedestrian is outside the observational range of a camera; otherwise, it
is set to 1.

Handoff success probability r,: gives preference to handoff candidates in the
vicinity of the camera currently observing the pedestrian. The idea is that nearby
cameras have a similar viewpoint, making the appearance-based pedestrian signature
more relevant for the candidate camera. Factor rp is considered only during camera
handoffs; otherwise, it is set to 1. A consequence of using this factor in the camera
relevance computation is that the planner will prefer plans with fewer handoffs, which
is desirable.

Figure 1.3: These five factors determine the relevance of a camera to the
task of observing a pedestrian.

where p(¢;|O) denotes the success probability of a camera ¢; given task
0.2

We describe the relevance of a camera to the task of observing a
pedestrian in terms of the five factors listed in Fig. 1.3. Let r(c;, hj)
represent the relevance of a camera ¢; to the task of recording closeup
video of a pedestrian hj, then

(cih) — 1 if ¢; is idle;
e ) = TdryTapeToTn Otherwise,
where
o [ (A=)’
ry = ex
d p 20d2 3

2
T = €X - 7’7
Y - p 20_72 )

0—-0? (a-&)° (B-5)

2042 2042 205

Tagg = exp| —

1 if @ € [@min, Ymax]

and B S [,Bminwﬁmax]
and d < dyax;
0 otherwise,

2,_:2
TR, = exp| — Q .




Fixation Vectors

Current camera € Y Velocity Vector

Rest Direction

Candidate camera

Figure 1.4: The relevance of a camera to the task of observing a person.

Here o and 3 are, respectively, the pan and tilt gaze angles corresponding
to the 3D location of the pedestrian as computed by the triangulation
process and 6 corresponds to the field-of-view (zoom) setting required to
capture closeup video of the pedestrian. Variables 0 = (Omin + Omax) /2,
d - (amin + amax)/za and BA = (Bmin + ﬁmax)/27 Where Hmin and emax
are extremal field-of-view settings, q,, and aun,., are extremal vertical
rotation pan angles, and B, and Bna are extremal horizontal rotation
tilt angles. Variable d denotes the camera-to-pedestrian distance, and
dpax and dp;, are the maximum and minimum distances at which the
camera can reliably track a pedestrian. We set the optimal camera-
to-pedestrian distance as d= (dmax — dmin) /2. The angle between the
fixation vector of the camera and the velocity vector of the pedestrian
is 7, and € represents the angle between the fixation vector of camera c;
and the fixation vector of the camera currently observing the pedestrian
(Fig. 1.4). The fixation vector (for a camera with respect to a pedestrian)
is defined along the line joining the center of projection of the camera
and the 3D position of the pedestrian. The values of the variances o4, 0,
0g, 0, 08, and o, associated with each attribute are chosen empirically;
in our experiments, we set oq = 10, 0y = 09 = 0o = 03 = 15.0, and
o. = 45.0.

State Sequence Quality. The quality of a state sequence is

os)= [ ah, (1.1)

tel0,1,-]
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where the quality of a state s! is determined by the success probabilities
of individual PTZ cameras. Omitting superscript ¢ for clarity,

As)= [ »lsi)= T rleihy. (1.2)

1€[1,Nq] 1€[1,Nq]

Rewriting (1.1), we obtain

28 = [ II ren) ). (1.3)

Thus, Q(S) represents the probability of success of a state sequence S
and it serves as a probabilistic objective function that enables the plan-
ner to compute state sequences (or plans) with the highest probability
of success.

Planning

Finding an optimal state sequence is a combinatorial search problem,
which typically cannot be carried out in real time. This is especially true
for longer plans that arise in scenarios involving multiple pedestrians
and larger networks of PTZ cameras. Camera control, however, must
be carried out in real time. Therefore, planning activity must proceed
in parallel with real-time camera control. In our case, the planning
activity requires reliable predictions of the states (position and velocity)
of pedestrians. Pedestrian state predictions are provided by the passive
cameras. Obviously, the predictions become increasingly unreliable as
the duration of the plan increases. It is therefore counterproductive to
construct long plans.

We regard plans of length 10 or more as being long plans. The du-
ration of a plan depends upon its length and the duration of each of
its steps (in real-world time). We construct short plans consisting of
action/state sequences of lengths between 5 and 10. When a new plan is
available, actions are sent to the relevant PTZ cameras. Fig. 1.5 outlines
our planning strategy:.

Finding an Optimal Sequence

We employ greedy best-first search to find the optimal sequence of ac-
tions/states. The starting state along with the successor function, which
enumerates all possible camera-pedestrian assignments, induce a state
graph with branching factor 3"sN,!/(N, — hs)!, where h, is the num-
ber of pedestrians selected to be observed by at least one PTZ camera.
Fortunately, the branching factor is much smaller in practice due to the
observational constraints of PTZ cameras and due to the preconditions
imposed on camera actions (Table 1.1). Equation (1.2) provides the
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Require: A. {Current action sequence.}

Require: S. {Current state sequence. Initially, S. consists of a single state showing
all PTZ cameras as idle.}

Require: ¢ {Current time.}

Require: ¢, {End time of the current plan.}

Require: ¢, {Time budget available for planning.}

Require: ¢, {Duration of the new plan.}

Require: At {Time step specifying the temporal granularity of the new plan.}

Require: e {Error flag indicating a re-planning request from a PTZ camera.}

1: while Keep planning do

2 while t + t, < t), and e = false do

3 Update e {Check for any re-planning requests from PTZ cameras.}

4:  end while

5: if e = false then

6: so  EndState(S.) {Last element of the current state sequence.}

7. else

8 s0 « CurrentState(S:) {Re-planning starts from the current state.}

9: end if

10:  (A*,8*) = Plan(so, ts, At) {Find optimal action/state sequence starting from

state so. Planning stops when the maximum plan depth ¢,/At is reached or
when the time budget for planning is exhausted.}
11:  if e = true then

12: Replace(S.,S™) {Replace current state sequence.}

13: Replace(Ac, A*) {Replace current action sequence.}

14:  else

15: Append(S.,S*) {Append the new state sequence to the current state se-
quence. }

16: Append(A., A*) {Append the new action sequence to the current action se-
quence. }

17:  end if

18: e < false {Reset error flag; essentially ignoring any errors that might have been
raised by the PTZ cameras during the current planning cycle.}

19:  tp < t+t, {Update end time (i.e., time horizon).}

20:  Send the new actions to the relevant PTZ cameras.

21: end while

Figure 1.5: The planning strategy for computing an optimal action/state
sequence.

state value, whereas the path value is given by (1.3). To keep the search
problem tractable, we compute short plans (comprising 5 to 10 steps).
The time granularity At may be used to control the actual duration of
a plan without affecting the associated search problem. For additional
information on greedy best-first search, see [Russell and Norvig, 2003].

3. Results

Our visual sensor network is deployed and tested within our Vir-
tual Vision train station simulator. The simulator incorporates a large-
scale environmental model (of the original Pennsylvania Station in New
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Figure 1.6: (a) A cutaway side view of the virtual train station populated
by autonomous, self-animating pedestrians. (b) Overhead view of the
train station.

York City) with a sophisticated pedestrian animation system that com-
bines behavioral, perceptual, and cognitive human simulation algorithms
[Shao and Terzopoulos, 2007]. Standard computer graphics techniques
enable a near-photorealistic rendering of the busy urban scene with con-
siderable geometric and photometric detail (Fig. 1.6). Our companion
chapter in this volume presents additional details about the simulator.
In each of the following scenarios, passive wide-FOV cameras located
in the virtual train station estimate the 3D positions of the pedestrians
present in the scene.

Scenario 1: Fig. 1.7 shows a scenario consisting of 3 PTZ cameras
that are tasked to record closeup video of a pedestrian as he makes his
way through the shopping arcade towards the concourses in the train
station. The camera network successfully accomplishes this goal. Ini-
tially, only Cam1 (shown as a blue triangle) is observing the pedestrian.
Our planner anticipates that the pedestrian will soon enter the range of
Cam?2, and Cam?2 is pre-tasked with observing the pedestrian, which re-
sults in a successful handoff between Cam1 and Cam2. As stated earlier,
the planner constructs short-duration plans, so Cam3 is not considered
at this time. During the next planning cycle, however, Cam3 is also
taken into account as the pedestrian continues to walk towards the main
waiting room. Cam3 and Cam2 perform a successful handoff.

Scenario 2: Fig. 1.8 depicts a far more challenging scenario, where
3 cameras are tasked to record closeup videos of two selected pedestri-
ans. The first pedestrian (green trajectory) has entered the arcade and
is moving towards the concourses, while the second pedestrian (cyan
trajectory) has entered the main waiting room and, after purchasing a
ticket at one of the ticket booths, is walking towards the arcade. Here,
Cam3 temporarily takes over Pedestrian 1, thereby allowing Caml to
handoff Pedestrian 2 to Cam2. Afterwards, Pedestrian 1 is handed off
to Caml.
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Figure 1.7: Scenario 1. Cameras 1, 2, and 3 perform handoffs to capture
closeup video of the selected pedestrian. Outline (a) depicts the walls of
the train station shown in Fig. 1.6.

Cam3
Cam?2 Caml

(a) (b)

Figure 1.8: Scenario 2. Cameras 1, 2, and 3 successfully record closeup
video of two selected pedestrians. Outline (a) depicts the walls of the
train station shown in Fig. 1.6.
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Figure 1.9: Scenario 3. Cameras 1, 2, and 3 successfully record closeup
video of two selected pedestrians. Outline (a) depicts the walls of the
train station shown in Fig. 1.6. The planner selects the strategy in (b),
as it requires fewer handoffs.

Scenario 3: In Fig. 1.9, three PTZ cameras are tasked with recording
closeup video of a pedestrian (green trajectory). Notice how the fields
of view of all three cameras overlap; consequently, there is more than
one correct handoff strategy, as shown in Fig. 1.9(b)—(c). The planner
selects the handoff strategy in Fig. 1.9(b), as it requires fewer handoffs.

Scenario 4: Table 1.2 documents the success rates of capturing
closeup videos of up to 4 pedestrians using a camera network compris-
ing 7 PTZ cameras (shown in Fig. 1.10) plus passive wide-FOV cameras
(not shown). A run is deemed successful if it satisfies the observation
task—acquiring closeup videos of 1, 2, or 4 pedestrians while they remain
in the designated area. The success rate is the ratio of the number of
successful runs to the total number of runs. The results are aggregated
over 5 runs each. As expected, when the network is tasked with closely
observing a single pedestrian, the success rate is close to 100%; however,
prediction errors prevent a flawless performance. When the network is
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Figure 1.10: A virtual camera network deployed in our Virtual Vision
simulator. (a) The positions of the virtual cameras. (b)—(d) The obser-
vational ranges of individual cameras. (e) The observational range of the
four cameras situated at the corners of the main waiting room; cameras
cannot observe/track any pedestrian outside their observational ranges.

# of Selected | Short Plans | Long Plans
Pedestrians 5 Steps 10 Steps
1 99.8% 96%
2 95.1% 88%
4 67.2% 65.1%

Table 1.2: Success rates for the camera network shown in Fig. 1.10.

tasked with simultaneously observing 2 pedestrians, the success rate falls
to 95.1% for short-duration plans and it is below 90% for long-duration
plans. Again, we can attribute this behavior to errors in predicting the
state of the selected pedestrians. Next, the camera network is tasked
to observe 4 pedestrians simultaneously. The success rate now falls to
67% for short-duration plans and 65% for long-duration plans. This is
partly due to the fact that the planner cannot find an admissible state
sequence when the four pedestrians aggregate in the arcade.

4. Conclusions and Future Work

We have described a planning strategy for intelligently managing a
network of active PTZ cameras so as to satisfy the challenging task of
capturing, without human assistance, closeup biometric videos of se-
lected pedestrians during their prolonged presence in an extensive en-
vironment under surveillance. The ability to plan ahead enables our
surveillance system to avoid camera assignments that might appear op-
timal at present, but will later lead to observation failures. The planning
process assumes the reliable prediction of pedestrian states, which is cur-
rently provided by the supporting stationary wide-FOV passive cameras.
We have noticed that short duration plans are preferable to longer du-
ration plans as 1) state predictions are less reliable for longer plans, and
2) longer plans take substantially longer to compute, which adversely
affects the relevance of a plan when it is executed.
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Scalability is an issue when dealing with numerous active cameras
spread over an extensive region. In the long run, we hope to tackle the
scalability issue by investigating distributed multiagent planning strate-
gies. In the shorter term, we will address the scalability issue by restrict-
ing planning activity to the relevant cameras by first grouping cameras
with respect to the active tasks. Our strategy assumes a fixed camera
setup; it currently does not support ad hoc camera deployment, a limi-
tation that we intend to address in the future. We have prototyped our
surveillance system in a virtual train station environment populated by
autonomous, lifelike pedestrians. However, we intend to evaluate our
planning strategy using a physical camera network, which will involve
additional technical challenges.
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Notes

1. A good compromise is to restrict the planning to the group of “relevant” cameras.
2. Ideally, p(c;|O) = F (r(cs, O)), where function F should be learned over multiple trials.
Krahnstoever et al. arrive at a similar conclusion [Krahnstoever et al., 2008].
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