

martinmagill.netlify.com

Compact Neural Network Solutions to Laplace's Equation in a Nanofluidic Device

Martin Magill, Faisal Z. Qureshi, & Hendrick W. de Haan Faculty of Science, University of Ontario Institute of Technology, Oshawa

faculty.uoit.ca/dehaan/cNAB.LAB/

Overview

• Coarse-grained particle simulations are important for the R&D of **nanofluidic devices**.

• Incorporating **electric fields** into these simulations can be **computationally expensive**.

• We illustrate the feasibility of using **deep neural networks** to solve and represent these fields.

• Compact representation methods could enable the use of **more sophisticated models**.

• We present this as a **new industrial application** of potential interest to the CDNNRIA community.

Background

• Nanofluidic devices can be used to detect, manipulate, or characterize biomolecules, like DNA.

• Coarse-grained particle simulations can provide information that is inaccessible in experiments.

• These simulations can be parallelized perfectly, so efficiency is limited by available GPU memory.

• Incorporating external force fields is memoryintensive, especially for more complicated forces.

• The deep neural network (DNN) method of solving partial differential equations (PDEs) has been shown to use less memory than traditional methods.

Solution accuracy and memory cost

• The FEM solutions used three double precision numbers and three integers per mesh point, so the memory cost for a mesh of N points is

2(3N) + 0.5(3N) = 7.5N,

in increments of 32 bits, approximately.

• The DNNs used one single precision number for each weight and each bias, so the memory cost of a DNN of depth d and width w is:

3w + w(w + 1)(d - 1) + (w + 1),

in increments of 32 bits.

• Below, we compare the memory consumption of the FEM and DNN

The slit-well device

• The slit-well device consists of a series of deeper wells connected by shallower nanoslits. It can be used to separate nanoparticles or polymers by size.

• The electric potential can be modelled by the Laplace partial differential equation (PDE).

The finite element method

methods against their mean squared error (MSE) relative to the approximate ground truth solution.

• The diamonds show FEM solutions with different mesh resolutions and different numbers of linear segments on the round corners.

• The dashed line indicates the balance of accuracy to memory cost among the best FEM solutions.

- In the finite element method (FEM), the domain is decomposed into a mesh of points. The round corners were approximated by linear segments.
- FEM is guaranteed to converge to the correct solution at high mesh resolutions. It was used to obtain an approximate ground truth solution.

- The circles show DNN solutions with various widths and depths.
- Although the DNN method did not match the accuracy of FEM, it did attain accuracies sufficient for use in coarse-grained simulations.
- The crosses show **mimic** DNNs, which were trained directly to minimize MSE relative to the approximate ground truth solution.
- These mimics did achieve the same balance of accuracy and memory consumption as the FEM solutions.
- The improved performance of the mimics suggests the DNN method did not fully exploit the representational capacity of the networks, and that improved training algorithms might enhance performance.

The deep neural network method

Higher-dimensional problems

• In the deep neural network (DNN) method, the PDE solution is approximated directly by a DNN.

• We used fully-connected tanh networks with *d* hidden layers of width *w*.

• The DNN was trained by stochastic gradient descent to minimize

 $\mathcal{L}[u] = \int_{\Omega} \|\nabla^2 u\|^2 dA + 10 \int_{\partial \Omega} \|B[u]\|^2 dS,$

where B[u] describes the boundary conditions.

• Training points were randomly sampled from the PDE domain to approximate these integrals.

• Rather than sampling the boundary separately, we approximated points near a given part of the boundary as lying on that segment.

• The solution above was obtained using a DNN with 3 layers of width 10.

• The electric field can be recovered directly from the DNN solution using automatic differentiation.

• Future work will use the DNN method for three-dimensional devices, time-varying force fields, and field-particle interaction models.

• The memory cost of mesh-based methods like FEM grows exponentially with the dimensionality of the PDE domain, whereas that of the DNN method grows at most polynomially [Grohs et al. 2018].

• Compact DNN representation techniques could reduce this cost even further, directly increasing overall simulation efficiency.

