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Abstract

We introduce a distributed camera coalition forma-
tion scheme for perceptive scene coverage and persistent
surveillance by smart camera sensor networks. The pro-
posed model supports task-dependent camera selection and
grouping via a “contract net” task allocation protocol aug-
mented with conflict resolution and error recovery mecha-
nisms. Our technique avoids any central controller, and it is
robust to node failures and imperfect communication. In the
design and empirical evaluation of our camera networks,
we exploit a visually and behaviorally realistic virtual envi-
ronment simulator that is populated by autonomous, lifelike
virtual pedestrians.

1. Introduction

Next-generation multi-camera systems will be smart
camera networks. Smart cameras are self-contained vi-
sion systems, complete with image sensors, power circuitry,
communication interfaces, and on-board processing and
storage capabilities. Increasingly sophisticated networks
of smart cameras provide new opportunities for the effec-
tive visual coverage of large areas—public spaces, disas-
ter zones, battlefields, and even entire ecosystems. These
multi-camera systems lie at the intersection of machine vi-
sion and sensor networks, raising issues in the two fields
that must be addressed simultaneously. For large networks,
the sheer volume of data renders human monitoring infeasi-
ble. Therefore, it is desirable to design smart camera net-
works that are capable of performing visual surveillance
tasks autonomously, or at least with minimal human inter-
vention.

Our work represents a first attempt to develop a multi-
camera system that addresses high-level camera control is-
sues relevant both to sensor networks and persistent surveil-
lance. We present a camera sensor model that enables a col-
lection of smart, uncalibrated passive and active cameras
to provide persistent perceptive coverage of a large public
space, such as an airport or train station, with minimal hu-
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Figure 1: The Virtual Vision paradigm.

man intervention. Once a pedestrian of interest is identi-
fied by a human operator or by an automated detection rou-
tine monitoring the video feeds, the cameras decide among
themselves how best to maintain the pedestrian under per-
sistent surveillance during his presence in the public space.
Typically, any single camera alone cannot adequately mon-
itor the pedestrian, so the cameras must establish collabo-
rations in order to carry out the persistent observation task.
The problem of tasking cameras to observe pedestrians be-
comes even more complex when there are multiple pedes-
trians of interest. To this end, our contribution is a novel
distributed camera network control strategy that is capable
of dynamic task-driven node aggregation through local de-
cision making and inter-node communication.

Cost and legal impediments make it all but infeasible
for vision researchers to deploy large-scale physical cam-
era networks in airports or train stations for experimental
purposes. Hence, we embrace the Virtual Vision paradigm
advocated in [ 19] and developed further in [13, 14], exploit-
ing visually and behaviorally realistic virtual environments
to develop and empirically evaluate our camera sensor net-
work algorithms (Fig. 1). In particular, we employ a vir-
tual train station environment populated by autonomous,
lifelike virtual pedestrians, which was described in [16].
Easily reconfigurable virtual surveillance cameras situated
within the station generate synthetic video feeds that emu-
late those acquired by real surveillance cameras monitoring
public spaces. A few critics are prejudiced against the vir-
tual vision approach simply because research results are ob-
tained through simulations, regardless of how advanced the
simulators might be, or might become in the future. Such is



shortsighted criticism, since the virtual vision paradigm not
only enables, but greatly facilitates research into low-level
and especially high-level vision/control problems that arise
in extensive networks of smart cameras under realistic con-
ditions. The obtained results are legitimate and valuable.

Building upon our earlier work [13, 14], which intro-
duced the virtual vision paradigm and demonstrated its gen-
eral usefulness in camera sensor network research, our spe-
cific contribution in the present paper is to address and solve
a significant problem in multi-camera systems—camera co-
ordination and collaboration for persistent surveillance. We
do so via a new formulation, posed as a constraint satis-
faction problem, for resolving camera assignment conflicts
when multiple persistent observation tasks are simultane-
ously active.

In a typical sensor network each sensor node has lo-
cal autonomy and can communicate with a small number
of neighboring nodes within radio communication range.
To elaborate, our work focuses on distributed, high-level
camera control, which confronts many of the research chal-
lenges associated with visual sensor networks. Foremost
among these are task-based sensor node selection and orga-
nization [21]. Distributed approaches to node selection and
organization are preferable to centralized approaches and
offer what are perhaps the greatest advantages of networked
sensing—robustness and scalability.

Mindful of these issues, we propose a novel camera net-
work control strategy that does not require camera calibra-
tion, a detailed world model, or a central controller. The
overall behavior of the network is the consequence of local
processing at each node and internode communication. The
communication model emulates those found in real sensor
networks: 1) nodes can communicate directly with their
neighbors, 2) if necessary, a node can communicate with
any other node in the network through multi-hop routing.
Furthermore, we assume unreliability: 3) internode mes-
sages can be delayed, 4) messages can be lost, and 5) nodes
can fail. We show that our network remains robust to node
and communication link failures despite the lack of a central
controller, a feature which also makes the network readily
scalable. Visual surveillance tasks are performed by groups
of one or more camera nodes. These groups, which are cre-
ated on the fly, define the information sharing parameters
and the extent of collaboration between nodes. A group
evolves—i.e., old nodes leave the group and new nodes
join it—during the lifetime of the surveillance task. One
node in each group acts as the group supervisor and is re-
sponsible for group-level decision making. We also present
a novel constraint satisfaction problem formulation for re-
solving group-group interactions.

2. Related Work

Previous work on camera networks in computer vision
has dealt with issues related to low-level and mid-level vi-
sion, namely camera network calibration [3] and segmen-
tation, tracking, and identification of moving objects [I].

Some multi-camera systems have addressed the problem of
wide-area surveillance [6, 15]. In almost all cases, static
cameras are employed and the network is assumed to be
calibrated. Little attention has been paid to the problem of
controlling active cameras to provide visual coverage of an
extensive public space. Notable exceptions are [2, 8, 7].
Typically, master-slave assemblies are employed, where a
passive camera controls one or more active cameras, and
camera calibration is assumed. Our approach does not re-
quire calibration; however, we assume that the cameras can
identify a pedestrian with reasonable accuracy, for which
we employ color-based pedestrian appearance models.

The problem of forming sensor groups based on task re-
quirements and resource availability has received much at-
tention within the sensor networks community [21]. Mal-
lett [9] argues that task-based grouping in ad hoc camera
networks is highly advantageous. Zhao et al. [21] introduce
an information driven approach to collaborative tracking,
which attempts to minimize the energy expenditure at each
node by reducing inter-node communication. A node se-
lects the next node by utilizing information gain versus en-
ergy expenditure tradeoff estimates for its neighbor nodes.
In the context of camera networks, it is often difficult for a
camera node to estimate the expected information gain by
assigning another camera to the task without explicit geo-
metric and camera-calibration knowledge, and such knowl-
edge is tedious to obtain and maintain during the lifetime
of the camera network. Therefore, our camera networks do
without such knowledge; a node just communicates with
nearby nodes before selecting new nodes.

Camera assignment to various tasks shares many features
with Multi-Robot Task Allocation (MRTA) problems stud-
ied by the multi-agent systems community [5]. Task-based
agent grouping is extensively studied and can be reduced
to a Set Partitioning Problem (SPP), which is strongly NP-
hard [4]. Fortunately, the sizes of MRTA problems, and by
extension SPPs, encountered in our camera sensor network
setting are small, because of the spatial/locality constraints
inherent to the camera sensors.

Our node grouping strategy is inspired by the “Contract
Net” distributed problem solving protocol [17] and realizes
group formation via inter-node negotiation. Unlike Mal-
lett’s [9] approach to node grouping, where groups are de-
fined implicitly via membership nodes, our approach de-
fines groups explicitly through group leaders. This simpli-
fies reasoning about groups; e.g., Mallett’s scheme requires
specialized nodes for group termination, whereas our strat-
egy handles group leader failures through group merging
and group leader demotion operations.

We model conflicts that may arise during camera as-
signment as an equivalent Constraints Satisfaction Problem,
which we solve using “centralized backtracking.” Each sen-
sor assignment that passes the hard constraints is assigned
a weight, and the assignment with the highest weight is se-
lected. We have intentionally avoided distributed constraint
optimization techniques, such as [10] and [20], due to their
explosive communication requirements even for small sized
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Figure 2: The operator selects the pedestrian labeled 1 in (a) to construct the pedestrian signature. (b) The operator’s selection. Note that
there is another pedestrian in the scene (labeled 2) with a similar color distribution as the selected pedestrian. The signature of Pedestrian 1
is constructed without first segmenting the pedestrian, so it contains contributions from the background. (c) Shows a cropped source image
(top) and the resulting histogram backprojected image (bottom). Note that Pedestrian 1 is successfully localized in the backprojected image
(red hues indicate higher values; blue hues indicate lower values). (d)—(e) Persistently observing the pedestrian during her stay in the main

waiting room.

problems. Consequently, our strategy lies somewhere be-
tween purely distributed and fully centralized schemes for
sensor assignments—sensor assignment is distributed at the
scale of the entire network, whereas it is centralized at the
scale of a node group.

3. Camera Nodes

Each virtual camera node in the sensor network is able
to perform low-level visual processing and is an active sen-
sor with a repertoire of camera behaviors. The next two
sections describe each of these aspects of a camera node.

3.1. Local Vision Routines (LVRs)

The performance of the camera network is ultimately
tied to the capabilities of the low-level machine vision rou-
tines responsible for gathering the sensory data. Conse-
quently, when working with camera networks within the
virtual vision paradigm, it is important to make accurate as-
sumptions about the capabilities and limitations of the low-
level visual sensing processes. We ensure that our assump-
tions about the low-level visual sensing are qualitatively
correct by implementing a pedestrian tracking system that
operates solely upon the synthetic video captured by the vir-
tual cameras. Local vision routines mimic the performance
of a state-of-the-art pedestrian segmentation and tracking
module. In particular, pedestrian tracking can fail due to
occlusions, poor segmentation, bad lighting, or crowding.
Tracking sometimes locks on the wrong pedestrian, espe-
cially if the scene contains multiple pedestrians with similar
visual appearance; i.e., wearing similar clothes. Our imag-
ing model emulates artifacts that are of interest to camera
network researchers, such as video compression and inter-
lacing. It also models camera jitter and imperfect color re-
sponse.

We employ appearance-based models to track pedestri-
ans. Pedestrians are segmented to construct unique and
robust color-based signatures (appearance models), which
are then matched across the subsequent frames. We match
pedestrian signatures across frames through color index-

ing [18]. Color indexing efficiently identifies objects
present in an image using object color distributions in
the presence of occlusions as well as scale and viewpoint
changes. In color indexing, targets with similar color distri-
butions are detected and localized through histogram back-
projection, which finds the target in an image by empha-
sizing colors in the image that belong to the target being
observed (Fig. 2(c)). The last step of the color indexing
procedure assumes that the area of the target in the image is
known a priori. Active PTZ cameras violate the above as-
sumption, as the area covered by the target in the image can
vary drastically depending upon the current zoom settings
of the camera. A distinctive characteristic of our pedestrian
tracking routine is its ability to operate over a range of cam-
era zoom settings. It is important to note that we do not
assume camera calibration.

3.2. Camera Node Behaviors

Each camera node is an autonomous agent capable of
communicating with nearby nodes. The LVRs determine
the sensing capabilities of a camera node, whose overall be-
havior is determined by the LVR (bottom-up) and the cur-
rent task (top-down). We model the camera controller as an
augmented hierarchical finite state machine (Fig. 3).

In its default state, Idle, the camera node is not involved
in any task. A camera node transitions into the Computin-
gRelevance state upon receiving a queryrelevance message
from a nearby node. Using the description of the task that
is contained within the queryrelevance message and by em-
ploying the LVRs, the camera node can compute its rele-
vance to the task, as we will explain in the next section. For
example, a camera can use visual search to find a pedestrian
that matches the appearance-based signature transmitted by
the querying node. The relevance encodes the expectation
of how successful a camera node will be at a particular sens-
ing task. The camera returns to the Idle state when it fails to
compute the relevance because it cannot find a pedestrian
that matches the description. When the camera success-
fully finds the desired pedestrian, however, it returns the
relevance value to the querying node. The querying node
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Figure 3: Top-level camera controller. Dashed states contain the
child finite state machine shown in the inset (lower right).

passes the relevance value to the leader (leader node) of the
group, which decides whether or not to include the camera
node in the group. The camera goes into the Performing-
Task state upon joining a group, where the embedded child
finite state machine (Fig. 3 inset) hides the sensing details
from the top-level controller and enables the node to handle
short-duration sensing (tracking) failures. Built-in timers
allow the camera node to transition into the default state in-
stead of hanging in some state waiting for a message from
another node that might never arrive due to a communica-
tion error or node failure.

Each camera can fixate and zoom in on an object of inter-
est. Fixation and zooming routines are image driven and do
not require any 3D information, such as camera calibration
or a global frame of reference. The fixate routine brings the
region of interest—e.g., the bounding box of a pedestrian—
into the center of the image by tilting the camera about its
local x and y axes. The zoom routine controls the field of
view (FOV) of the camera such that the region of interest
occupies the desired percentage of the image. See [12] for
details.

A camera node returns to its default stance after finishing
a task using the reset routine, which is a PD controller that
attempts to minimize the error between the current tilt/zoom
settings and the default tilt/zoom settings.

3.3. Computing Camera Node Relevance

The accuracy with which individual camera nodes are
able to compute their relevance to the task at hand deter-
mines the overall performance of the network. Our scheme
for computing the relevance of a camera to a video surveil-
lance task encodes the intuitive observations that 1) a cam-
era that is currently free should be chosen for the task, 2) a
camera with better tracking performance with respect to the
task at hand should be chosen, 3) the turn and zoom limits
of cameras should be taken into account when assigning a
camera to a task; i.e., a camera that has more leeway to turn
and zoom might be able to follow a pedestrian for a longer
time, and 4) it is better to avoid unnecessary reassignments
of cameras to different tasks, as doing so may degrade the
performance of the underlying computer vision routines.

Upon receiving a task request, a camera node returns to

Status = s € {busy, free}

Quality = c€[0,1]

Fov = 0 € [0pin> fmax] degrees

XTurn = € [opyin, @max] degrees
YTurn = B € [Bmin, Omax] degrees
Time = t € [0, 00) seconds

Task = a€{a;|i=1,2,...}

Figure 4: The relevance metric returned by a camera node relative
to a new task request. The leader node converts the metric into a
scalar value representing the relevance of the node to the particular
surveillance task.

the leader node a relevance metric—a list of attribute-value
pairs describing its relevance to the current task along multi-
ple dimensions (Fig. 4). The leader node converts this met-
ric into a scalar relevance value r as follows:

_1\2 9_6)2 N2 2
exp <7 (62032) - (2092) - ((;(752) - (go-fz) )
r= when s = free;

_t
t+y

when s = busy.

I:Iere 0 = (Omin + Omax)/2, & = (Qmin + Omax)/2, and
8 = (Bmin + Bmax)/2, where Onin and O, are extremal
field of view settings, aumin and amax are extremal (tilt) ro-
tation angles around the z-axis, and Gy, and Gnax are ex-
tremal (pan) rotation angles around the y-axis, 0.3 < o, <
0.33, 09 = (Omax — Omin)/6, 0o = (Qmax — Qmin)/6, and
03 = (Bmax — Bmin)/6. The value of 7 is chosen empiri-
cally (v = 1000 in our experiments).

4. Sensor Network Model

We now explain the sensor network communication
scheme that enables task-specific coalition formation. The
idea is as follows: A human operator presents a particu-
lar sensing request to one of the nodes. In response to this
request, relevant nodes self-organize into a group with the
aim of fulfilling the sensing task. The group, which formal-
izes the collaboration between member nodes, is a dynamic
arrangement that keeps evolving throughout the lifetime of
the task. At any given time, multiple groups might be ac-
tive, each performing its respective task. Group formation
is determined by the local computation at each node and the
communication between the nodes. Specifically, we employ
the contract net protocol that models auctions (announce-
ment, bidding, and selection) for group formation [17]. Lo-
cal computation at each node involves choosing an appro-
priate bid for the announced sensing task.

From the standpoint of operator interaction, we distin-
guish between two kinds of sensing queries: 1) where
the queried sensor itself can measure the phenomenon of
interest—e.g., when a human operator selects a pedestrian
to be tracked within a particular video feed—and 2) when
the queried node might not be able to perform the required
sensing and needs to route the query to other nodes. For
instance, an operator can request the network to count the
number of pedestrians wearing green shirts. To date we
have experimented only with the first kind of queries, which
are sufficient for setting up collaborative tracking tasks;



however, this is by no means a limitation of our proposed
communication model.

4.1. Coalition Formation

Node grouping commences when a node n receives a
sensing query. In response to the query, the node sets up a
named task and creates a single-node group. Initially, as n
is the only node in the group, it is chosen as the leader node.
To recruit new nodes for the current task, node n begins by
sending queryrelevance messages to its neighboring nodes,
N,,. This auctions the task in the hope of finding suitable
nodes. A subset N’ of N,, respond by sending their rele-
vance values for the current task (relevance message). This
is the bidding phase. Upon receiving the relevance values,
node n selects a subset M of N’ to include in the group,
and sends join messages to the chosen nodes. This is the
selection phase. When there is no resource contention be-
tween groups—e.g., when only one task is active, or when
multiple tasks that do not require the same nodes for suc-
cessful operation are active—the selection process is rela-
tively straightforward; node n picks those nodes from N’
that have the highest relevance values. On the other hand,
a conflict resolution mechanism is required when multiple
groups vie for the same nodes. We present a scheme to han-
dle this situation in the next section. A node that is not al-
ready part of any group can join the group upon receiving a
Jjoin message from the leader of that group. After receiving
the join message, a subset M’ of M elect to join the group.

For multinode groups, if a group leader decides to re-
cruit more nodes for the task at hand, it instructs group
nodes to broadcast task requirements. This is accomplished
by sending a queryrelevance message to the group nodes.
The leader node is responsible for group-level decisions, so
member nodes forward to the group leader all the group-
related messages, such as the relevance messages from po-
tential candidates for group membership. During the life-
time of a group, group nodes broadcasts stafus messages at
regular intervals. Group leaders use status messages to up-
date the relevance information of the group nodes. When a
leader node receives a status message from another node
performing the same task, the leader node includes that
node into its group. The leader node uses the most recent
relevance values to decide when to drop a member node.
A group leader also removes a node from the group if it
has not received a status message from the node in some
preset time limit."! Similarly, a group node can choose to
stop performing the task when it detects that its relevance
value is below a certain threshold. When a leader detects
that its own relevance value for the current task is below the
predefined threshold, it selects a new leader from among
the member nodes. The group vanishes when the last node
leaves the group.

IThe relevance value of a group node decays over time in the absence
of new status messages from that node. Thus, we can conveniently model
node dependent timeouts; i.e., the time duration during which at least one
status message must be received by the node in question.

4.2. Conflict Resolution

A conflict resolution mechanism is needed when multi-
ple groups require the same resources. We treat the prob-
lem of assigning sensors to the contending groups as a Con-
straint Satisfaction Problem (CSP) [11]. Formally, a CSP
consists of a set of variables {vy,va,vs,...,vx}, a set of
allowed values Dom|v;] for each variable v; (called the do-
main of v;), and a set of constraints {C1,Cs,C5,...,Cp}.
The solution to the CSP is a set {v; < a; | a; € Dom[v;]},
where the a; satisfy all the constraints.

We treat each group g as a variable whose domain con-
sists of the non-empty subsets of the set of sensors with
relevance values (with respect to g) greater than a prede-
fined threshold. The constraints restrict the assignment
of a sensor to multiple groups. Consider, for example, a
group g and a set of nodes {ny, no, ng} with relevance val-
ues {ry,rq,r3}, respectively. If r3 is less than the pre-
defined threshold, the set of nodes that will be considered
for assignment to g is {n1,n2}, and the domain of g is the
set {{n1},{na}, {n1,n2}}. We define a constraint C;; as
a; Na; = {®}, where a; and a; are sensor assignments
to groups g; and g;, respectively; k groups give rise to
k!/2!(k — 2)! constraints.

We can then define a CSP problem P = (G,D,C),
where G = {g1, 92, - .-, gx} is the set of groups (variables)
with non-empty domains, S = {Domlg;]|¢ € [1,k]} is
the set of domains for each group, and C' = {C;; |i,j €
[1,k],i # j} is the set of constraints. To solve P, we
employ backtracking to search systematically through the
space of possibilities. We find all solutions, rank these solu-
tions according to the relevance values for sensors (with re-
spect to each group), and select the best solution to find the
optimal assignments. The solution ranking procedure can
easily incorporate other relevant concerns such as a prefer-
ence for sensors that are positioned orthogonal to each other
with respect to the pedestrian so as to increase the position
estimate accuracy or using sensors that are within one hop
distance of each other. When P has no solution, we solve
smaller CSP problems by relaxing the node requirements
for each task.

When it is possible to compare the quality of a partial so-
lution to that of a full solution, we can store the best result
so far and backtrack whenever the current partial solution
is of poorer quality. Using this strategy, we can guarantee
an optimal solution under the assumption that the quality
of solutions increase monotonically as values are assigned
to more variables. For example, compare test cases 1 and
2 in Table 1. The goal was to assign 3 sensors each to the
two groups. Optimal assignments were found in both cases;
however, BestSolv, which employs backtracking based on
the quality of the partial solution, visited only 175 nodes
to find the optimal solution as opposed to AllSolv, which
visited 29290 nodes. AllSolv enumerates every solution to
find the optimal sensor assignment. The same trend is ob-
served in columns 3 and 4 in Table 1. The BestSolv solver
clearly outperforms the AllSolv solver in finding the opti-



Test cases 1 [2 [3 [ 4

Number of groups 2 2 2 2
Number of sensors per group 3 3 3 3

Avg. number of relevant sensors 12 12 16 16
Average domain size 220 220 560 560
Number of solutions 29290 9 221347 17
Nodes explored 29511 175 221908 | 401
Number of Backtracks 48620 36520 314160 | 215040
Solver used AllSolv | BestSolv | AllSolv BestSolv

Table 1: Finding optimal sensor node assignment. The problem
is to assign three sensors each to two groups. The average number
of relevant nodes for each group is 12 and 16. AllSolv finds all
solutions, ranks them, and picks the best one, whereas BestSolv
computes the optimal solution by storing the best solution so far
and backtracking when partial assignment yields a poorer solution.
As expected, BestSolv outperforms AllSolv.

mal node assignment. Of course, when operating within
time/resource limitations, we can always choose the first so-
lution or pick the best solution after a predetermined num-
ber of nodes have been explored.

A node initiates the conflict resolution procedure upon
identifying a group-group conflict; e.g., when it intercepts
a queryrelevance message from multiple groups, or when it
already belongs to a group and it receives a queryrelevance
message from another group. The conflict resolution pro-
cedure begins by centralizing the CSP in one of the leader
nodes that uses backtracking to solve the problem.” The
result is then conveyed to the other leader nodes.

A key feature of our conflict resolution scheme is cen-
tralization, which requires that all the relevant information
be gathered at the node that is responsible for solving the
CSP. For smaller CSPs, the cost of centralization is easily
offset by the speed and ease of solving the CSP.

4.3. Node Failures and Communication Errors

The proposed communication model takes into consid-
eration node and communication failures. Communication
failures are perceived as sensor failures; for example, when
a node is expecting a message from another node and the
message never arrives, it concludes that the other node is
malfunctioning. A node failure is assumed when the leader
node does not receive a status message from the node dur-
ing some predefined interval, and the leader node removes
the problem node from the group. On the other hand, when
a member node does not receive any message (status or
queryrelevance) from the leader node during a predefined
interval, it assumes that the leader node has experienced a
failure and selects itself to be the group leader.

An actual or perceived leader node failure can there-
fore give rise to multiple single-node groups performing the
same task. Multiple groups assigned to the same task are
merged by demoting all but one of the group leader nodes.
Demotion is either carried out based upon the unique ID as-
signed to each node—among the conflicting nodes, the one
with the highest ID is selected to be the group leader—or

2The leader node where centralization occurs is selected using a strat-
egy similar to that used for group merging (see [12] for the details).

when unique node IDs are not guaranteed, demotion can be
carried out via a contention management scheme based on
the ALOHA network protocol. See [12] for the details of
the demotion process.

5. Persistent Surveillance

We now consider how a sensor network of dynamic cam-
eras may be used in the context of video surveillance.

We have implemented an interface that presents to the
operator a display of the synthetic video feeds from the
multiple virtual surveillance cameras. The operator can se-
lect a pedestrian in any video feed and instruct the cam-
era network to perform one of the following tasks: 1) fol-
low the pedestrian, 2) capture a high-resolution snapshot
of the pedestrian, or 3) zoom-in and follow the pedestrian.
The successful execution and completion of these tasks re-
quires the intelligent allocation and scheduling of the avail-
able cameras; in particular, the network must decide which
cameras should track the pedestrian and for how long. The
network automatically assigns cameras to fulfill the task re-
quirements. If the operator initiates multiple tasks, either
cameras that are not currently occupied are chosen to fulfill
the new task or some currently occupied cameras are reas-
signed to the new task.

A detailed world model that includes the location of
cameras, their fields of view, pedestrian motion prediction
models, occlusion models, and pedestrian movement path-
ways may enable, in some sense, the optimal allocation and
scheduling of cameras; however, it is cumbersome and in
most cases infeasible to acquire such a world model. Our
approach does not require such a knowledge base. We as-
sume only that a pedestrian can be identified by different
cameras with reasonable accuracy. A direct consequence
of this approach is that the network can easily be modified
through removal, addition, or replacement of camera nodes.

The computed relevance values (Section 3.3) are used by
the node selection scheme described above to assign cam-
eras to various tasks. The leader node gives preference to
the nodes that are currently free, so the nodes that are part
of another group are selected only when too few free nodes
are available for the current task.

5.1. Results

To date, we have tested our visual sensor network system
with up to 16 stationary and pan-tilt-zoom cameras, and we
have populated the virtual train station with up to 100 pedes-
trians. The sensor network correctly assigned cameras in
most cases. Some of the problems that we encountered are
related to pedestrian identification and tracking. As we in-
crease the number of virtual pedestrians in the train station,
the identification and tracking module has increasing dif-
ficulty following the correct pedestrian, so the probability
increases that the surveillance task fails (and the cameras
just return to their default settings).

For the example shown in Fig. 5, we placed 16 active
PTZ cameras in the train station, as shown in Fig. 6. An op-
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Figure 5: A pedestrian is successively tracked by Cameras 7, 6, 2, 3, 10, and 9 (see Fig. 6) as she makes her way through the station to
the concourses. (a-d) Four cameras observing the station. (e) The operator selects a pedestrian in video Feed 7. (f) Camera 7 has zoomed
in on the pedestrian, (g) Camera 6, which is recruited by Camera 7, acquires the pedestrian. (h) Camera 6 zooms in on the pedestrian. (i)
Camera 7 reverts to its default mode after losing track of the pedestrian; it is now ready for another task (j) Camera 6 has lost track of the
pedestrian. (k) Camera 2. (1) Camera 2, which is recruited by camera 6, acquires the pedestrian. (m) Camera 2 tracking the pedestrian. (n)
Camera 3 is recruited by Camera 6; Camera 3 has acquired the pedestrian. (0) Camera 3 zooming in on the pedestrian. (p) The pedestrian
is at the vending machine. (q) The pedestrian is walking towards the concourses. (r) Camera 10 is recruited by Camera 3; Camera 10 is
tracking the pedestrian. (s) Camera 11 is recruited by Camera 10. (t) Camera 9 is recruited by Camera 10.

©

Figure 7: Camera assignment and conflict resolution. Cameras 1 (upper row) and 2 (lower row) are set to observe the first pedestrian who
enters the main waiting room (a). Camera 2 starts observing the pedestrian as soon as she enters the scene (b). (c)-(d) Camera 1 recognizes
the target pedestrian by using the pedestrian signature computed by Camera 2. Cameras 1 and 2 successfully form a group to observe the
first pedestrian. (e) The operator initiates another goal for the camera network, which is to observe the pedestrian wearing green. The two
cameras then pan out to visually search for the green pedestrian and decide between them each to carry out a different task. (f) Camera 1
is deemed more suitable for observing the second pedestrian wearing green, whereas Camera 2 continues observing the first pedestrian.

erator selects the pedestrian with the red shirt in Camera 7
(Fig. 5(e)) and initiates the “follow” task. Camera 7 forms
the task group and begins tracking the pedestrian. Subse-
quently, Camera 7 recruits Camera 6, which in turn recruits
Cameras 2 and 3 to track the pedestrian. Camera 6 becomes
the leader of the group when Camera 7 loses track of the
pedestrian and leaves the group. Subsequently, Camera 6
experiences a tracking failure, sets Camera 3 as the group
leader, and leaves the group. Cameras 2 and 3 track the
pedestrian during her stay in the main waiting room of the
station, where she also visits a vending machine. When the
pedestrian starts walking towards the concourses section of

cade (right); cf. the left image in Fig. 1. (The yellow rectangles the station, Cameras 10 and 11 take over the group from

indicate station pedestrian portals.) An example camera network Cameras 2 and 3. Cameras 2 and 3 leave the group and re-
is shown comprising 16 simulated active (pan-tilt-zoom) video turn to their default modes. Later Camera 11, now acting

surveillance cameras. as the group’s leader, recruits Camera 9, which tracks the
pedestrian as she enters the concourses.

Figure 6: Plan view of the virtual Penn Station environment with
the roof not rendered, revealing the concourses and train tracks
(left), the main waiting room (center), and the long shopping ar-

Fig. 7 illustrates camera assignment and conflict reso-



lution. Cameras 1 and 2 successfully form a group to ob-
serve the first pedestrian who enters the scene, as there is
only one active task. On the other hand, when the operator
specifies a second task—follow the pedestrian wearing the
green sweater—the cameras decide to break the group and
reassign themselves. Among themselves, the cameras de-
cide that Camera 1 is better suited for observing the pedes-
trian wearing green. Camera 2 continues observing the first
pedestrian who entered the scene. It bears repeating that the
cameras are able to handle the two observation tasks com-
pletely autonomously. Additionally, the interaction between
the two cameras is strictly local—other cameras present in
the camera network (Fig. 6) are not involved.

6. Conclusion

We envision future video surveillance systems to involve
networks of stationary and active cameras capable of pro-
viding persistent perceptive coverage of extended environ-
ments with minimal reliance on human operators. Such
highly-automated, intelligent surveillance systems will re-
quire not only robust, low-level vision routines, but also
novel sensor network methodologies. The work presented
in this paper is a step toward the realization of new sensor
networks, with promising results.

The overall behavior of our prototype sensor network is
governed by local decision making at each node and com-
munication between the nodes. Our approach is innovative
insofar as it does not require camera calibration, a detailed
world model, or a central controller. We have intentionally
avoided multi-camera tracking schemes that assume prior
camera network calibration, which we believe is an unre-
alistic goal for a large-scale camera network consisting of
heterogeneous cameras. Moreover, our approach does not
assume a detailed world model, which is generally hard to
acquire. Since it lacks any central controller, we expect our
proposed approach to be robust and scalable.

We are currently pursuing a “Cognitive Modeling” ap-
proach to node organization and camera scheduling. We are
also investigating scalability and node failure issues. More-
over, we are constructing more elaborate scenarios involv-
ing more cameras situated in different locations within the
train station, with which we would like to study the perfor-
mance of the camera sensor network when it is required to
persistently observe multiple pedestrians throughout their
entire stay in the train station.
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