
 

 

 

 

  

 

 

 

 

 

 

 

• Coarse-grained particle simulations are 
important for the R&D of nanofluidic devices.
 
• Incorporating electric fields into these 
simulations can be computationally expensive.
 
• We illustrate the feasibility of using deep neural 
networks to solve and represent these fields.
 
• Compact representation methods could enable 
the use of more sophisticated models.
 
• We present this as a new industrial application 
of potential interest to the CDNNRIA community.

 

• Nanofluidic devices can be used to detect, 
manipulate, or characterize biomolecules, like DNA.
 
• Coarse-grained particle simulations can provide 
information that is inaccessible in experiments.
 
• These simulations can be parallelized perfectly, so 
efficiency is limited by available GPU memory.
 
• Incorporating external force fields is memory-
intensive, especially for more complicated forces.
 
• The deep neural network (DNN) method of solving 
partial differential equations (PDEs) has been shown 
to use less memory than traditional methods.

• The slit-well device consists of a series of deeper 
wells connected by shallower nanoslits. It can be 
used to separate nanoparticles or polymers by size.

• Future work will use the DNN method for three-dimensional devices, 
time-varying force fields, and field-particle interaction models. 
 
• The memory cost of mesh-based methods like FEM grows 
exponentially with the dimensionality of the PDE domain, whereas that 
of the DNN method grows at most polynomially [Grohs et al. 2018].
 
• Compact DNN representation techniques could reduce this cost even 
further, directly increasing overall simulation efficiency.

 

• In the finite element method (FEM), the domain 
is decomposed into a mesh of points. The round 
corners were approximated by linear segments.

• The electric potential can be modelled by the 
Laplace partial differential equation (PDE).

• FEM is guaranteed to converge to the correct 
solution at high mesh resolutions. It was used to 
obtain an approximate ground truth solution.

• The solution above was obtained using a DNN 
with 3 layers of width 10.

• The electric field can be recovered directly from 
the DNN solution using automatic differentiation. 

• In the deep neural network (DNN) method, the 
PDE solution is approximated directly by a DNN.
 
• We used fully-connected tanh networks with d 
hidden layers of width w.
 
• The DNN was trained by stochastic gradient 
descent to minimize
 
 
 
where B[u] describes the boundary conditions.
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• Training points were randomly sampled from the 
PDE domain to approximate these integrals.
 
• Rather than sampling the boundary separately, 
we approximated points near a given part of the 
boundary as lying on that segment.

• The FEM solutions used three double precision numbers and three 
integers per mesh point, so the memory cost for a mesh of N points is
 
 
 
in increments of 32 bits, approximately.
 
• The DNNs used one single precision number for each weight and each 
bias, so the memory cost of a DNN of depth d and width w is: 
 
 
 
in increments of 32 bits.
 
• Below, we compare the memory consumption of the FEM and DNN 
methods against their mean squared error (MSE) relative to the 
approximate ground truth solution.

• The diamonds show FEM solutions with different mesh resolutions 
and different numbers of linear segments on the round corners.
  
• The dashed line indicates the balance of accuracy to memory cost 
among the best FEM solutions.
 
• The circles show DNN solutions with various widths and depths.
  
• Although the DNN method did not match the accuracy of FEM, it did 
attain accuracies sufficient for use in coarse-grained simulations.
 
• The crosses show mimic DNNs, which were trained directly to 
minimize MSE relative to the approximate ground truth solution.
  
• These mimics did achieve the same balance of accuracy and memory 
consumption as the FEM solutions.
  
• The improved performance of the mimics suggests the DNN method 
did not fully exploit the representational capacity of the networks, and 
that improved training algorithms might enhance performance.

 

 

 

 

 

 

Overview

 

 

The slit-well device

The deep neural network method

The finite element method

Solution accuracy and memory cost

Higher-dimensional problems

Background

 

 

Martin Magill, Faisal Z. Qureshi, & Hendrick W. de Haan
Faculty of Science, University of Ontario Institute of Technology, Oshawa faculty.uoit.ca/dehaan/cNAB.LAB/

Compact Neural Network Solutions to 
Laplace's Equation in a Nanofluidic Device

 
martinmagill.netlify.com


