EdgeConnect: Structure Guided Image Inpainting using Edge Prediction (Supplementary Material)

Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi University of Ontario Institute of Technology, Canada

1. Network Architectures

1.1. Generators

We follow a similar naming convention as those presented in [7]. Let c7s1-k denote a 7×7 Convolution-SpectralNorm-InstanceNorm-ReLU layer with k filters and stride 1 with reflection padding. Let dk denote a 4×4 Convolution-SpectralNorm-InstanceNorm-ReLU layer with k filters and stride 2 for down-sampling. Let uk be defined in the same manner as dk with transpose convolution for up-sampling. Let Rk denote a residual block of channel size k across both layers. We use dilated convolution in the first layer of Rk with dilation factor of 2, followed by spectral normalization and instance normalization.

The architecture of our generators is adopted from the model proposed by Johnson *et al.* [3]: c7s1-64, d128, d256, R256, R256, R256, R256,

R256, R256, R256, R256, R256, u128, u64, c7s1-*.

The final layer c7s1-* varies depending on the generator. In the edge generator G_1 , c7s1-* has channel size of 1 with sigmoid activation for edge prediction. In the image completion network G_2 , c7s1-* has channel size of 3 with tanh (scaled) activation for the prediction of RGB pixel intensities. In addition, we remove spectral normalization from all layers of G_2 .

1.2. Discriminators

The discriminators D_1 and D_2 follow the same architecture based on the 70 × 70 PatchGAN [2, 7]. Let Ck-s denote a 4 × 4 Convolution-SpectralNorm-LeakyReLU layer with k filters of stride s. The discriminators have the architecture C64-2, C128-2, C256-2, C512-1, C1-1. The final convolution layer produces scores predicting whether 70 × 70 overlapping image patches are real or fake. LeakyReLU [5] is employed with slope 0.2.

2. Experimental Results

	Mask	Precision	Recall
CelebA	0-10%	51.38	48.64
	10-20%	46.05	42.28
	20-30%	40.98	36.97
	30-40%	35.96	30.57
	40-50%	32.34	25.48
	50-60%	30.17	20.26
	0-10%	48.68	46.70
	10-20%	43.55	41.22
ces2	20-30%	38.71	36.20
Pla	30-40%	34.51	31.36
	40-50%	31.85	27.04
	50-60%	30.53	22.42
PSV	0-10%	56.57	53.95
	10-20%	52.03	48.71
	20-30%	47.56	43.35
	30-40%	43.63	38.07
	40-50%	41.19	32.93
	50-60%	39.44	27.48

Table 1: Quantitative performance (256×256) of our edge generator G_1 trained on Canny edges.

We provide additional results produced by our model over the following datasets:

- CelebA (202, 599 images)
- CelebHQ (30,000 images)
- Places2 (10 million+ images)
- Paris StreetView (14, 900 images)

For CelebA, we crop the center of the image and resize it to the appropriate resolution. For Paris StreetView, since the images in the dataset are elongated (936×537), we separate each image into three: 1) Left 537×537 , 2) middle 537×537 , 3) right 537×537 , of the image for a total of 44,700 images. All images are rescaled to 256×256 for quantitative results, and 512×512 for qualitative results.

		Hybrid		Canny	
	Mask	G_1	GT	G_1	GT
$\ell_1 \left(\% ight)^{\dagger}$	0-10%	0.31	0.23	0.29	0.25
	10-20%	0.79	0.55	0.76	0.59
	20-30%	1.42	0.93	1.38	1.00
	30-40%	2.19	1.35	2.13	1.45
	40-50%	3.10	1.82	3.03	1.97
	50-60%	4.95	2.61	4.89	2.88
	0-10%	0.985	0.990	0.985	0.988
	10-20%	0.959	0.978	0.961	0.972
ľ	20-30%	0.926	0.959	0.928	0.951
SSI	30-40%	0.886	0.940	0.890	0.930
	40-50%	0.841	0.920	0.846	0.906
	50-60%	0.767	0.891	0.771	0.872
	0-10%	39.24	42.43	39.60	41.77
L.	10-20%	33.26	37.48	33.51	36.81
ĬŘ,	20-30%	29.80	34.65	30.02	34.00
PSN	30-40%	27.21	32.59	27.39	31.92
	40-50%	25.12	30.87	25.28	30.21
	50-60%	22.03	28.49	22.11	27.68
	0-10%	0.22	0.11	0.20	0.13
FID†	10-20%	0.56	0.24	0.53	0.31
	20-30%	1.13	0.41	1.08	0.57
	30-40%	1.90	0.61	1.80	0.88
	40-50%	2.99	0.83	2.82	1.25
	50-60%	5.67	1.14	5.30	1.79

Table 2: Comparison of quantitative results (256×256) between Hybrid (HED \odot Canny) and Canny edges over CelebA. Statistics are shown for generated edges (G_1) and ground truth edges (GT). [†]Lower is better. *Higher is better.

Accuracy of Edge Generator Table 1 shows the accuracy of our edge generator G_1 across all three datasets. We measure precision and recall for various mask sizes.

Comprehensive Results Tables **3** and **4** shows the quantitative performance of our model compared to existing methods over the datasets CelebA and Paris StreetView. Figures 2, 3 and 4 display these results graphically. Additional inpainting results of our proposed model are shown in figures 5 and 6.

3. Alternative Edge Generating Systems

We compare the quantitative results between Canny and a combination of HED and Canny edges (*i.e.* HED \odot Canny). Generated images based on the combined edges gave the best performance. However, our generator G_1 is unable to generate these type of edges accurately during training. Table 2 shows G_1 trained on HED \odot Canny had the poorest performance out of all methods despite its ground truth counterpart achieving the best performance. Figure 1 shows the results of G_1 trained using hybrid edges.

Figure 1: Generated edges by G_1 trained using hybrid (HED \odot Canny) edges (512 × 512). Images are best viewed in color. (a) Original Image. (b) Image with Masked Region. (c) Ground Truth Edges. (d) Generated Edges.

	Mask	CA	GLCIC	PConv	Ours
)† [0-10%	1.33	0.91	0.29	0.29
	10-20%	2.48	2.53	0.78	0.76
	20-30%	3.98	4.67	1.42	1.38
26)	30-40%	5.64	6.95	2.19	2.13
ℓ_1	40-50%	7.35	9.18	3.08	3.03
	50-60%	9.21	11.21	4.96	4.89
	Fixed	2.80	3.83	2.35	2.39
	0-10%	0.947	0.947	0.985	0.985
	10-20%	0.888	0.865	0.956	0.961
SIM*	20-30%	0.819	0.773	0.924	0.928
	30-40%	0.750	0.689	0.884	0.890
\mathbf{S}	40-50%	0.678	0.609	0.840	0.846
	50-60%	0.614	0.560	0.768	0.771
	Fixed	0.882	0.847	0.891	0.891
C	0-10%	31.16	30.24	39.65	39.60
	10-20%	25.32	24.09	33.19	33.51
*~	20-30%	22.09	20.71	29.68	30.02
PSNF	30-40%	19.94	18.50	27.15	27.39
	40-50%	18.41	17.09	25.15	25.28
	50-60%	17.18	16.24	22.00	22.11
	Fixed	25.34	22.13	25.63	25.49
FID [†]	0-10%	3.24	16.84	0.20	0.20
	10-20%	13.12	58.74	0.53	0.53
	20-30%	29.47	102.97	1.08	1.08
	30-40%	47.55	136.47	1.81	1.80
	40-50%	68.40	163.95	2.81	2.82
	50-60%	76.70	167.07	5.46	5.30
	Fixed	1.90	25.21	1.92	1.90

Table 3: Comparison of quantitative results (256×256) over CelebA with CA [6], GLCIC [1], PConv [4], Ours (end-toend). The best result of each row is boldfaced. [†]Lower is better. *Higher is better.

	Mask	CA	GLCIC	PConv	Ours
$\ell_1 \left(\% ight)^\dagger$	0-10%	0.75	0.86	0.43	0.43
	10-20%	2.10	2.20	1.14	1.09
	20-30%	3.80	3.86	2.04	1.91
	30-40%	5.53	5.58	3.02	2.82
	40-50%	7.23	7.34	4.17	3.94
	50-60%	9.06	9.02	6.12	5.87
	Fixed	3.22	3.23	2.92	2.77
C	0-10%	0.964	0.949	0.975	0.975
	10-20%	0.905	0.878	0.933	0.938
¥	20-30%	0.835	0.800	0.881	0.892
SSIM	30-40%	0.766	0.724	0.826	0.842
	40-50%	0.695	0.648	0.765	0.784
	50-60%	0.625	0.588	0.678	0.700
	Fixed	0.847	0.840	0.847	0.860
	0-10%	32.45	30.46	36.39	36.31
	10-20%	26.09	25.72	30.71	31.23
*~	20-30%	22.80	22.90	27.57	28.26
SNI	30-40%	20.74	21.02	25.43	26.05
Pé	40-50%	19.35	19.66	23.66	24.20
	50-60%	18.17	18.71	21.34	21.73
	Fixed	23.68	24.07	24.78	25.23
FID [†]	0-10%	2.26	6.50	0.43	0.44
	10-20%	9.10	18.77	1.32	1.20
	20-30%	20.62	35.66	2.97	2.49
	30-40%	34.31	53.53	5.65	4.35
	40-50%	49.80	70.36	10.00	7.20
	50-60%	55.78	69.95	21.10	13.98
	Fixed	7.26	7.18	6.44	4.57

Table 4: Comparison of quantitative results (256×256) over Paris StreetView with CA [6], GLCIC [1], PConv [4], Ours (end-to-end). The best result of each row is boldfaced. [†]Lower is better. *Higher is better.

Figure 2: Effect of relative mask sizes on ℓ_1 , SSIM, PSNR, and FID on the CelebA dataset.

Figure 3: Effect of relative mask sizes on ℓ_1 , SSIM, PSNR, and FID on the Places dataset.

Figure 4: Effect of relative mask sizes on ℓ_1 , SSIM, PSNR, and FID on the Paris StreetView dataset.

Figure 5: Sample of results with CelebA dataset (512×512). Images are best viewed in color. From left to right: Original Image. Input Image, Generated Result.

Figure 6: Sample of results with Places2 dataset (512×512). Images are best viewed in color. From left to right: Original Image. Input Image, Generated Result.

Figure 7: Sample of results with Places2 dataset (512×512). Images are best viewed in color. From left to right: Original Image. Input Image, Generated Result.

Figure 8: Sample of results with Places2 dataset (512×512). Images are best viewed in color. From left to right: Original Image. Input Image, Generated Result.

References

- S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent image completion. ACM Transactions on Graphics (TOG), 36(4):107, 2017. 3
- [2] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In *Proceed*ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 1
- [3] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for realtime style transfer and super-resolution. In *European Conference on Computer Vision (ECCV)*, pages 694–711. Springer, 2016. 1
- [4] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro. Image inpainting for irregular holes using partial convolutions. In *The European Conference on Computer Vision (ECCV)*, September 2018. 3
- [5] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In *ICML Workshop on Deep Learning for Audio, Speech, and Language Processing (WDLASL 2013)*, 2013. 1
- [6] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting with contextual attention. In *Proceed*ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 3
- [7] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired imageto-image translation using cycle-consistent adversarial networks. In *The IEEE International Conference on Computer Vision (ICCV)*, 2017. 1