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Abstract. We propose a distributed coalition formation strategy for collabora-
tive sensing tasks in camera sensor networks. The proposed model supports task-
dependent node selection and aggregation through an announcement/bidding/
selection strategy. It resolves node assignment conflicts by solving an equiva-
lent constraint satisfaction problem. Our technique is scalable, as it lacks any
central controller, and it is robust to node failures and imperfect communication.
Another unique aspect of our work is that we advocate visually and behaviorally
realistic virtual environments as a simulation tool in support of research on large-
scale camera sensor networks. Specifically, our visual sensor network comprises
uncalibrated static and active simulated video surveillance cameras deployed in a
virtual train station populated by autonomously self-animating pedestrians. The
readily reconfigurable virtual cameras generate synthetic video feeds that emu-
late those generated by real surveillance cameras monitoring public spaces. Our
simulation approach, which runs on high-end commodity PCs, has proven to be
beneficial because this type of research would be difficult to carry out in the real
world in view of the impediments to deploying and experimenting with an appro-
priately complex camera network in extensive public spaces.

Keywords: Camera sensor networks, Sensor coordination and control,
Distributed coalition formation, Video surveillance.

1 Introduction

Camera sensor networks are becoming increasingly important to next generation appli-
cations in surveillance, in environment and disaster monitoring, and in the military. In
contrast to current video surveillance systems, camera sensor networks are character-
ized by smart cameras, large network sizes, and ad hoc deployment.1 These systems
lie at the intersection of machine vision and sensor networks, raising issues in the two
fields that must be addressed simultaneously. The effective visual coverage of extensive
areas—public spaces, disaster zones, and battlefields—requires multiple cameras to col-
laborate towards common sensing goals. As the size of the camera network grows, it

1 Smart cameras are self-contained vision systems, complete with image sensors, power cir-
cuitry, communication interfaces, and on-board processing capabilities [1].
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Fig. 1. Plan view of the virtual Penn Station environment with the roof not rendered, revealing the
concourses and train tracks (left), the main waiting room (center), and the long shopping arcade
(right). (The yellow rectangles indicate station pedestrian portals.) An example visual sensor
network comprising 16 simulated active (pan-tilt-zoom) video surveillance cameras is shown.

becomes infeasible for human operators to monitor the multiple video streams and iden-
tify all events of possible interest, or even to control individual cameras in performing
advanced surveillance tasks. Therefore, it is desirable to design camera sensor networks
that are capable of performing visual surveillance tasks autonomously, or at least with
minimal human intervention.

In this paper, we demonstrate a camera network model comprising uncalibrated pas-
sive and active simulated video cameras that with minimal operator assistance can per-
form persistent surveillance of a large virtual public space—a train station populated
by autonomously self-animating virtual pedestrians (Fig. 1). Once a human operator or
an automated visual behavior analysis routine monitoring the surveillance video feeds
identified a pedestrian of interest, the cameras decide amongst themselves how best to
observe the subject. For example, a subset of the active pan/tilt/zoom (PTZ) cameras
can collaboratively track the pedestrian as (s)he weaves through the crowd. The prob-
lem of assigning cameras to persistently monitor pedestrians becomes challenging when
there are multiple pedestrians of interest. To deal with the numerous possibilities, the
cameras must be able to reason about the dynamic situation. To this end, we propose a
distributed camera network control strategy that is capable of dynamic task-driven node
aggregation through local decision making and inter-node communication.

1.1 Virtual Vision

Deploying a large-scale camera sensor network in the real world is a major undertak-
ing whose cost can easily be prohibitive for most researchers interested in designing
and experimenting with sensor networks. Moreover, privacy laws generally restrict the
monitoring of people in public spaces for experimental purposes. As a means of over-
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Fig. 2. Virtual vision paradigm (image from [2])

coming these impediments, we advocate the pursuit of camera sensor network research
in the context of a unique synthesis of advanced computer graphics and vision simula-
tion technologies. In particular, we demonstrate the design of simulated camera sensor
network systems and meaningful experimentation with such systems within visually
and behaviorally realistic virtual environments (Fig. 2).

Legal impediments and cost considerations aside, the use of realistic virtual envi-
ronments in sensor network research offer significantly greater flexibility during the
design and evaluation cycle, thus expediting the engineering process: The multiple vir-
tual cameras, which generate synthetic video feeds that emulate those generated by real
surveillance cameras monitoring public spaces, are very easily reconfigurable in the
virtual space. The virtual world provides readily accessible ground-truth data for the
purposes of visual sensor network algorithm validation. Experiments are perfectly re-
peatable in the virtual world, so we can readily modify algorithms and parameters and
immediately determine their effect. The hard real-time constraints of the real world can
easily be relaxed in the simulated world; i.e., simulation time can be prolonged relative
to real, “wall-clock time”, in principle permitting arbitrary amounts of computational
processing to be carried out during each unit of simulated time. Finally, despite its so-
phistication, our simulator runs on high-end commodity PCs, thus obviating the need
to grapple with special-purpose hardware and software.

1.2 Distributed Control in Camera Sensor Networks

Our work deals with distributed control in camera sensor networks and many of the
characteristic challenges associated with sensor networks are relevant. Task-based sen-
sor selection is a fundamental issue in sensor networks [3]. The selection process must
take into account the information contribution of each node against its resource con-
sumption or potential utility in other tasks. Another key issue in sensor networks is node
organization, which has been proposed by researchers as a means to limit the commu-
nication to those nodes that are relevant to the task at hand. Distributed approaches for
node selection or node organization are preferable to centralized approaches and offer
what are perhaps the greatest advantages of networked sensing—robustness and scala-
bility. Also, in a typical sensor network, each sensor node has local autonomy and can
communicate with a small number of neighboring nodes that are within radio commu-
nication range.
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Mindful of these issues, we propose a novel camera sensor network control strat-
egy that does not require camera calibration, a detailed world model, or a central con-
troller. We model virtual cameras as nodes in a communication network that emulates
those found in physical sensor networks: 1) nodes can communicate directly with their
neighbours, 2) if necessary, a node can communicate with another node in the network
through multi-hop routing, and 3) unreliable communication. The overall behavior of
the network is the consequence of the local processing at each node and inter-node com-
munication. The network is robust to node and communication link failures; moreover,
it is scalable due to the lack of a central controller. Visual surveillance tasks are per-
formed by groups of one or more camera nodes. These groups, which are created on the
fly, define the information sharing parameters and the extent of collaboration between
nodes. During the lifetime of the surveillance task, a group evolves—i.e., old nodes
leave the group and new nodes join it. One node in each group acts as the group leader
and is responsible for group-level decision making. We also present a new constraint
satisfaction problem formulation for resolving group interactions.

1.3 Overview

The contributions of this paper are twofold. We introduce a novel camera sensor net-
work framework suitable for next generation visual surveillance applications. Further-
more, we demonstrate the advantages of developing and evaluating camera sensor net-
works within a sophisticated virtual reality simulation environment. The remainder of
the paper is organized as follows: Section 2 covers relevant prior work. We explain the
low-level vision emulation and behavior models for camera nodes in Section 3. Sec-
tion 4 introduces the sensor network communication model. In Section 5, we demon-
strate the application of this model in the context of visual surveillance. We present our
results in Section 6 and our conclusions and future research directions in Section 7.

2 Related Work

As was argued in [4, 5], computer graphics and virtual reality technologies are rapidly
presenting viable alternatives to the real world for developing sensory systems (see
also [6]). Our camera network is deployed and tested within the virtual train station
simulator that was developed in [2]. The simulator incorporates a large-scale environ-
mental model (of the original Pennsylvania Station in New York City) with a sophisti-
cated pedestrian animation system. The simulator can efficiently synthesize well over
1000 self-animating pedestrians performing a rich variety of activities in the extensive
indoor urban environment. Like real humans, the synthetic pedestrians are fully au-
tonomous. They perceive the virtual environment around them, analyze environmental
situations, make decisions and behave naturally within the train station. Standard com-
puter graphics techniques enable a photorealistic rendering of the busy urban scene with
considerable geometric and photometric detail (Fig. 1).

The problem of forming sensor groups based on task requirements and resource
availability has received much attention within the sensor networks community [3].
Reference [1] argues that task-based grouping in ad hoc camera networks is highly ad-
vantageous. Collaborative tracking, which subsumes the above issue, is considered an
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essential capability in many sensor networks [3]. Reference [7] introduces an informa-
tion driven approach to collaborative tracking, which attempts to minimize the energy
expenditure at each node by reducing inter-node communication. A node selects the
next node by utilizing the information gain vs. energy expenditure tradeoff estimates
for its neighbor nodes. In the context of camera networks, it is often difficult for a cam-
era node to estimate the expected information gain by assigning another camera to the
task without explicit geometric and camera-calibration knowledge, but such knowledge
is tedious to obtain and maintain during the lifetime of the camera network. Therefore,
our camera networks do without such knowledge; a node needs to communicate with
nearby nodes in order to select new nodes.

Nodes comprising sensor networks are usually untethered sensing units with limited
onboard power reserves. Consequently, a crucial concern in sensor networks is the en-
ergy expenditure at each node, which determines the life-span of a sensor network [8].
Node communications have large power requirements; therefore, sensor network con-
trol strategies attempt to minimize the inter-node communication [9, 7]. Presently, we
do not address this issue. However, the communication protocol that we propose limits
the communication to the active nodes and their neighbors.

Little attention has been paid in computer vision to the problem of controlling active
cameras to provide visual coverage of an extensive public area, such as a train station or
an airport [10,11]. Previous work on camera networks in computer vision has dealt with
issues related to low-level and mid-level computer vision, namely segmentation, track-
ing, and identification of moving objects [12], and camera network calibration [13]. Our
approach does not require calibration; however, we assume that the cameras can identify
a pedestrian with reasonable accuracy. To this end, we employ color-based pedestrian
appearance models.

IrisNet is a sensor network architecture tailored towards high-capability multimedia
sensors connected via high-capacity communication channels [14]. It takes a central-
ized view of the network and models it as a distributed database, allowing efficient
access to sensor readings. We consider this work to be orthogonal to ours. SensEye is a
recent sensor-network inspired multi-camera systems [15]. It demonstrates the benefits
of a multi-tiered network—each tier defines a set of sensing capabilities and corre-
sponds to a single class of smart camera sensors—over single-tiered networks in terms
of low-latencies and energy efficiency. However, SensEye does not deal with the dis-
tributed camera control issues that we address.

Our node grouping strategy is inspired by the ContractNet distributed problem solv-
ing protocol [16] and realizes group formation via inter-node negotiation. Unlike Mal-
lett’s [1] approach to node grouping where groups are defined implicitly via member-
ship nodes, our approach defines groups explicitly through group leaders. This sim-
plifies reasoning about groups; e.g., Mallett’s approach requires specialized nodes for
group termination. Our strategy handles group leader failures through group merging
and group leader demotion operations.

Resolving group-group interactions requires sensor assignment to various tasks,
which shares many features with Multi-Robot Task Allocation (MRTA) problems stud-
ied by the multi-agent systems community [17]. Specifically, according to the taxon-
omy provided in [17], our sensor assignment formulation belongs to the single-task
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robots (ST), multi-robot tasks (MR), instantaneous assignment (IA) category. ST-MR-
IA problems are significantly more difficult than single robot task MTRA problems.
Task-based robot grouping arise naturally in ST-MR-IA problems, which are sometimes
referred to as coalition formation. ST-MR-IA problems are extensively studied and can
be reduced to a Set Partitioning Problem (SPP), which is strongly NP-hard [18]. How-
ever, many heuristics-based set partitioning algorithms exist that produce good results
on large SPPs [19]. Fortunately, the sizes of MRTA problems, and by extension SPPs,
encountered in our camera sensor network setting are small due to the spatial/locality
constraints inherent to the camera sensors.

We model sensor assignments as a Constraint Satisfaction Problem (CSP), which we
solve using “centralized” backtracking. Each sensor assignment that passes the hard
constraints is assigned a weight, and the assignment with the highest weight is se-
lected. We have intentionally avoided distributed constraint optimization techniques,
such as [20] and [21], due to their explosive communication requirements even for
small sized problems. Additionally, it is not obvious how they handle node and com-
munication failures. Our strategy lies somewhere between purely distributed and fully
centralized schemes for sensor assignments—sensor assignment is distributed at the
level of the network, whereas it is centralized at the level of a group.

3 Camera Nodes

Each virtual camera node in the sensor network is able to perform low-level visual
processing and is an active sensor with a repertoire of camera behaviors. The next two
sections describe each of these aspects of a camera node.

3.1 Local Vision Routines

Each camera has its own suite of visual routines for pedestrian recognition, identifi-
cation, and tracking, which we dub “Local Vision Routines” (LVRs). The LVRs are
computer vision algorithms that directly operate upon the synthetic video acquired by
the virtual cameras. LVRs do not have access to any 3D information available from the
virtual world, and they mimic the performance of a state-of-the-art pedestrian segmen-
tation and tracking module (Fig. 3(a)). In particular, pedestrian tracking can fail due to
occlusions, poor segmentation, bad lighting, or crowding. Tracking sometimes locks on
the wrong pedestrian, especially if the scene contains multiple pedestrians with similar
visual appearance; i.e., wearing similar clothes. Our imaging model emulates artifacts
that are of interest to camera network researchers, such as video compression and inter-
lacing. It also models camera jitter and imperfect color response.

We employ appearance-based models to track pedestrians. Pedestrians are segmented
to construct unique and robust color-based signatures (appearance models), which are
then matched across the subsequent frames. Color-based signatures have found
widespread use in tracking applications [22], but they are sensitive to illumination
changes. However, this shortcoming can be mitigated by operating in HSV space in-
stead of RGB space. Furthermore, zooming can drastically change the appearance of a
pedestrian, thereby confounding conventional appearance-based schemes. We employ a
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(a) (b) (c) (d)

Fig. 3. (a) The LVRs are programmed to track Pedestrians 1 and 3. Pedestrian 3 is tracked suc-
cessfully; however, track is lost of Pedestrian 1 who blends in with the background. The tracking
routine loses Pedestrian 3 when she is occluded by Pedestrian 2, but it regains track of Pedestrian
3 when Pedestrian 2 moves out of the way. (b) Tracking while fixating on a pedestrian. (c) Track-
ing while zooming in on a pedestrian. (d) Camera returns to its default settings upon losing the
pedestrian; it is now ready for another task.

modified color-indexing scheme [23] to tackle this problem. Thus, a distinctive charac-
teristic of our pedestrian tracking routine is its ability to operate over a range of camera
zoom settings. It is important to note that we do not assume camera calibration. See [24]
for more details.

3.2 Camera Node Behaviors

Each camera node is an autonomous agent capable of communicating with nearby
nodes. The LVRs determine the sensing capabilities of a camera node, whose over-
all behavior is determined by the LVR (bottom-up) and the current task (top-down). We
model the camera controller as an augmented hierarchical finite state machine (Fig. 4).

In its default state, Idle, the camera node is not involved in any task. A camera node
transitions into the ComputingRelevance state upon receiving a queryrelevance mes-
sage from a nearby node. Using the description of the task that is contained within
the queryrelevance message and by employing the LVRs, the camera node can com-
pute its relevance to the task. For example, a camera can use visual search to find a
pedestrian that matches the appearance-based signature passed by the querying node.
The relevance encodes the expectation of how successful a camera node will be at a
particular sensing task. The camera returns to the Idle state when it fails to compute
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Fig. 4. Top-level camera controller. Dashed states contain the child finite state machine shown in
the inset.

the relevance because it cannot find a pedestrian that matches the description. When
the camera successfully finds the desired pedestrian, however, it returns the relevance
value to the querying node. The querying node passes the relevance value to the leader
(leader node) of the group, which decides whether or not to include the camera node
in the group. The camera goes into PerformingTask state upon joining a group where
the embedded child finite state machine (Fig. 4 inset) hides the sensing details from
the top-level controller and enables the node to handle short-duration sensing (tracking)
failures. Built-in timers allow the camera node to transition into the default state instead
of hanging in some state waiting for a message from another node, which might never
arrive due to a communication error or node failure.

Each camera can fixate and zoom in on an object of interest. Fixation and zoom-
ing routines are image driven and do not require any 3D information, such as camera
calibration or a global frame of reference. We discovered that traditional Proportional
Derivative (PD) controllers generate unsteady control signals, resulting in jittery cam-
era motion. The noisy nature of tracking forces the PD controller to try continuously
to minimize the error metric without ever succeeding, so the camera keeps servoing.
Hence, we model the fixation and zooming routines as dual-state controllers. The states
are used to activate/deactivate the PD controllers. In the act state the PD controller tries
to minimize the error signal; whereas, in the maintain state the PD controller ignores
the error signal altogether and does nothing.

The fixate routine brings the region of interest—e.g., a pedestrian’s bounding box—
into the center of the image by tilting the camera about its local x and y axes (Fig. 3(b)).
The zoom routine controls the FOV of the camera such that the region of interest occu-
pies the desired percentage of the image (Fig. 3(c)). See [24] for the details.

A camera node returns to its default stance after finishing a task using the reset
routine, which is a PD controller that attempts to minimize the error between the current
zoom/tilt settings and the default zoom/tilt settings (Fig. 3(d)).

4 Sensor Network Model

We now explain the sensor network communication scheme that enables task-specific
coalition formation. The idea is as follows: A human operator presents a particular
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(a) Announcement (b) Bidding (c) Selection

Fig. 5. Task auction supports coalition formation. The red cross indicates a lost message.

sensing request to one of the nodes. In response to this request, relevant nodes self-
organize into a group with the aim of fulfilling the sensing task. The group, which
formalizes the collaboration between member nodes, is a dynamic arrangement that
evolves throughout the lifetime of the task. At any given time, multiple groups might be
active, each performing its respective task. Group formation is determined by the local
computation at each node and the communication between the nodes. Specifically, we
employ the ContractNet protocol, which models auctions (announcement, bidding, and
selection) for group formation [16] (see Fig. 5). The local computation at each node
involves choosing an appropriate bid for the announced sensing task.

From the standpoint of user interaction, we have identified two kinds of sensing
queries: 1) where the queried sensor itself can measure the phenomenon of interest—
e.g., when a human operator selects a pedestrian to be tracked within a particular video
feed—and 2) when the queried node might not be able to perform the required sens-
ing and needs to route the query to other nodes. For instance, an operator can request
the network to count the number of pedestrians wearing green shirts. To date we have
experimented only with the first kind of queries, which are sufficient for setting up
collaborative tracking tasks; however, this is by no means a limitation of the proposed
communication model.

4.1 Coalition Formation

Node grouping commences when a node n receives a sensing query. In response to
the query, the node sets up a named task and creates a single-node group. Initially, as
node n is the only node in the group, it is chosen as the leader node. To recruit new
nodes for the current task, node n begins by sending queryrelevance messages to its
neighboring nodes, Nn. This is akin to auctioning the task in the hope of finding suitable
nodes. A subset N ′ of Nn respond by sending their relevance values for the current task
(relevance message). This is the bidding phase. Upon receiving the relevance values,
node n selects a subset M of N ′ to include in the group, and sends join messages to
the chosen nodes. This is the selection phase. When there is no resource contention
between groups (tasks)—e.g., when only one task is active, or when multiple tasks that
do not require the same nodes for successful operation are active—the selection process
is relatively straightforward; node n picks those nodes from N ′ that have the highest
relevance values. On the other hand, a conflict resolution mechanism is required when
multiple groups vie for the same nodes; we present a scheme to handle this situation in
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Fig. 6. (a)-(b) A node leaves a group after receiving a leave message from the group leader. (c)-
(d) Old group leader selects a new group leader and leaves the group. (e) A leader node detects
another leader performing the same task; leader/supervisor demotion commences. (f) Conflict
detection between two resources.

the next section. A node that is not already part of any group can join the group upon
receiving a join message from the leader of that group. After receiving the join message,
a subset M ′ of M elect to join the group.

For multinode groups, if a group leader decides to recruit more nodes for the task at
hand, it instructs group nodes to broadcast task requirements. This is accomplished via
sending queryrelevance to group nodes. The leader node is responsible for group-level
decisions, so member nodes forward to the group leader all the group-related messages,
such as the relevance messages from potential candidates for group membership. Dur-
ing the lifetime of a group, group nodes broadcast status messages at regular intervals.
Group leaders use status messages to update the relevance information of the group
nodes. When a leader node receives a status message from another node performing the
same task, the leader node includes that node into its group. The leader node uses the
most recent relevance values to decide when to drop a member node. A group leader
also removes a node from the group if it has not received a status message from the
node in some preset time limit.2 Similarly, a group node can choose to stop performing
the task when it detects that its relevance value is below a certain threshold. When a
leader detects that its own relevance value for the current task is below the predefined
threshold, it selects a new leader from amongst the member nodes. The group vanishes
when the last node leaves the group.

4.2 Conflict Resolution

A conflict resolution mechanism is needed when multiple groups require the same re-
sources (Fig. 6(f)). The problem of assigning sensors to the contending groups can be
treated as a Constraint Satisfaction Problem (CSP) [25]. Formally, a CSP consists of
a set of variables {v1, v2, v3, · · · , vk}, a set of allowed values Dom[vi] for each vari-
able vi (called the domain of vi), and a set of constraints {C1, C2, C3, · · · , Cm}. The
solution to the CSP is a set {vi ← ai|ai ∈ Dom[vi]}, where the ais satisfy all the
constraints.

We treat each group g as a variable, whose domain consists of the non-empty subsets
of the set of sensors with relevance values (with respect to g) greater than a predefined

2 The relevance value of a group node decays over time in the absence of new status messages
from that node. Thus, we can conveniently model node dependent timeouts; i.e., the time
duration during which at least one status message must be received by the node in question.
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threshold. The constraints restrict the assignment of a sensor to multiple groups. As-
sume, for example, a group g and a set of nodes {n1, n2, n3} with relevance values
{r1, r2, r3}, respectively. If r3 is less than the predefined threshold, the set of nodes
that will be considered for assignment to g is {n1, n2}, and the domain of g is the
set {{n1}, {n2}, {n1, n2}}. We define a constraint Cij as ai ∩ aj = {Φ}, where ai

and aj are sensor assignments to groups gi and gj , respectively; k groups give rise to
k!/2!(k − 2)! constraints.

We can then define a CSP as P = (G, D, C), where G = {g1, g2, · · · , gk} is the set
of groups (variables) with non-empty domains, S = {Dom[gi]|i ∈ [1, k]} is the set of
domains for each group, and C = {Cij |i, j ∈ [1, k], i �= j} is the set of constraints.
To solve P , we employ backtracking to search systematically through the space of pos-
sibilities. We find all solutions, rank these solutions according to the relevance values
for sensors (with respect to each group), and select the best solution to find the opti-
mal assignments. The solution ranking procedure can easily incorporate other relevant
concerns such as a preference for sensors that are positioned orthogonal to each other
with respect to the pedestrian so as to increase the position estimate accuracy or using
sensors that are within one hop distance of each other. When P has no solution, When
P has no solution, we solve smaller CSPs by relaxing the node requirements for each
task.

A node initiates the conflict resolution procedure upon identifying a group-group
conflict; e.g., when it intercepts a queryrelevance message from multiple groups, or
when it already belongs to a group and it receives a queryrelevance message from an-
other group. The conflict resolution procedure begins by centralizing the CSP in one
of the leader nodes that uses backtracking to solve the problem.3 The result is then
conveyed to the other leader nodes.

CSPs have been studied extensively in the computer science literature and there exist
more powerful variants of the basic backtracking method; however, we employ the naive
backtracking approach in the interest of simplicity and because it can easily cope with
the size of problems encountered in the current setting. A key feature of our conflict
resolution scheme is centralization, which requires that all the relevant information be
gathered at the node that is responsible for solving the CSP. For smaller CSPs, the cost
of centralization is easily offset by the speed and ease of solving the CSP.

Solving the CSP. Any solution of the above CSP P is a valid sensor node assignment;
however, some solutions are better than others as not all nodes are equally suitable for
any given sensing task. The node relevance value with respect to a group quantifies the
suitability of the node to the task performed by that group, and we can view the quality
of a solution as a function of the quality of sensor assignments to different groups. In a
restrictive setting, we can define the quality of a solution to be the sum of the quality of
sensor assignments to individual groups.

When it is possible to compare the quality of a partial solution to that of a full solu-
tion, we can store the currently best result and backtrack whenever the current partial
solution is of poorer quality. Using this strategy, we can guarantee an optimal solution

3 Leader node where centralization occurs is selected using a strategy similar to that used for
group merging (Fig. 7).
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Table 1. Finding an optimal sensor node assignment. The problem is to assign three sensors each
to two groups. The average number of relevant nodes for each group is 12 and 16. AllSolu finds
all solutions, ranks them, and picks the best one, whereas BestSolu computes the optimal solution
by storing the currently best solution and backtracking when partial assignment yields a poorer
solution. As expected, the BestSolu solver outperforms the AllSolusolver.

Test cases 1 2 3 4

Number of groups 2 2 2 2
Number of sensors per group 3 3 3 3
Average number of relevant sensors 12 12 16 16
Average domain size 220 220 560 560
Number of solutions 29290 9 221347 17
Nodes explored 29511 175 221908 401
Number of Backtracks 48620 36520 314160 215040
Solver used AllSolu BestSolu AllSolu BestSolu

under the assumption that the quality of solutions increase monotonically as values are
assigned to more variables. For example, compare test cases 1 and 2 in Table 1. The
goal was to assign 3 sensors each to the two groups. Optimal assignments were found
in both cases; however, BestSolu, which employs backtracking based on the quality of
the partial solution, visited only 175 nodes to find the optimal solution, as opposed to
AllSolu, which visited 29290 nodes. The AllSolu solver enumerates every solution to
find the optimal sensor assignment. The same trend is observed in columns 3 and 4
in the table. The BestSolu solver clearly outperforms the AllSolu solver in finding the
optimal node assignment. Of course, when operating under time/resource constraints,
we can always choose the first solution or pick the best solution after a predetermined
number of nodes have been explored.

4.3 Node Failures and Communication Errors

The purposed communication model takes into consideration node and communication
failures. Communication failures are perceived as sensor failures; for example, when a
node is expecting a message from another node, and the message never arrives, the first
node concludes that the second node is malfunctioning. A node failure is assumed when
the leader node does not receive a status from the node during some predefined inter-
val, and the leader node removes the problem node from the group. On the other hand,
when a member node does not receive any message (status or queryrelevance) from the
leader node during a predefined interval, it assumes that the leader node has experienced
a failure and selects itself to be the leader of the group. An actual or perceived leader
node failure can therefore give rise to multiple single-node groups performing the same
task. Multiple groups assigned to the same task are merged by demoting all of the leader
nodes of the constituent groups, except one. Consider, for example, a group comprising
three nodes a, b, and c, with node a being the leader node. When a fails, b and c form
two single-node groups and continue to perform the sensing task. In due course, nodes b
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Assumptions: Nodes n and m are two leader nodes performing Task 1.
Case 1: Node n receives a queryrelevance or status message from node m.

if Node n is not involved in demotion negotiations with another node then send demote mes-
sage to node m after a random interval.
Case 2: Node n receives a demote message from node m.

a) if Node n has not sent a demote message to another node then demote node n and send
demoteack message to node m.

b) if Node n has sent a demote message to node m then send demoteretry message to node m
and send a demote message to node m after a random interval.

c) if Node n has sent a demote message to another node then send a demotenack message to
node m.
Case 3: Node n receives a demotenack message from node m.

Terminate demotion negotiations with node m.
Case 4: Node n receives a demoteack message from node m.

Add m to node n’s group.
Case 5: Node n receives a demoteretry message from node m.

Send a demote message to node m after a random interval.

Fig. 7. Group merging via leader demotion

and c discover each other—e.g., when b intercepts a queryrelevance or a status message
from c—and they form a new group comprising b and c, demoting node c in the process.
Thus, our proposed communication model is able to handle node failures.

Demotion is either carried out based upon the unique ID assigned to each node—
among the conflicting nodes, the one with the highest ID is selected to be the group
leader—or, when unique node IDs are not guaranteed, demotion can be carried out via
the process shown in Fig. 7. The following observations suggest that our leader demo-
tion strategy is correct; i.e., only a single leader node survives the demotion negotiations
and every other leader node is demoted.

– Observation 1: The demotion process between two leader nodes either succeeds
or fails. It succeeds when one of the two nodes is demoted. Demotion between two
nodes is based on the contention management scheme that was first introduced in
the ALOHA network protocol [26]. The ALOHA network protocol was developed
in the late 60s and it is a precursor to the widely used Ethernet protocol. In its basic
version, the ALOHA protocol states
• if you have data to send, send it.
• if there is a collision, resend after a random interval.

We point the interested reader to [27] for the details. What is important here is to
note that eventually one of the two leader nodes will be demoted; i.e., the demotion
process between two nodes will eventually succeed.

– Observation 2: The demotion process between more than two nodes involves re-
peated (distributed and parallel) application of the demotion process between two
nodes.
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5 Video Surveillance

We now consider how a sensor network of dynamic cameras may be used in the con-
text of video surveillance. A human operator spots one or more suspicious pedestri-
ans in one of the video feeds and, for example, requests the network to “observe this
pedestrian,” “zoom in on this pedestrian,” or “observe the entire group.” The successful
execution and completion of these tasks requires intelligent allocation and scheduling
of the available cameras. In particular, the network must decide which cameras should
track the pedestrian and for how long.

A detailed world model that includes the location of cameras, their fields of view,
pedestrian motion prediction models, occlusion models, and pedestrian movement path-
ways may allow (in some sense) optimal allocation and scheduling of cameras; how-
ever, it is cumbersome and in most cases infeasible to acquire such a world model. Our
approach does not require such a knowledge base. We assume only that a pedestrian
can be identified by different cameras with reasonable accuracy and that the camera
network topology is known a priori. A direct consequence of this approach is that the
network can easily be modified through removal, addition, or replacement of camera
nodes.

5.1 Computing Camera Node Relevance

The accuracy with which individual camera nodes are able to compute their relevance
to the task at hand determines the overall performance of the network. Our scheme for
computing the relevance of a camera to a video surveillance task encodes the intuitive
observations that 1) a camera that is currently free should be chosen for the task, 2)
a camera with better tracking performance with respect to the task at hand should be
chosen, 3) the turn and zoom limits of cameras should be taken into account when
assigning a camera to a task; i.e., a camera that has more leeway in terms of turning
and zooming might be able to follow a pedestrian for a longer time, and 4) it is better
to avoid unnecessary reassignments of cameras to different tasks, as that might degrade
the performance of the underlying computer vision routines.

Upon receiving a task request, a camera node returns to the leader node a relevance
metric—a list of attribute-value pairs describing its relevance to the current task along
multiple dimensions (Fig. 8). The leader node converts this metric into a scalar rele-
vance value r as follows:

r =

⎧
⎪⎨

⎪⎩

exp
(
− (c−1)2

2σc
2 − (θ−θ̂)2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)

when s = free
t

t+γ when s = busy

(1)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and β̂ = (βmin + βmax)/2, and
where θmin and θmax are extremal field of view settings, αmin and αmax are extremal
rotation angles around the x-axis (up-down), and βmin and βmax are extremal rotation
angles around the y-axis (left-right). Here, 0.3 ≤ σc ≤ 0.33, σθ = (θmax − θmin)/6,
σα = (αmax−αmin)/6, and σβ = (βmax−βmin)/6. The value of γ is chosen empirically
(for our experiments we have selected γ to be 1000).
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Status = s ∈ {busy, free}
Quality = c ∈ [0, 1]
Fov = θ ∈ [θmin, θmax] degrees

XTurn = α ∈ [αmin, αmax] degrees

YTurn = β ∈ [βmin, βmax] degrees

Time = t ∈ [0, ∞) seconds
Task = a ∈ {ai|i = 1, 2, · · · }

Fig. 8. The relevance metric returned by a camera node relative to a new task request. The leader
node converts the metric into a scalar value representing the relevance of the node for the partic-
ular surveillance task.

The computed relevance values are used by the node selection scheme described
above to assign cameras to various tasks. The leader node gives preference to the nodes
that are currently free, so the nodes that are part of another group are selected only when
an insufficient number of free nodes are available for the current task.

5.2 Surveillance Tasks

We have implemented an interface that presents the operator a display of the synthetic
video feeds from multiple virtual surveillance cameras. The operator can select a pedes-
trian in any video feed and instruct the camera network to perform one of the following
tasks: 1) follow the pedestrian, 2) capture a high-resolution snapshot, or 3) zoom-in and
follow the pedestrian. The network then automatically assigns cameras to fulfill the task
requirements. The operator can also initiate multiple tasks, in which case either cameras
that are not currently occupied are chosen for the new task or some currently occupied
cameras are reassigned to the new task.

6 Results

To date, we have tested our visual sensor network system with up to 16 stationary and
pan-tilt-zoom cameras, and we have populated the virtual Penn Station environment
with up to 100 pedestrians. The sensor network correctly assigned cameras in most of
the cases. Some of the problems that we encountered are related to pedestrian iden-
tification and tracking. As we increase the number of virtual pedestrians in the train
station, the identification and tracking module has increasing difficulty following the
correct pedestrian, so the probability increases that the surveillance task fails (and the
cameras just return to their default settings).

For the example shown in Fig. 9, we placed 16 active PTZ cameras in the train
station, as shown in Fig. 1. The operator selects the pedestrian with the red shirt in
Camera 7 (Fig. 9(e)) and initiates the “follow” task. Camera 7 forms the task group and
begins tracking the pedestrian. Subsequently, Camera 7 recruits Camera 6, which in turn
recruits Cameras 2 and 3 to track the pedestrian. Camera 6 becomes the leader of the
group when Camera 7 loses track of the pedestrian and leaves the group. Subsequently,
Camera 6 experiences a tracking failure, sets Camera 3 as the group leader, and leaves
the group. Cameras 2 and 3 track the pedestrian during her stay in the main waiting
room, where she also visits a vending machine. When the pedestrian starts walking
towards the concourse, Cameras 10 and 11 take over the group from Cameras 2 and 3.
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(a) C 1; 30s (b) C 9; 30s (c) C 7; 30s (d) C 6; 30s (e) C 7; 1.5min (f) C 7; 2.0min (g) C 6; 2.2min

(h) C 6; 3.0min (i) C 7; 3.5min (j) C 6; 4.2min (k) C 2; 3.0min (l) C 2; 4.0min (m) C 2; 4.3min (n) C 3; 4.0min

(o) C 3; 5.0min (p) C 3; 6.0min (q) C 3; 13.0min (r) C 10; 13.4min (s) C 11; 14.0min (t) C 9; 15.0min

Fig. 9. A pedestrian is successively tracked by Cameras 7, 6, 2, 3, 10, and 9 (see Fig. 1) as she
makes her way through the station to the concourse. (a-d) Cameras observing the station. (e) The
operator selects a pedestrian in the video feed from Camera 7. (f) Camera 7 has zoomed in on the
pedestrian, (g) Camera 6, which is recruited by Camera 7, acquires the pedestrian. (h) Camera
6 zooms in on the pedestrian. (i) Camera 7 reverts to its default mode after losing track of the
pedestrian and is now ready for another task (j) Camera 6 has lost track of the pedestrian. (k)
Camera 2. (l) Camera 2, which is recruited by Camera 6, acquires the pedestrian. (m) Camera
2 tracking the pedestrian. (n) Camera 3 is recruited by Camera 6; Camera 3 has acquired the
pedestrian. (o) Camera 3 zooming in on the pedestrian. (p) Pedestrian is at the vending machine.
(q) Pedestrian is walking towards the concourse. (r) Camera 10 is recruited by Camera 3; Camera
10 is tracking the pedestrian. (s) Camera 11 is recruited by Camera 10. (t) Camera 9 is recruited
by Camera 10.

(a) (b) (c) (d) (e)

Fig. 10. “Follow” sequence. (a) The operator selects a pedestrian in Camera 1 (upper row). (b)
and (c) Camera 1 and Camera 2 (lower row) are tracking the pedestrian. (d) Camera 2 loses track.
(e) Camera 1 is still tracking; Camera 2 has returned to its default settings.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Group merging and leader failure. Blue nodes are idle. Red nodes are following the
targets shown as pink cones. Square nodes represent group leaders and black nodes indicate node
failures.

Cameras 2 and 3 leave the group and return to their default modes. Later Camera 11,
which is now acting as the group’s leader, recruits Camera 9, which tracks the pedestrian
as she enters the concourse.

Fig. 10 illustrates a “follow” task sequence. An operator selects the pedestrian with
the green shirt in Camera 1 (top row). Camera 1 forms a group with Camera 2 (bot-
tom row) to follow and zoom in on the pedestrian. At some point, Camera 2 loses the
pedestrian (due to occlusion), and it invokes a search routine, but it fails to reacquire
the pedestrian. Camera 1, however, is still tracking the pedestrian. Camera 2 leaves the
group and returns to its default settings.

Fig. 11 presents a simulation of larger sensor networks outside our virtual vision
simulator. It shows a sensor network of 50 nodes placed randomly in a 25 m2 area. The
nodes that are within 5 m of each other can directly communicate with each other. Each
node can communicate with another node in the network through multi-hop routing.
Fig. 11(a)–(e) show group merging. When the leader of the group fails (Fig. 11(f)),
multiple member nodes assume leadership (Fig. 11(g)). These nodes negotiate each
other to select a single leader (Fig. 11(h)).

6.1 Discussion

Given the above results, we make the following observations about the proposed scheme:

– The proposed protocol successfully forms camera groups to carry out various ob-
servation tasks. Cameras that belong to a single group collaborate with each other
for the purposes of carrying out the observation task. Currently we support a few
observation tasks that are of interest to the visual surveillance community. These
are 1) taking snapshots of a pedestrian, 2) closely observing a pedestrian during
his/her stay in the designated region, and 3) following a pedestrian across multiple
cameras.
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– Camera grouping does not require camera calibration or camera network topology
information, which makes our system suitable for ad hoc deployment. This is not to
say that the proposed protocol cannot take advantage of camera calibration and/or
camera network topology information if such information were available.

– Camera groups are dynamic and transient arrangements that evolve in order to per-
form an observation task. Like group formation, group evolution is a negotiation
between the relevant nodes.

– The proposed protocol can deal with node and message failures. This suggests that
the network protocol can handle addition and removal of camera nodes during the
lifetime of an observation task.

– Camera hand off occurs naturally during negotiations.
– Smaller group sizes are preferable. Larger groups have slower responses and higher

maintenance costs. The proposed protocol might fail to carry out an observation
task even when each (camera) node is assumed to be a perfect sensor if the group
evolution cannot keep up with a fast changing observation task.

– Assuming that each (camera) node is a perfect sensor, the proposed protocol still
might fail to carry out an observation task if a large fraction of nodes fail or a
significant fraction of messages are lost.

– Camera node aggregation is fully distributed and lacks a central controller, so it
is scalable. Sensor assignment in the presence of conflicts, however, is centralized
over the involved groups. Therefore, our scheme lies somewhere between a fully
distributed and a fully centralized system. In the interest of scalability, group sizes
should be kept small.

7 Conclusion

We envision future video surveillance systems to be networks of stationary and active
cameras capable of providing perceptive coverage of extensive environments with min-
imal reliance on human operators. Such systems will require not only robust, low-level
vision routines, but also novel sensor network methodologies. The work presented in
this paper is a step toward the realization of these new sensor networks and our initial
results are promising.

A unique and, in our view, important aspect of our work is that we have developed
and demonstrated our prototype video surveillance system in a realistic virtual train sta-
tion environment populated by lifelike, autonomously self-animating virtual pedestri-
ans. Our sophisticated sensor network simulator should continue to facilitate our ability
to design large-scale networks and experiment with them on commodity personal com-
puters.

The overall behavior of our prototype sensor network is governed by local decision
making at each node and communication between the nodes. Our approach is new in-
sofar as it does not require camera calibration, a detailed world model, or a central
controller. We have intentionally avoided multi-camera tracking schemes that assume
prior camera network calibration which, we believe, is an unrealistic goal for a large-
scale camera network consisting of heterogeneous cameras. Similarly, our approach
does not expect a detailed world model, which is generally hard to acquire. We expect
the proposed approach to be robust and scalable.
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We are currently pursuing a Cognitive Modeling [28] approach to node organization
and camera scheduling. We are also investigating scalability and node failure issues.
Moreover, we are constructing more elaborate scenarios involving multiple cameras
situated in different locations within the train station, with which we would like to
study the performance of the network when it is required to follow multiple pedestrians
during their prolonged stay in the train station.
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